[Model] Add YOLOv5-seg (#988)

* add onnx_ort_runtime demo

* rm in requirements

* support batch eval

* fixed MattingResults bug

* move assignment for DetectionResult

* integrated x2paddle

* add model convert readme

* update readme

* re-lint

* add processor api

* Add MattingResult Free

* change valid_cpu_backends order

* add ppocr benchmark

* mv bs from 64 to 32

* fixed quantize.md

* fixed quantize bugs

* Add Monitor for benchmark

* update mem monitor

* Set trt_max_batch_size default 1

* fixed ocr benchmark bug

* support yolov5 in serving

* Fixed yolov5 serving

* Fixed postprocess

* update yolov5 to 7.0

* add poros runtime demos

* update readme

* Support poros abi=1

* rm useless note

* deal with comments

* support pp_trt for ppseg

* fixed symlink problem

* Add is_mini_pad and stride for yolov5

* Add yolo series for paddle format

* fixed bugs

* fixed bug

* support yolov5seg

* fixed bug

* refactor yolov5seg

* fixed bug

* mv Mask int32 to uint8

* add yolov5seg example

* rm log info

* fixed code style

* add yolov5seg example in python

* fixed dtype bug

* update note

* deal with comments

* get sorted index

* add yolov5seg test case

* Add GPL-3.0 License

* add round func

* deal with comments

* deal with commens

Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
WJJ1995
2023-01-11 15:36:32 +08:00
committed by GitHub
parent 60e6a12b93
commit aa6931bee9
28 changed files with 1607 additions and 33 deletions

0
cmake/paddle_inference.cmake Normal file → Executable file
View File

View File

@@ -0,0 +1,27 @@
# YOLOv5Seg准备部署模型
- YOLOv5Seg v7.0部署模型实现来自[YOLOv5](https://github.com/ultralytics/yolov5/tree/v7.0),和[基于COCO的预训练模型](https://github.com/ultralytics/yolov5/releases/tag/v7.0)
- 1[官方库](https://github.com/ultralytics/yolov5/releases/tag/v7.0)提供的*.onnx可直接进行部署
- 2开发者基于自己数据训练的YOLOv5Seg v7.0模型,可使用[YOLOv5](https://github.com/ultralytics/yolov5)中的`export.py`导出ONNX文件后完成部署。
## 下载预训练ONNX模型
为了方便开发者的测试下面提供了YOLOv5Seg导出的各系列模型开发者可直接下载使用。下表中模型的精度来源于源官方库
| 模型 | 大小 | 精度 | 备注 |
|:---------------------------------------------------------------- |:----- |:----- |:----- |
| [YOLOv5n-seg](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5n-seg.onnx) | 7.7MB | 27.6% | 此模型文件来源于[YOLOv5](https://github.com/ultralytics/yolov5)GPL-3.0 License |
| [YOLOv5s-seg](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s-seg.onnx) | 30MB | 37.6% | 此模型文件来源于[YOLOv5](https://github.com/ultralytics/yolov5)GPL-3.0 License |
| [YOLOv5m-seg](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5m-seg.onnx) | 84MB | 45.0% | 此模型文件来源于[YOLOv5](https://github.com/ultralytics/yolov5)GPL-3.0 License |
| [YOLOv5l-seg](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5l-seg.onnx) | 183MB | 49.0% | 此模型文件来源于[YOLOv5](https://github.com/ultralytics/yolov5)GPL-3.0 License |
| [YOLOv5x-seg](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5x-seg.onnx) | 339MB | 50.7% | 此模型文件来源于[YOLOv5](https://github.com/ultralytics/yolov5)GPL-3.0 License |
## 详细部署文档
- [Python部署](python)
- [C++部署](cpp)
## 版本说明
- 本版本文档和代码基于[YOLOv5 v7.0](https://github.com/ultralytics/yolov5/tree/v7.0) 编写

View File

@@ -0,0 +1,14 @@
PROJECT(infer_demo C CXX)
CMAKE_MINIMUM_REQUIRED (VERSION 3.10)
# Specify the fastdeploy library path after downloading and decompression
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
# Add FastDeploy dependent header files
include_directories(${FASTDEPLOY_INCS})
add_executable(infer_demo ${PROJECT_SOURCE_DIR}/infer.cc)
# Add FastDeploy library dependencies
target_link_libraries(infer_demo ${FASTDEPLOY_LIBS})

View File

@@ -0,0 +1,74 @@
# YOLOv5Seg C++部署示例
本目录下提供`infer.cc`快速完成YOLOv5Seg在CPU/GPU以及GPU上通过TensorRT加速部署的示例。
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. 根据开发环境下载预编译部署库和samples代码参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
以Linux上CPU推理为例在本目录执行如下命令即可完成编译测试支持此模型需保证FastDeploy版本1.0.3以上(x.x.x>=1.0.3)
```bash
mkdir build
cd build
# 下载 FastDeploy 预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j
# 1. 下载官方转换好的 YOLOv5Seg ONNX 模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s-seg.onnx
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
# CPU推理
./infer_demo yolov5s-seg.onnx 000000014439.jpg 0
# GPU推理
./infer_demo yolov5s-seg.onnx 000000014439.jpg 1
# GPU上TensorRT推理
./infer_demo yolov5s-seg.onnx 000000014439.jpg 2
```
运行完成可视化结果如下图所示
<img width="640" src="https://user-images.githubusercontent.com/19977378/209955620-657bdd1d-574c-40a2-b05d-42b9e5a15ae8.png">
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
## YOLOv5Seg C++接口
### YOLOv5Seg类
```c++
fastdeploy::vision::detection::YOLOv5Seg(
const string& model_file,
const string& params_file = "",
const RuntimeOption& runtime_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::ONNX)
```
YOLOv5Seg模型加载和初始化其中model_file为导出的ONNX模型格式。
**参数**
> * **model_file**(str): 模型文件路径
> * **params_file**(str): 参数文件路径当模型格式为ONNX时此参数传入空字符串即可
> * **runtime_option**(RuntimeOption): 后端推理配置默认为None即采用默认配置
> * **model_format**(ModelFormat): 模型格式默认为ONNX格式
#### Predict函数
```c++
YOLOv5Seg::Predict(const cv::Mat& img, DetectionResult* result)
```
**参数**
> > * **im**: 输入图像注意需为HWCBGR格式
> > * **result**: 检测结果,包括检测框,各个框的置信度, DetectionResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
- [模型介绍](../../)
- [Python部署](../python)
- [视觉模型预测结果](../../../../../docs/api/vision_results/)
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)

View File

@@ -0,0 +1,105 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision.h"
void CpuInfer(const std::string& model_file, const std::string& image_file) {
auto model = fastdeploy::vision::detection::YOLOv5Seg(model_file);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
auto im = cv::imread(image_file);
fastdeploy::vision::DetectionResult res;
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::VisDetection(im, res);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
void GpuInfer(const std::string& model_file, const std::string& image_file) {
auto option = fastdeploy::RuntimeOption();
option.UseGpu();
auto model = fastdeploy::vision::detection::YOLOv5Seg(model_file, "", option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
auto im = cv::imread(image_file);
fastdeploy::vision::DetectionResult res;
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::VisDetection(im, res);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
void TrtInfer(const std::string& model_file, const std::string& image_file) {
auto option = fastdeploy::RuntimeOption();
option.UseGpu();
option.UseTrtBackend();
option.SetTrtInputShape("images", {1, 3, 640, 640});
auto model = fastdeploy::vision::detection::YOLOv5Seg(model_file, "", option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
auto im = cv::imread(image_file);
fastdeploy::vision::DetectionResult res;
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::VisDetection(im, res);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
int main(int argc, char* argv[]) {
if (argc < 4) {
std::cout << "Usage: infer_demo path/to/model path/to/image run_option, "
"e.g ./infer_model ./yolov5.onnx ./test.jpeg 0"
<< std::endl;
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
"with gpu; 2: run with gpu and use tensorrt backend."
<< std::endl;
return -1;
}
if (std::atoi(argv[3]) == 0) {
CpuInfer(argv[1], argv[2]);
} else if (std::atoi(argv[3]) == 1) {
GpuInfer(argv[1], argv[2]);
} else if (std::atoi(argv[3]) == 2) {
TrtInfer(argv[1], argv[2]);
}
return 0;
}

View File

@@ -0,0 +1,67 @@
# YOLOv5Seg Python部署示例
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. FastDeploy Python whl包安装参考[FastDeploy Python安装](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
本目录下提供`infer.py`快速完成YOLOv5Seg在CPU/GPU以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
```bash
#下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd examples/vision/detection/yolov5seg/python/
#下载yolov5seg模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s-seg.onnx
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
# CPU推理
python infer.py --model yolov5s-seg.onnx --image 000000014439.jpg --device cpu
# GPU推理
python infer.py --model yolov5s-seg.onnx --image 000000014439.jpg --device gpu
# GPU上使用TensorRT推理
python infer.py --model yolov5s-seg.onnx --image 000000014439.jpg --device gpu --use_trt True
```
运行完成可视化结果如下图所示
<img width="640" src="https://user-images.githubusercontent.com/19977378/209955620-657bdd1d-574c-40a2-b05d-42b9e5a15ae8.png">
## YOLOv5Seg Python接口
```python
fastdeploy.vision.detection.YOLOv5Seg(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
```
YOLOv5Seg模型加载和初始化其中model_file为导出的ONNX模型格式
**参数**
> * **model_file**(str): 模型文件路径
> * **params_file**(str): 参数文件路径当模型格式为ONNX格式时此参数无需设定
> * **runtime_option**(RuntimeOption): 后端推理配置默认为None即采用默认配置
> * **model_format**(ModelFormat): 模型格式默认为ONNX
### predict函数
```python
YOLOv5Seg.predict(image_data)
```
模型预测结口,输入图像直接输出检测结果。
**参数**
> > * **image_data**(np.ndarray): 输入数据注意需为HWCBGR格式
**返回**
> > 返回`fastdeploy.vision.DetectionResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
## 其它文档
- [YOLOv5Seg 模型介绍](..)
- [YOLOv5Seg C++部署](../cpp)
- [模型预测结果说明](../../../../../docs/api/vision_results/)
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)

View File

@@ -0,0 +1,56 @@
import fastdeploy as fd
import cv2
import os
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--model", default=None, help="Path of yolov5seg model.")
parser.add_argument(
"--image", default=None, help="Path of test image file.")
parser.add_argument(
"--device",
type=str,
default='cpu',
help="Type of inference device, support 'cpu' or 'gpu'.")
parser.add_argument(
"--use_trt",
type=ast.literal_eval,
default=False,
help="Wether to use tensorrt.")
return parser.parse_args()
def build_option(args):
option = fd.RuntimeOption()
if args.device.lower() == "gpu":
option.use_gpu()
if args.use_trt:
option.use_trt_backend()
option.set_trt_input_shape("images", [1, 3, 640, 640])
return option
args = parse_arguments()
# Configure runtime, load model
runtime_option = build_option(args)
model = fd.vision.detection.YOLOv5Seg(
args.model, runtime_option=runtime_option)
# Predicting image
if args.image is None:
image = fd.utils.get_detection_test_image()
else:
image = args.image
im = cv2.imread(image)
result = model.predict(im)
# Visualization
vis_im = fd.vision.vis_detection(im, result)
cv2.imwrite("visualized_result.jpg", vis_im)
print("Visualized result save in ./visualized_result.jpg")

0
fastdeploy/runtime/backends/paddle/paddle_backend.h Normal file → Executable file
View File

1
fastdeploy/vision.h Normal file → Executable file
View File

@@ -22,6 +22,7 @@
#include "fastdeploy/vision/detection/contrib/scaledyolov4.h"
#include "fastdeploy/vision/detection/contrib/yolor.h"
#include "fastdeploy/vision/detection/contrib/yolov5/yolov5.h"
#include "fastdeploy/vision/detection/contrib/yolov5seg/yolov5seg.h"
#include "fastdeploy/vision/detection/contrib/fastestdet/fastestdet.h"
#include "fastdeploy/vision/detection/contrib/yolov5lite.h"
#include "fastdeploy/vision/detection/contrib/yolov6.h"

View File

@@ -48,7 +48,7 @@ void Mask::Reserve(int size) { data.reserve(size); }
void Mask::Resize(int size) { data.resize(size); }
void Mask::Clear() {
std::vector<int32_t>().swap(data);
std::vector<uint8_t>().swap(data);
std::vector<int64_t>().swap(shape);
}

View File

@@ -67,7 +67,7 @@ struct FASTDEPLOY_DECL ClassifyResult : public BaseResult {
*/
struct FASTDEPLOY_DECL Mask : public BaseResult {
/// Mask data buffer
std::vector<int32_t> data;
std::vector<uint8_t> data;
/// Shape of mask
std::vector<int64_t> shape; // (H,W) ...
ResultType type = ResultType::MASK;
@@ -107,7 +107,7 @@ struct FASTDEPLOY_DECL DetectionResult : public BaseResult {
/** \brief For instance segmentation model, `masks` is the predict mask for all the deteced objects
*/
std::vector<Mask> masks;
//// Shows if the DetectionResult has mask
/// Shows if the DetectionResult has mask
bool contain_masks = false;
ResultType type = ResultType::DETECTION;

View File

@@ -0,0 +1,217 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/detection/contrib/yolov5seg/postprocessor.h"
#include "fastdeploy/vision/utils/utils.h"
namespace fastdeploy {
namespace vision {
namespace detection {
YOLOv5SegPostprocessor::YOLOv5SegPostprocessor() {
conf_threshold_ = 0.25;
nms_threshold_ = 0.5;
mask_threshold_ = 0.5;
multi_label_ = true;
max_wh_ = 7680.0;
mask_nums_ = 32;
}
bool YOLOv5SegPostprocessor::Run(
const std::vector<FDTensor>& tensors, std::vector<DetectionResult>* results,
const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info) {
int batch = tensors[0].shape[0];
results->resize(batch);
for (size_t bs = 0; bs < batch; ++bs) {
// store mask information
std::vector<std::vector<float>> mask_embeddings;
(*results)[bs].Clear();
if (multi_label_) {
(*results)[bs].Reserve(tensors[0].shape[1] *
(tensors[0].shape[2] - mask_nums_ - 5));
} else {
(*results)[bs].Reserve(tensors[0].shape[1]);
}
if (tensors[0].dtype != FDDataType::FP32) {
FDERROR << "Only support post process with float32 data." << std::endl;
return false;
}
const float* data = reinterpret_cast<const float*>(tensors[0].Data()) +
bs * tensors[0].shape[1] * tensors[0].shape[2];
for (size_t i = 0; i < tensors[0].shape[1]; ++i) {
int s = i * tensors[0].shape[2];
float cls_conf = data[s + 4];
float confidence = data[s + 4];
std::vector<float> mask_embedding(
data + s + tensors[0].shape[2] - mask_nums_,
data + s + tensors[0].shape[2]);
for (size_t k = 0; k < mask_embedding.size(); ++k) {
mask_embedding[k] *= cls_conf;
}
if (multi_label_) {
for (size_t j = 5; j < tensors[0].shape[2] - mask_nums_; ++j) {
confidence = data[s + 4];
const float* class_score = data + s + j;
confidence *= (*class_score);
// filter boxes by conf_threshold
if (confidence <= conf_threshold_) {
continue;
}
int32_t label_id = std::distance(data + s + 5, class_score);
// convert from [x, y, w, h] to [x1, y1, x2, y2]
(*results)[bs].boxes.emplace_back(std::array<float, 4>{
data[s] - data[s + 2] / 2.0f + label_id * max_wh_,
data[s + 1] - data[s + 3] / 2.0f + label_id * max_wh_,
data[s + 0] + data[s + 2] / 2.0f + label_id * max_wh_,
data[s + 1] + data[s + 3] / 2.0f + label_id * max_wh_});
(*results)[bs].label_ids.push_back(label_id);
(*results)[bs].scores.push_back(confidence);
// TODO(wangjunjie06): No zero copy
mask_embeddings.push_back(mask_embedding);
}
} else {
const float* max_class_score = std::max_element(
data + s + 5, data + s + tensors[0].shape[2] - mask_nums_);
confidence *= (*max_class_score);
// filter boxes by conf_threshold
if (confidence <= conf_threshold_) {
continue;
}
int32_t label_id = std::distance(data + s + 5, max_class_score);
// convert from [x, y, w, h] to [x1, y1, x2, y2]
(*results)[bs].boxes.emplace_back(std::array<float, 4>{
data[s] - data[s + 2] / 2.0f + label_id * max_wh_,
data[s + 1] - data[s + 3] / 2.0f + label_id * max_wh_,
data[s + 0] + data[s + 2] / 2.0f + label_id * max_wh_,
data[s + 1] + data[s + 3] / 2.0f + label_id * max_wh_});
(*results)[bs].label_ids.push_back(label_id);
(*results)[bs].scores.push_back(confidence);
mask_embeddings.push_back(mask_embedding);
}
}
if ((*results)[bs].boxes.size() == 0) {
return true;
}
// get box index after nms
std::vector<int> index;
utils::NMS(&((*results)[bs]), nms_threshold_, &index);
// deal with mask
// step1: MatMul, (box_nums * 32) x (32 * 160 * 160) = box_nums * 160 * 160
// step2: Sigmoid
// step3: Resize to original image size
// step4: Select pixels greater than threshold and crop
(*results)[bs].contain_masks = true;
(*results)[bs].masks.resize((*results)[bs].boxes.size());
const float* data_mask =
reinterpret_cast<const float*>(tensors[1].Data()) +
bs * tensors[1].shape[1] * tensors[1].shape[2] * tensors[1].shape[3];
cv::Mat mask_proto =
cv::Mat(tensors[1].shape[1], tensors[1].shape[2] * tensors[1].shape[3],
CV_32FC(1), const_cast<float*>(data_mask));
// vector to cv::Mat for MatMul
// after push_back, Mat of m*n becomes (m + 1) * n
cv::Mat mask_proposals;
for (size_t i = 0; i < index.size(); ++i) {
mask_proposals.push_back(cv::Mat(mask_embeddings[index[i]]).t());
}
cv::Mat matmul_result = (mask_proposals * mask_proto).t();
cv::Mat masks = matmul_result.reshape(
(*results)[bs].boxes.size(), {static_cast<int>(tensors[1].shape[2]),
static_cast<int>(tensors[1].shape[3])});
// split for boxes nums
std::vector<cv::Mat> mask_channels;
cv::split(masks, mask_channels);
// scale the boxes to the origin image shape
auto iter_out = ims_info[bs].find("output_shape");
auto iter_ipt = ims_info[bs].find("input_shape");
FDASSERT(iter_out != ims_info[bs].end() && iter_ipt != ims_info[bs].end(),
"Cannot find input_shape or output_shape from im_info.");
float out_h = iter_out->second[0];
float out_w = iter_out->second[1];
float ipt_h = iter_ipt->second[0];
float ipt_w = iter_ipt->second[1];
float scale = std::min(out_h / ipt_h, out_w / ipt_w);
float pad_h = (out_h - ipt_h * scale) / 2;
float pad_w = (out_w - ipt_w * scale) / 2;
// for mask
float pad_h_mask = (float)pad_h / out_h * tensors[1].shape[2];
float pad_w_mask = (float)pad_w / out_w * tensors[1].shape[3];
for (size_t i = 0; i < (*results)[bs].boxes.size(); ++i) {
int32_t label_id = ((*results)[bs].label_ids)[i];
// clip box
(*results)[bs].boxes[i][0] =
(*results)[bs].boxes[i][0] - max_wh_ * label_id;
(*results)[bs].boxes[i][1] =
(*results)[bs].boxes[i][1] - max_wh_ * label_id;
(*results)[bs].boxes[i][2] =
(*results)[bs].boxes[i][2] - max_wh_ * label_id;
(*results)[bs].boxes[i][3] =
(*results)[bs].boxes[i][3] - max_wh_ * label_id;
(*results)[bs].boxes[i][0] =
std::max(((*results)[bs].boxes[i][0] - pad_w) / scale, 0.0f);
(*results)[bs].boxes[i][1] =
std::max(((*results)[bs].boxes[i][1] - pad_h) / scale, 0.0f);
(*results)[bs].boxes[i][2] =
std::max(((*results)[bs].boxes[i][2] - pad_w) / scale, 0.0f);
(*results)[bs].boxes[i][3] =
std::max(((*results)[bs].boxes[i][3] - pad_h) / scale, 0.0f);
(*results)[bs].boxes[i][0] = std::min((*results)[bs].boxes[i][0], ipt_w);
(*results)[bs].boxes[i][1] = std::min((*results)[bs].boxes[i][1], ipt_h);
(*results)[bs].boxes[i][2] = std::min((*results)[bs].boxes[i][2], ipt_w);
(*results)[bs].boxes[i][3] = std::min((*results)[bs].boxes[i][3], ipt_h);
// deal with mask
cv::Mat dest, mask;
// sigmoid
cv::exp(-mask_channels[i], dest);
dest = 1.0 / (1.0 + dest);
// crop mask for feature map
int x1 = static_cast<int>(pad_w_mask);
int y1 = static_cast<int>(pad_h_mask);
int x2 = static_cast<int>(tensors[1].shape[3] - pad_w_mask);
int y2 = static_cast<int>(tensors[1].shape[2] - pad_h_mask);
cv::Rect roi(x1, y1, x2 - x1, y2 - y1);
dest = dest(roi);
cv::resize(dest, mask, cv::Size(ipt_w, ipt_h), 0, 0, cv::INTER_LINEAR);
// crop mask for source img
int x1_src = static_cast<int>(round((*results)[bs].boxes[i][0]));
int y1_src = static_cast<int>(round((*results)[bs].boxes[i][1]));
int x2_src = static_cast<int>(round((*results)[bs].boxes[i][2]));
int y2_src = static_cast<int>(round((*results)[bs].boxes[i][3]));
cv::Rect roi_src(x1_src, y1_src, x2_src - x1_src, y2_src - y1_src);
mask = mask(roi_src);
mask = mask > mask_threshold_;
// save mask in DetectionResult
int keep_mask_h = y2_src - y1_src;
int keep_mask_w = x2_src - x1_src;
int keep_mask_numel = keep_mask_h * keep_mask_w;
(*results)[bs].masks[i].Resize(keep_mask_numel);
(*results)[bs].masks[i].shape = {keep_mask_h, keep_mask_w};
uint8_t* keep_mask_ptr =
reinterpret_cast<uint8_t*>((*results)[bs].masks[i].Data());
std::memcpy(keep_mask_ptr, reinterpret_cast<uint8_t*>(mask.ptr()),
keep_mask_numel * sizeof(uint8_t));
}
}
return true;
}
} // namespace detection
} // namespace vision
} // namespace fastdeploy

View File

@@ -0,0 +1,79 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
namespace fastdeploy {
namespace vision {
namespace detection {
/*! @brief Postprocessor object for YOLOv5Seg serials model.
*/
class FASTDEPLOY_DECL YOLOv5SegPostprocessor {
public:
/** \brief Create a postprocessor instance for YOLOv5Seg serials model
*/
YOLOv5SegPostprocessor();
/** \brief Process the result of runtime and fill to DetectionResult structure
*
* \param[in] tensors The inference result from runtime
* \param[in] result The output result of detection
* \param[in] ims_info The shape info list, record input_shape and output_shape
* \return true if the postprocess successed, otherwise false
*/
bool Run(const std::vector<FDTensor>& tensors,
std::vector<DetectionResult>* results,
const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info);
/// Set conf_threshold, default 0.25
void SetConfThreshold(const float& conf_threshold) {
conf_threshold_ = conf_threshold;
}
/// Get conf_threshold, default 0.25
float GetConfThreshold() const { return conf_threshold_; }
/// Set nms_threshold, default 0.5
void SetNMSThreshold(const float& nms_threshold) {
nms_threshold_ = nms_threshold;
}
/// Get nms_threshold, default 0.5
float GetNMSThreshold() const { return nms_threshold_; }
/// Set multi_label, set true for eval, default true
void SetMultiLabel(bool multi_label) {
multi_label_ = multi_label;
}
/// Get multi_label, default true
bool GetMultiLabel() const { return multi_label_; }
protected:
float conf_threshold_;
float nms_threshold_;
bool multi_label_;
float max_wh_;
// channel nums of masks
int mask_nums_;
// mask threshold
float mask_threshold_;
};
} // namespace detection
} // namespace vision
} // namespace fastdeploy

View File

@@ -0,0 +1,116 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/detection/contrib/yolov5seg/preprocessor.h"
#include "fastdeploy/function/concat.h"
namespace fastdeploy {
namespace vision {
namespace detection {
YOLOv5SegPreprocessor::YOLOv5SegPreprocessor() {
size_ = {640, 640};
padding_value_ = {114.0, 114.0, 114.0};
is_mini_pad_ = false;
is_no_pad_ = false;
is_scale_up_ = true;
stride_ = 32;
max_wh_ = 7680.0;
}
void YOLOv5SegPreprocessor::LetterBox(FDMat* mat) {
float scale =
std::min(size_[1] * 1.0 / mat->Height(), size_[0] * 1.0 / mat->Width());
if (!is_scale_up_) {
scale = std::min(scale, 1.0f);
}
int resize_h = int(round(mat->Height() * scale));
int resize_w = int(round(mat->Width() * scale));
int pad_w = size_[0] - resize_w;
int pad_h = size_[1] - resize_h;
if (is_mini_pad_) {
pad_h = pad_h % stride_;
pad_w = pad_w % stride_;
} else if (is_no_pad_) {
pad_h = 0;
pad_w = 0;
resize_h = size_[1];
resize_w = size_[0];
}
if (std::fabs(scale - 1.0f) > 1e-06) {
Resize::Run(mat, resize_w, resize_h);
}
if (pad_h > 0 || pad_w > 0) {
float half_h = pad_h * 1.0 / 2;
int top = int(round(half_h - 0.1));
int bottom = int(round(half_h + 0.1));
float half_w = pad_w * 1.0 / 2;
int left = int(round(half_w - 0.1));
int right = int(round(half_w + 0.1));
Pad::Run(mat, top, bottom, left, right, padding_value_);
}
}
bool YOLOv5SegPreprocessor::Preprocess(FDMat* mat, FDTensor* output,
std::map<std::string, std::array<float, 2>>* im_info) {
// Record the shape of image and the shape of preprocessed image
(*im_info)["input_shape"] = {static_cast<float>(mat->Height()),
static_cast<float>(mat->Width())};
// yolov5seg's preprocess steps
// 1. letterbox
// 2. convert_and_permute(swap_rb=true)
LetterBox(mat);
std::vector<float> alpha = {1.0f / 255.0f, 1.0f / 255.0f, 1.0f / 255.0f};
std::vector<float> beta = {0.0f, 0.0f, 0.0f};
ConvertAndPermute::Run(mat, alpha, beta, true);
// Record output shape of preprocessed image
(*im_info)["output_shape"] = {static_cast<float>(mat->Height()),
static_cast<float>(mat->Width())};
mat->ShareWithTensor(output);
output->ExpandDim(0); // reshape to n, h, w, c
return true;
}
bool YOLOv5SegPreprocessor::Run(std::vector<FDMat>* images, std::vector<FDTensor>* outputs,
std::vector<std::map<std::string, std::array<float, 2>>>* ims_info) {
if (images->size() == 0) {
FDERROR << "The size of input images should be greater than 0." << std::endl;
return false;
}
ims_info->resize(images->size());
outputs->resize(1);
// Concat all the preprocessed data to a batch tensor
std::vector<FDTensor> tensors(images->size());
for (size_t i = 0; i < images->size(); ++i) {
if (!Preprocess(&(*images)[i], &tensors[i], &(*ims_info)[i])) {
FDERROR << "Failed to preprocess input image." << std::endl;
return false;
}
}
if (tensors.size() == 1) {
(*outputs)[0] = std::move(tensors[0]);
} else {
function::Concat(tensors, &((*outputs)[0]), 0);
}
return true;
}
} // namespace detection
} // namespace vision
} // namespace fastdeploy

View File

@@ -0,0 +1,113 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
namespace fastdeploy {
namespace vision {
namespace detection {
/*! @brief Preprocessor object for YOLOv5Seg serials model.
*/
class FASTDEPLOY_DECL YOLOv5SegPreprocessor {
public:
/** \brief Create a preprocessor instance for YOLOv5Seg serials model
*/
YOLOv5SegPreprocessor();
/** \brief Process the input image and prepare input tensors for runtime
*
* \param[in] images The input image data list, all the elements are returned by cv::imread()
* \param[in] outputs The output tensors which will feed in runtime
* \param[in] ims_info The shape info list, record input_shape and output_shape
* \return true if the preprocess successed, otherwise false
*/
bool Run(std::vector<FDMat>* images, std::vector<FDTensor>* outputs,
std::vector<std::map<std::string, std::array<float, 2>>>* ims_info);
/// Set target size, tuple of (width, height), default size = {640, 640}
void SetSize(const std::vector<int>& size) { size_ = size; }
/// Get target size, tuple of (width, height), default size = {640, 640}
std::vector<int> GetSize() const { return size_; }
/// Set padding value, size should be the same as channels
void SetPaddingValue(const std::vector<float>& padding_value) {
padding_value_ = padding_value;
}
/// Get padding value, size should be the same as channels
std::vector<float> GetPaddingValue() const { return padding_value_; }
/// Set is_scale_up, if is_scale_up is false, the input image only
/// can be zoom out, the maximum resize scale cannot exceed 1.0, default true
void SetScaleUp(bool is_scale_up) {
is_scale_up_ = is_scale_up;
}
/// Get is_scale_up, default true
bool GetScaleUp() const { return is_scale_up_; }
/// Set is_mini_pad, pad to the minimum rectange
/// which height and width is times of stride
void SetMiniPad(bool is_mini_pad) {
is_mini_pad_ = is_mini_pad;
}
/// Get is_mini_pad, default false
bool GetMiniPad() const { return is_mini_pad_; }
/// Set padding stride, only for mini_pad mode
void SetStride(int stride) {
stride_ = stride;
}
/// Get padding stride, default 32
bool GetStride() const { return stride_; }
protected:
bool Preprocess(FDMat* mat, FDTensor* output,
std::map<std::string, std::array<float, 2>>* im_info);
void LetterBox(FDMat* mat);
// target size, tuple of (width, height), default size = {640, 640}
std::vector<int> size_;
// padding value, size should be the same as channels
std::vector<float> padding_value_;
// only pad to the minimum rectange which height and width is times of stride
bool is_mini_pad_;
// while is_mini_pad = false and is_no_pad = true,
// will resize the image to the set size
bool is_no_pad_;
// if is_scale_up is false, the input image only can be zoom out,
// the maximum resize scale cannot exceed 1.0
bool is_scale_up_;
// padding stride, for is_mini_pad
int stride_;
// for offseting the boxes by classes when using NMS
float max_wh_;
};
} // namespace detection
} // namespace vision
} // namespace fastdeploy

View File

@@ -0,0 +1,80 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/detection/contrib/yolov5seg/yolov5seg.h"
namespace fastdeploy {
namespace vision {
namespace detection {
YOLOv5Seg::YOLOv5Seg(const std::string& model_file, const std::string& params_file,
const RuntimeOption& custom_option,
const ModelFormat& model_format) {
if (model_format == ModelFormat::ONNX) {
valid_cpu_backends = {Backend::OPENVINO, Backend::ORT};
valid_gpu_backends = {Backend::ORT, Backend::TRT};
} else {
valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::LITE};
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
}
runtime_option = custom_option;
runtime_option.model_format = model_format;
runtime_option.model_file = model_file;
runtime_option.params_file = params_file;
initialized = Initialize();
}
bool YOLOv5Seg::Initialize() {
if (!InitRuntime()) {
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
return false;
}
return true;
}
bool YOLOv5Seg::Predict(const cv::Mat& im, DetectionResult* result) {
std::vector<DetectionResult> results;
if (!BatchPredict({im}, &results)) {
return false;
}
*result = std::move(results[0]);
return true;
}
bool YOLOv5Seg::BatchPredict(const std::vector<cv::Mat>& images, std::vector<DetectionResult>* results) {
std::vector<std::map<std::string, std::array<float, 2>>> ims_info;
std::vector<FDMat> fd_images = WrapMat(images);
if (!preprocessor_.Run(&fd_images, &reused_input_tensors_, &ims_info)) {
FDERROR << "Failed to preprocess the input image." << std::endl;
return false;
}
reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
if (!Infer(reused_input_tensors_, &reused_output_tensors_)) {
FDERROR << "Failed to inference by runtime." << std::endl;
return false;
}
if (!postprocessor_.Run(reused_output_tensors_, results, ims_info)) {
FDERROR << "Failed to postprocess the inference results by runtime." << std::endl;
return false;
}
return true;
}
} // namespace detection
} // namespace vision
} // namespace fastdeploy

View File

@@ -0,0 +1,76 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. //NOLINT
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/fastdeploy_model.h"
#include "fastdeploy/vision/detection/contrib/yolov5seg/preprocessor.h"
#include "fastdeploy/vision/detection/contrib/yolov5seg/postprocessor.h"
namespace fastdeploy {
namespace vision {
namespace detection {
/*! @brief YOLOv5Seg model object used when to load a YOLOv5Seg model exported by YOLOv5.
*/
class FASTDEPLOY_DECL YOLOv5Seg : public FastDeployModel {
public:
/** \brief Set path of model file and the configuration of runtime.
*
* \param[in] model_file Path of model file, e.g ./yolov5seg.onnx
* \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, if the model format is ONNX, this parameter will be ignored
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in "valid_cpu_backends"
* \param[in] model_format Model format of the loaded model, default is ONNX format
*/
YOLOv5Seg(const std::string& model_file, const std::string& params_file = "",
const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::ONNX);
std::string ModelName() const { return "yolov5seg"; }
/** \brief Predict the detection result for an input image
*
* \param[in] img The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] result The output detection result will be writen to this structure
* \return true if the prediction successed, otherwise false
*/
virtual bool Predict(const cv::Mat& img, DetectionResult* result);
/** \brief Predict the detection results for a batch of input images
*
* \param[in] imgs, The input image list, each element comes from cv::imread()
* \param[in] results The output detection result list
* \return true if the prediction successed, otherwise false
*/
virtual bool BatchPredict(const std::vector<cv::Mat>& imgs,
std::vector<DetectionResult>* results);
/// Get preprocessor reference of YOLOv5Seg
virtual YOLOv5SegPreprocessor& GetPreprocessor() {
return preprocessor_;
}
/// Get postprocessor reference of YOLOv5Seg
virtual YOLOv5SegPostprocessor& GetPostprocessor() {
return postprocessor_;
}
protected:
bool Initialize();
YOLOv5SegPreprocessor preprocessor_;
YOLOv5SegPostprocessor postprocessor_;
};
} // namespace detection
} // namespace vision
} // namespace fastdeploy

View File

@@ -0,0 +1,90 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/pybind/main.h"
namespace fastdeploy {
void BindYOLOv5Seg(pybind11::module& m) {
pybind11::class_<vision::detection::YOLOv5SegPreprocessor>(
m, "YOLOv5SegPreprocessor")
.def(pybind11::init<>())
.def("run", [](vision::detection::YOLOv5SegPreprocessor& self, std::vector<pybind11::array>& im_list) {
std::vector<vision::FDMat> images;
for (size_t i = 0; i < im_list.size(); ++i) {
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
}
std::vector<FDTensor> outputs;
std::vector<std::map<std::string, std::array<float, 2>>> ims_info;
if (!self.Run(&images, &outputs, &ims_info)) {
throw std::runtime_error("Failed to preprocess the input data in PaddleClasPreprocessor.");
}
for (size_t i = 0; i < outputs.size(); ++i) {
outputs[i].StopSharing();
}
return make_pair(outputs, ims_info);
})
.def_property("size", &vision::detection::YOLOv5SegPreprocessor::GetSize, &vision::detection::YOLOv5SegPreprocessor::SetSize)
.def_property("padding_value", &vision::detection::YOLOv5SegPreprocessor::GetPaddingValue, &vision::detection::YOLOv5SegPreprocessor::SetPaddingValue)
.def_property("is_scale_up", &vision::detection::YOLOv5SegPreprocessor::GetScaleUp, &vision::detection::YOLOv5SegPreprocessor::SetScaleUp)
.def_property("is_mini_pad", &vision::detection::YOLOv5SegPreprocessor::GetMiniPad, &vision::detection::YOLOv5SegPreprocessor::SetMiniPad)
.def_property("stride", &vision::detection::YOLOv5SegPreprocessor::GetStride, &vision::detection::YOLOv5SegPreprocessor::SetStride);
pybind11::class_<vision::detection::YOLOv5SegPostprocessor>(
m, "YOLOv5SegPostprocessor")
.def(pybind11::init<>())
.def("run", [](vision::detection::YOLOv5SegPostprocessor& self, std::vector<FDTensor>& inputs,
const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info) {
std::vector<vision::DetectionResult> results;
if (!self.Run(inputs, &results, ims_info)) {
throw std::runtime_error("Failed to postprocess the runtime result in YOLOv5SegPostprocessor.");
}
return results;
})
.def("run", [](vision::detection::YOLOv5SegPostprocessor& self, std::vector<pybind11::array>& input_array,
const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info) {
std::vector<vision::DetectionResult> results;
std::vector<FDTensor> inputs;
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
if (!self.Run(inputs, &results, ims_info)) {
throw std::runtime_error("Failed to postprocess the runtime result in YOLOv5SegPostprocessor.");
}
return results;
})
.def_property("conf_threshold", &vision::detection::YOLOv5SegPostprocessor::GetConfThreshold, &vision::detection::YOLOv5SegPostprocessor::SetConfThreshold)
.def_property("nms_threshold", &vision::detection::YOLOv5SegPostprocessor::GetNMSThreshold, &vision::detection::YOLOv5SegPostprocessor::SetNMSThreshold)
.def_property("multi_label", &vision::detection::YOLOv5SegPostprocessor::GetMultiLabel, &vision::detection::YOLOv5SegPostprocessor::SetMultiLabel);
pybind11::class_<vision::detection::YOLOv5Seg, FastDeployModel>(m, "YOLOv5Seg")
.def(pybind11::init<std::string, std::string, RuntimeOption,
ModelFormat>())
.def("predict",
[](vision::detection::YOLOv5Seg& self, pybind11::array& data) {
auto mat = PyArrayToCvMat(data);
vision::DetectionResult res;
self.Predict(mat, &res);
return res;
})
.def("batch_predict", [](vision::detection::YOLOv5Seg& self, std::vector<pybind11::array>& data) {
std::vector<cv::Mat> images;
for (size_t i = 0; i < data.size(); ++i) {
images.push_back(PyArrayToCvMat(data[i]));
}
std::vector<vision::DetectionResult> results;
self.BatchPredict(images, &results);
return results;
})
.def_property_readonly("preprocessor", &vision::detection::YOLOv5Seg::GetPreprocessor)
.def_property_readonly("postprocessor", &vision::detection::YOLOv5Seg::GetPostprocessor);
}
} // namespace fastdeploy

2
fastdeploy/vision/detection/detection_pybind.cc Normal file → Executable file
View File

@@ -22,6 +22,7 @@ void BindYOLOR(pybind11::module& m);
void BindYOLOv6(pybind11::module& m);
void BindYOLOv5Lite(pybind11::module& m);
void BindYOLOv5(pybind11::module& m);
void BindYOLOv5Seg(pybind11::module& m);
void BindFastestDet(pybind11::module& m);
void BindYOLOX(pybind11::module& m);
void BindNanoDetPlus(pybind11::module& m);
@@ -40,6 +41,7 @@ void BindDetection(pybind11::module& m) {
BindYOLOv6(detection_module);
BindYOLOv5Lite(detection_module);
BindYOLOv5(detection_module);
BindYOLOv5Seg(detection_module);
BindFastestDet(detection_module);
BindYOLOX(detection_module);
BindNanoDetPlus(detection_module);

22
fastdeploy/vision/detection/ppdet/postprocessor.cc Normal file → Executable file
View File

@@ -32,30 +32,30 @@ bool PaddleDetPostprocessor::ProcessMask(
int64_t out_mask_h = shape[1];
int64_t out_mask_w = shape[2];
int64_t out_mask_numel = shape[1] * shape[2];
const int32_t* data = reinterpret_cast<const int32_t*>(tensor.CpuData());
const uint8_t* data = reinterpret_cast<const uint8_t*>(tensor.CpuData());
int index = 0;
for (int i = 0; i < results->size(); ++i) {
(*results)[i].contain_masks = true;
(*results)[i].masks.resize((*results)[i].boxes.size());
for (int j = 0; j < (*results)[i].boxes.size(); ++j) {
int x1 = static_cast<int>((*results)[i].boxes[j][0]);
int y1 = static_cast<int>((*results)[i].boxes[j][1]);
int x2 = static_cast<int>((*results)[i].boxes[j][2]);
int y2 = static_cast<int>((*results)[i].boxes[j][3]);
int x1 = static_cast<int>(round((*results)[i].boxes[j][0]));
int y1 = static_cast<int>(round((*results)[i].boxes[j][1]));
int x2 = static_cast<int>(round((*results)[i].boxes[j][2]));
int y2 = static_cast<int>(round((*results)[i].boxes[j][3]));
int keep_mask_h = y2 - y1;
int keep_mask_w = x2 - x1;
int keep_mask_numel = keep_mask_h * keep_mask_w;
(*results)[i].masks[j].Resize(keep_mask_numel);
(*results)[i].masks[j].shape = {keep_mask_h, keep_mask_w};
const int32_t* current_ptr = data + index * out_mask_numel;
const uint8_t* current_ptr = data + index * out_mask_numel;
int32_t* keep_mask_ptr =
reinterpret_cast<int32_t*>((*results)[i].masks[j].Data());
uint8_t* keep_mask_ptr =
reinterpret_cast<uint8_t*>((*results)[i].masks[j].Data());
for (int row = y1; row < y2; ++row) {
size_t keep_nbytes_in_col = keep_mask_w * sizeof(int32_t);
const int32_t* out_row_start_ptr = current_ptr + row * out_mask_w + x1;
int32_t* keep_row_start_ptr = keep_mask_ptr + (row - y1) * keep_mask_w;
size_t keep_nbytes_in_col = keep_mask_w * sizeof(uint8_t);
const uint8_t* out_row_start_ptr = current_ptr + row * out_mask_w + x1;
uint8_t* keep_row_start_ptr = keep_mask_ptr + (row - y1) * keep_mask_w;
std::memcpy(keep_row_start_ptr, out_row_start_ptr, keep_nbytes_in_col);
}
index += 1;

View File

@@ -21,7 +21,19 @@ namespace utils {
// The implementation refers to
// https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.4/deploy/cpp/src/utils.cc
void NMS(DetectionResult* result, float iou_threshold) {
void NMS(DetectionResult* result, float iou_threshold,
std::vector<int>* index) {
// get sorted score indices
std::vector<int> sorted_indices;
if (index != nullptr) {
std::map<float, int, std::greater<float>> score_map;
for (size_t i = 0; i < result->scores.size(); ++i) {
score_map.insert(std::pair<float, int>(result->scores[i], i));
}
for (auto iter : score_map) {
sorted_indices.push_back(iter.second);
}
}
utils::SortDetectionResult(result);
std::vector<float> area_of_boxes(result->boxes.size());
@@ -63,6 +75,9 @@ void NMS(DetectionResult* result, float iou_threshold) {
result->boxes.emplace_back(backup.boxes[i]);
result->scores.push_back(backup.scores[i]);
result->label_ids.push_back(backup.label_ids[i]);
if (index != nullptr) {
index->push_back(sorted_indices[i]);
}
}
}

View File

@@ -59,7 +59,8 @@ std::vector<int32_t> TopKIndices(const T* array, int array_size, int topk) {
return res;
}
void NMS(DetectionResult* output, float iou_threshold = 0.5);
void NMS(DetectionResult* output, float iou_threshold = 0.5,
std::vector<int>* index = nullptr);
void NMS(FaceDetectionResult* result, float iou_threshold = 0.5);

2
fastdeploy/vision/vision_pybind.cc Normal file → Executable file
View File

@@ -46,7 +46,7 @@ void BindVision(pybind11::module& m) {
"vision::Mask pickle with invalid state!");
vision::Mask m;
m.data = t[0].cast<std::vector<int32_t>>();
m.data = t[0].cast<std::vector<uint8_t>>();
m.shape = t[1].cast<std::vector<int64_t>>();
return m;

View File

@@ -39,10 +39,10 @@ cv::Mat VisDetection(const cv::Mat& im, const DetectionResult& result,
if (result.scores[i] < score_threshold) {
continue;
}
int x1 = static_cast<int>(result.boxes[i][0]);
int y1 = static_cast<int>(result.boxes[i][1]);
int x2 = static_cast<int>(result.boxes[i][2]);
int y2 = static_cast<int>(result.boxes[i][3]);
int x1 = static_cast<int>(round(result.boxes[i][0]));
int y1 = static_cast<int>(round(result.boxes[i][1]));
int x2 = static_cast<int>(round(result.boxes[i][2]));
int y2 = static_cast<int>(round(result.boxes[i][3]));
int box_h = y2 - y1;
int box_w = x2 - x1;
int c0 = color_map[3 * result.label_ids[i] + 0];
@@ -68,10 +68,10 @@ cv::Mat VisDetection(const cv::Mat& im, const DetectionResult& result,
int mask_h = static_cast<int>(result.masks[i].shape[0]);
int mask_w = static_cast<int>(result.masks[i].shape[1]);
// non-const pointer for cv:Mat constructor
int32_t* mask_raw_data = const_cast<int32_t*>(
static_cast<const int32_t*>(result.masks[i].Data()));
uint8_t* mask_raw_data = const_cast<uint8_t*>(
static_cast<const uint8_t*>(result.masks[i].Data()));
// only reference to mask data (zero copy)
cv::Mat mask(mask_h, mask_w, CV_32SC1, mask_raw_data);
cv::Mat mask(mask_h, mask_w, CV_8UC1, mask_raw_data);
if ((mask_h != box_h) || (mask_w != box_w)) {
cv::resize(mask, mask, cv::Size(box_w, box_h));
}
@@ -79,7 +79,7 @@ cv::Mat VisDetection(const cv::Mat& im, const DetectionResult& result,
int mc0 = 255 - c0 >= 127 ? 255 - c0 : 127;
int mc1 = 255 - c1 >= 127 ? 255 - c1 : 127;
int mc2 = 255 - c2 >= 127 ? 255 - c2 : 127;
int32_t* mask_data = reinterpret_cast<int32_t*>(mask.data);
uint8_t* mask_data = reinterpret_cast<uint8_t*>(mask.data);
// inplace blending (zero copy)
uchar* vis_im_data = static_cast<uchar*>(vis_im.data);
for (size_t i = y1; i < y2; ++i) {

View File

@@ -19,6 +19,7 @@ from .contrib.scaled_yolov4 import ScaledYOLOv4
from .contrib.nanodet_plus import NanoDetPlus
from .contrib.yolox import YOLOX
from .contrib.yolov5 import *
from .contrib.yolov5seg import *
from .contrib.fastestdet import *
from .contrib.yolov5lite import YOLOv5Lite
from .contrib.yolov6 import YOLOv6

View File

@@ -0,0 +1,219 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
import logging
from .... import FastDeployModel, ModelFormat
from .... import c_lib_wrap as C
class YOLOv5SegPreprocessor:
def __init__(self):
"""Create a preprocessor for YOLOv5Seg
"""
self._preprocessor = C.vision.detection.YOLOv5SegPreprocessor()
def run(self, input_ims):
"""Preprocess input images for YOLOv5Seg
:param: input_ims: (list of numpy.ndarray)The input image
:return: list of FDTensor
"""
return self._preprocessor.run(input_ims)
@property
def size(self):
"""
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default size = [640, 640]
"""
return self._preprocessor.size
@property
def padding_value(self):
"""
padding value for preprocessing, default [114.0, 114.0, 114.0]
"""
# padding value, size should be the same as channels
return self._preprocessor.padding_value
@property
def is_scale_up(self):
"""
is_scale_up for preprocessing, the input image only can be zoom out, the maximum resize scale cannot exceed 1.0, default true
"""
return self._preprocessor.is_scale_up
@property
def is_mini_pad(self):
"""
is_mini_pad for preprocessing, pad to the minimum rectange which height and width is times of stride, default false
"""
return self._preprocessor.is_mini_pad
@property
def stride(self):
"""
stride for preprocessing, only for mini_pad mode, default 32
"""
return self._preprocessor.stride
@size.setter
def size(self, wh):
assert isinstance(wh, (list, tuple)),\
"The value to set `size` must be type of tuple or list."
assert len(wh) == 2,\
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
len(wh))
self._preprocessor.size = wh
@padding_value.setter
def padding_value(self, value):
assert isinstance(
value,
list), "The value to set `padding_value` must be type of list."
self._preprocessor.padding_value = value
@is_scale_up.setter
def is_scale_up(self, value):
assert isinstance(
value,
bool), "The value to set `is_scale_up` must be type of bool."
self._preprocessor.is_scale_up = value
@is_mini_pad.setter
def is_mini_pad(self, value):
assert isinstance(
value,
bool), "The value to set `is_mini_pad` must be type of bool."
self._preprocessor.is_mini_pad = value
@stride.setter
def stride(self, value):
assert isinstance(
stride, int), "The value to set `stride` must be type of int."
self._preprocessor.stride = value
class YOLOv5SegPostprocessor:
def __init__(self):
"""Create a postprocessor for YOLOv5Seg
"""
self._postprocessor = C.vision.detection.YOLOv5SegPostprocessor()
def run(self, runtime_results, ims_info):
"""Postprocess the runtime results for YOLOv5Seg
:param: runtime_results: (list of FDTensor)The output FDTensor results from runtime
:param: ims_info: (list of dict)Record input_shape and output_shape
:return: list of DetectionResult(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
"""
return self._postprocessor.run(runtime_results, ims_info)
@property
def conf_threshold(self):
"""
confidence threshold for postprocessing, default is 0.25
"""
return self._postprocessor.conf_threshold
@property
def nms_threshold(self):
"""
nms threshold for postprocessing, default is 0.5
"""
return self._postprocessor.nms_threshold
@property
def multi_label(self):
"""
multi_label for postprocessing, set true for eval, default is True
"""
return self._postprocessor.multi_label
@conf_threshold.setter
def conf_threshold(self, conf_threshold):
assert isinstance(conf_threshold, float),\
"The value to set `conf_threshold` must be type of float."
self._postprocessor.conf_threshold = conf_threshold
@nms_threshold.setter
def nms_threshold(self, nms_threshold):
assert isinstance(nms_threshold, float),\
"The value to set `nms_threshold` must be type of float."
self._postprocessor.nms_threshold = nms_threshold
@multi_label.setter
def multi_label(self, value):
assert isinstance(
value,
bool), "The value to set `multi_label` must be type of bool."
self._postprocessor.multi_label = value
class YOLOv5Seg(FastDeployModel):
def __init__(self,
model_file,
params_file="",
runtime_option=None,
model_format=ModelFormat.ONNX):
"""Load a YOLOv5Seg model exported by YOLOv5.
:param model_file: (str)Path of model file, e.g ./yolov5s-seg.onnx
:param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
"""
super(YOLOv5Seg, self).__init__(runtime_option)
self._model = C.vision.detection.YOLOv5Seg(
model_file, params_file, self._runtime_option, model_format)
assert self.initialized, "YOLOv5Seg initialize failed."
def predict(self, input_image, conf_threshold=0.25, nms_iou_threshold=0.5):
"""Detect an input image
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
:param conf_threshold: confidence threshold for postprocessing, default is 0.25
:param nms_iou_threshold: iou threshold for NMS, default is 0.5
:return: DetectionResult
"""
self.postprocessor.conf_threshold = conf_threshold
self.postprocessor.nms_threshold = nms_iou_threshold
return self._model.predict(input_image)
def batch_predict(self, images):
"""Classify a batch of input image
:param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
:return list of DetectionResult
"""
return self._model.batch_predict(images)
@property
def preprocessor(self):
"""Get YOLOv5SegPreprocessor object of the loaded model
:return YOLOv5SegPreprocessor
"""
return self._model.preprocessor
@property
def postprocessor(self):
"""Get YOLOv5SegPostprocessor object of the loaded model
:return YOLOv5SegPostprocessor
"""
return self._model.postprocessor

View File

@@ -61,10 +61,6 @@ def test_detection_mask_rcnn():
) < 1e-04, "There's diff in label_ids."
# result = model.predict(im1)
# with open("mask_rcnn_baseline.pkl", "wb") as f:
# pickle.dump([np.array(result.boxes), np.array(result.scores), np.array(result.label_ids)], f)
def test_detection_mask_rcnn1():
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/mask_rcnn_r50_1x_coco.tgz"
input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg"
@@ -83,14 +79,18 @@ def test_detection_mask_rcnn1():
option = rc.test_option
option.set_model_path(model_file, params_file)
option.use_paddle_infer_backend()
runtime = fd.Runtime(option);
runtime = fd.Runtime(option)
# compare diff
im1 = cv2.imread("./resources/000000014439.jpg")
for i in range(2):
im1 = cv2.imread("./resources/000000014439.jpg")
input_tensors = preprocessor.run([im1])
output_tensors = runtime.infer({"image": input_tensors[0], "scale_factor": input_tensors[1], "im_shape": input_tensors[2]})
output_tensors = runtime.infer({
"image": input_tensors[0],
"scale_factor": input_tensors[1],
"im_shape": input_tensors[2]
})
results = postprocessor.run(output_tensors)
result = results[0]
@@ -114,6 +114,7 @@ def test_detection_mask_rcnn1():
assert diff_label_ids[scores > score_threshold].max(
) < 1e-04, "There's diff in label_ids."
if __name__ == "__main__":
test_detection_mask_rcnn()
test_detection_mask_rcnn1()

View File

@@ -0,0 +1,220 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from fastdeploy import ModelFormat
import fastdeploy as fd
import cv2
import os
import pickle
import numpy as np
import runtime_config as rc
def test_detection_yolov5seg():
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s-seg.onnx"
input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg"
input_url2 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000570688.jpg"
result_url1 = "https://bj.bcebos.com/paddlehub/fastdeploy/yolov5seg_result1.pkl"
result_url2 = "https://bj.bcebos.com/paddlehub/fastdeploy/yolov5seg_result2.pkl"
fd.download(model_url, "resources")
fd.download(input_url1, "resources")
fd.download(input_url2, "resources")
fd.download(result_url1, "resources")
fd.download(result_url2, "resources")
model_file = "resources/yolov5s-seg.onnx"
rc.test_option.use_ort_backend()
model = fd.vision.detection.YOLOv5Seg(
model_file, runtime_option=rc.test_option)
with open("resources/yolov5seg_result1.pkl", "rb") as f:
expect1 = pickle.load(f)
with open("resources/yolov5seg_result2.pkl", "rb") as f:
expect2 = pickle.load(f)
# compare diff
im1 = cv2.imread("./resources/000000014439.jpg")
im2 = cv2.imread("./resources/000000570688.jpg")
for i in range(3):
# test single predict
result1 = model.predict(im1)
result2 = model.predict(im2)
diff_boxes_1 = np.fabs(
np.array(result1.boxes) - np.array(expect1["boxes"]))
diff_boxes_2 = np.fabs(
np.array(result2.boxes) - np.array(expect2["boxes"]))
diff_label_1 = np.fabs(
np.array(result1.label_ids) - np.array(expect1["label_ids"]))
diff_label_2 = np.fabs(
np.array(result2.label_ids) - np.array(expect2["label_ids"]))
diff_scores_1 = np.fabs(
np.array(result1.scores) - np.array(expect1["scores"]))
diff_scores_2 = np.fabs(
np.array(result2.scores) - np.array(expect2["scores"]))
# for masks
for j in range(np.array(result1.boxes).shape[0]):
result_mask_1 = np.array(result1.masks[j].data).reshape(
result1.masks[j].shape)
diff_mask_1 = np.fabs(result_mask_1 - np.array(expect1["mask_" +
str(j)]))
nonzero_nums = np.count_nonzero(diff_mask_1)
nonzero_count = nonzero_nums / (diff_mask_1.shape[0] *
diff_mask_1.shape[1])
assert nonzero_count < 1e-02, "The different pixel ratio of mask1 is greater than 1%."
for k in range(np.array(result2.boxes).shape[0]):
result_mask_2 = np.array(result2.masks[k].data).reshape(
result2.masks[k].shape)
diff_mask_2 = np.fabs(result_mask_2 - np.array(expect2["mask_" +
str(k)]))
nonzero_nums = np.count_nonzero(diff_mask_2)
nonzero_count = nonzero_nums / (diff_mask_2.shape[0] *
diff_mask_2.shape[1])
assert nonzero_count < 1e-02, "The different pixel ratio of mask2 is greater than 1%."
assert diff_boxes_1.max(
) < 1e-01, "There's difference in detection boxes 1."
assert diff_label_1.max(
) < 1e-02, "There's difference in detection label 1."
assert diff_scores_1.max(
) < 1e-04, "There's difference in detection score 1."
assert diff_boxes_2.max(
) < 1e-01, "There's difference in detection boxes 2."
assert diff_label_2.max(
) < 1e-02, "There's difference in detection label 2."
assert diff_scores_2.max(
) < 1e-04, "There's difference in detection score 2."
# test batch predict
results = model.batch_predict([im1, im2])
result1 = results[0]
result2 = results[1]
diff_boxes_1 = np.fabs(
np.array(result1.boxes) - np.array(expect1["boxes"]))
diff_boxes_2 = np.fabs(
np.array(result2.boxes) - np.array(expect2["boxes"]))
diff_label_1 = np.fabs(
np.array(result1.label_ids) - np.array(expect1["label_ids"]))
diff_label_2 = np.fabs(
np.array(result2.label_ids) - np.array(expect2["label_ids"]))
diff_scores_1 = np.fabs(
np.array(result1.scores) - np.array(expect1["scores"]))
diff_scores_2 = np.fabs(
np.array(result2.scores) - np.array(expect2["scores"]))
# for masks
for j in range(np.array(result1.boxes).shape[0]):
result_mask_1 = np.array(result1.masks[j].data).reshape(
result1.masks[j].shape)
diff_mask_1 = np.fabs(result_mask_1 - np.array(expect1["mask_" +
str(j)]))
nonzero_nums = np.count_nonzero(diff_mask_1)
nonzero_count = nonzero_nums / (diff_mask_1.shape[0] *
diff_mask_1.shape[1])
assert nonzero_count < 1e-02, "The different pixel ratio of mask1 is greater than 1%."
for k in range(np.array(result2.boxes).shape[0]):
result_mask_2 = np.array(result2.masks[k].data).reshape(
result2.masks[k].shape)
diff_mask_2 = np.fabs(result_mask_2 - np.array(expect2["mask_" +
str(k)]))
nonzero_nums = np.count_nonzero(diff_mask_2)
nonzero_count = nonzero_nums / (diff_mask_2.shape[0] *
diff_mask_2.shape[1])
assert nonzero_count < 1e-02, "The different pixel ratio of mask2 is greater than 1%."
assert diff_boxes_1.max(
) < 1e-01, "There's difference in detection boxes 1."
assert diff_label_1.max(
) < 1e-02, "There's difference in detection label 1."
assert diff_scores_1.max(
) < 1e-03, "There's difference in detection score 1."
assert diff_boxes_2.max(
) < 1e-01, "There's difference in detection boxes 2."
assert diff_label_2.max(
) < 1e-02, "There's difference in detection label 2."
assert diff_scores_2.max(
) < 1e-04, "There's difference in detection score 2."
def test_detection_yolov5seg_runtime():
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s-seg.onnx"
input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg"
result_url1 = "https://bj.bcebos.com/paddlehub/fastdeploy/yolov5seg_result1.pkl"
fd.download(model_url, "resources")
fd.download(input_url1, "resources")
fd.download(result_url1, "resources")
model_file = "resources/yolov5s-seg.onnx"
preprocessor = fd.vision.detection.YOLOv5SegPreprocessor()
postprocessor = fd.vision.detection.YOLOv5SegPostprocessor()
rc.test_option.set_model_path(model_file, model_format=ModelFormat.ONNX)
rc.test_option.use_ort_backend()
runtime = fd.Runtime(rc.test_option)
with open("resources/yolov5seg_result1.pkl", "rb") as f:
expect1 = pickle.load(f)
# compare diff
im1 = cv2.imread("./resources/000000014439.jpg")
for i in range(3):
# test runtime
input_tensors, ims_info = preprocessor.run([im1.copy()])
output_tensors = runtime.infer({"images": input_tensors[0]})
results = postprocessor.run(output_tensors, ims_info)
result1 = results[0]
diff_boxes_1 = np.fabs(
np.array(result1.boxes) - np.array(expect1["boxes"]))
diff_label_1 = np.fabs(
np.array(result1.label_ids) - np.array(expect1["label_ids"]))
diff_scores_1 = np.fabs(
np.array(result1.scores) - np.array(expect1["scores"]))
# for masks
for j in range(np.array(result1.boxes).shape[0]):
result_mask_1 = np.array(result1.masks[j].data).reshape(
result1.masks[j].shape)
diff_mask_1 = np.fabs(result_mask_1 - np.array(expect1["mask_" +
str(j)]))
nonzero_nums = np.count_nonzero(diff_mask_1)
nonzero_count = nonzero_nums / (diff_mask_1.shape[0] *
diff_mask_1.shape[1])
assert nonzero_count < 1e-02, "The different pixel ratio of mask1 is greater than 1%."
assert diff_boxes_1.max(
) < 1e-01, "There's difference in detection boxes 1."
assert diff_label_1.max(
) < 1e-02, "There's difference in detection label 1."
assert diff_scores_1.max(
) < 1e-04, "There's difference in detection score 1."
if __name__ == "__main__":
test_detection_yolov5seg()
test_detection_yolov5seg_runtime()