diff --git a/cmake/paddle_inference.cmake b/cmake/paddle_inference.cmake
old mode 100644
new mode 100755
diff --git a/examples/vision/detection/yolov5seg/README.md b/examples/vision/detection/yolov5seg/README.md
new file mode 100644
index 000000000..e35838c23
--- /dev/null
+++ b/examples/vision/detection/yolov5seg/README.md
@@ -0,0 +1,27 @@
+# YOLOv5Seg准备部署模型
+
+- YOLOv5Seg v7.0部署模型实现来自[YOLOv5](https://github.com/ultralytics/yolov5/tree/v7.0),和[基于COCO的预训练模型](https://github.com/ultralytics/yolov5/releases/tag/v7.0)
+ - (1)[官方库](https://github.com/ultralytics/yolov5/releases/tag/v7.0)提供的*.onnx可直接进行部署;
+ - (2)开发者基于自己数据训练的YOLOv5Seg v7.0模型,可使用[YOLOv5](https://github.com/ultralytics/yolov5)中的`export.py`导出ONNX文件后,完成部署。
+
+
+## 下载预训练ONNX模型
+
+为了方便开发者的测试,下面提供了YOLOv5Seg导出的各系列模型,开发者可直接下载使用。(下表中模型的精度来源于源官方库)
+| 模型 | 大小 | 精度 | 备注 |
+|:---------------------------------------------------------------- |:----- |:----- |:----- |
+| [YOLOv5n-seg](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5n-seg.onnx) | 7.7MB | 27.6% | 此模型文件来源于[YOLOv5](https://github.com/ultralytics/yolov5),GPL-3.0 License |
+| [YOLOv5s-seg](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s-seg.onnx) | 30MB | 37.6% | 此模型文件来源于[YOLOv5](https://github.com/ultralytics/yolov5),GPL-3.0 License |
+| [YOLOv5m-seg](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5m-seg.onnx) | 84MB | 45.0% | 此模型文件来源于[YOLOv5](https://github.com/ultralytics/yolov5),GPL-3.0 License |
+| [YOLOv5l-seg](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5l-seg.onnx) | 183MB | 49.0% | 此模型文件来源于[YOLOv5](https://github.com/ultralytics/yolov5),GPL-3.0 License |
+| [YOLOv5x-seg](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5x-seg.onnx) | 339MB | 50.7% | 此模型文件来源于[YOLOv5](https://github.com/ultralytics/yolov5),GPL-3.0 License |
+
+
+## 详细部署文档
+
+- [Python部署](python)
+- [C++部署](cpp)
+
+## 版本说明
+
+- 本版本文档和代码基于[YOLOv5 v7.0](https://github.com/ultralytics/yolov5/tree/v7.0) 编写
diff --git a/examples/vision/detection/yolov5seg/cpp/CMakeLists.txt b/examples/vision/detection/yolov5seg/cpp/CMakeLists.txt
new file mode 100644
index 000000000..6610d04d2
--- /dev/null
+++ b/examples/vision/detection/yolov5seg/cpp/CMakeLists.txt
@@ -0,0 +1,14 @@
+PROJECT(infer_demo C CXX)
+CMAKE_MINIMUM_REQUIRED (VERSION 3.10)
+
+# Specify the fastdeploy library path after downloading and decompression
+option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
+
+include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
+
+# Add FastDeploy dependent header files
+include_directories(${FASTDEPLOY_INCS})
+
+add_executable(infer_demo ${PROJECT_SOURCE_DIR}/infer.cc)
+# Add FastDeploy library dependencies
+target_link_libraries(infer_demo ${FASTDEPLOY_LIBS})
diff --git a/examples/vision/detection/yolov5seg/cpp/README.md b/examples/vision/detection/yolov5seg/cpp/README.md
new file mode 100644
index 000000000..486d36fbf
--- /dev/null
+++ b/examples/vision/detection/yolov5seg/cpp/README.md
@@ -0,0 +1,74 @@
+# YOLOv5Seg C++部署示例
+
+本目录下提供`infer.cc`快速完成YOLOv5Seg在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。
+
+在部署前,需确认以下两个步骤
+
+- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
+- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
+
+以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本1.0.3以上(x.x.x>=1.0.3)
+
+```bash
+mkdir build
+cd build
+# 下载 FastDeploy 预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
+wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
+tar xvf fastdeploy-linux-x64-x.x.x.tgz
+cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
+make -j
+
+# 1. 下载官方转换好的 YOLOv5Seg ONNX 模型文件和测试图片
+wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s-seg.onnx
+wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
+
+# CPU推理
+./infer_demo yolov5s-seg.onnx 000000014439.jpg 0
+# GPU推理
+./infer_demo yolov5s-seg.onnx 000000014439.jpg 1
+# GPU上TensorRT推理
+./infer_demo yolov5s-seg.onnx 000000014439.jpg 2
+```
+运行完成可视化结果如下图所示
+
+
+
+以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
+- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
+
+## YOLOv5Seg C++接口
+
+### YOLOv5Seg类
+
+```c++
+fastdeploy::vision::detection::YOLOv5Seg(
+ const string& model_file,
+ const string& params_file = "",
+ const RuntimeOption& runtime_option = RuntimeOption(),
+ const ModelFormat& model_format = ModelFormat::ONNX)
+```
+
+YOLOv5Seg模型加载和初始化,其中model_file为导出的ONNX模型格式。
+
+**参数**
+
+> * **model_file**(str): 模型文件路径
+> * **params_file**(str): 参数文件路径,当模型格式为ONNX时,此参数传入空字符串即可
+> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
+> * **model_format**(ModelFormat): 模型格式,默认为ONNX格式
+
+#### Predict函数
+
+```c++
+YOLOv5Seg::Predict(const cv::Mat& img, DetectionResult* result)
+```
+
+**参数**
+
+> > * **im**: 输入图像,注意需为HWC,BGR格式
+> > * **result**: 检测结果,包括检测框,各个框的置信度, DetectionResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
+
+- [模型介绍](../../)
+- [Python部署](../python)
+- [视觉模型预测结果](../../../../../docs/api/vision_results/)
+- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)
diff --git a/examples/vision/detection/yolov5seg/cpp/infer.cc b/examples/vision/detection/yolov5seg/cpp/infer.cc
new file mode 100644
index 000000000..c28907028
--- /dev/null
+++ b/examples/vision/detection/yolov5seg/cpp/infer.cc
@@ -0,0 +1,105 @@
+// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "fastdeploy/vision.h"
+
+void CpuInfer(const std::string& model_file, const std::string& image_file) {
+ auto model = fastdeploy::vision::detection::YOLOv5Seg(model_file);
+ if (!model.Initialized()) {
+ std::cerr << "Failed to initialize." << std::endl;
+ return;
+ }
+
+ auto im = cv::imread(image_file);
+
+ fastdeploy::vision::DetectionResult res;
+ if (!model.Predict(im, &res)) {
+ std::cerr << "Failed to predict." << std::endl;
+ return;
+ }
+ std::cout << res.Str() << std::endl;
+
+ auto vis_im = fastdeploy::vision::VisDetection(im, res);
+ cv::imwrite("vis_result.jpg", vis_im);
+ std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
+}
+
+void GpuInfer(const std::string& model_file, const std::string& image_file) {
+ auto option = fastdeploy::RuntimeOption();
+ option.UseGpu();
+ auto model = fastdeploy::vision::detection::YOLOv5Seg(model_file, "", option);
+ if (!model.Initialized()) {
+ std::cerr << "Failed to initialize." << std::endl;
+ return;
+ }
+
+ auto im = cv::imread(image_file);
+
+ fastdeploy::vision::DetectionResult res;
+ if (!model.Predict(im, &res)) {
+ std::cerr << "Failed to predict." << std::endl;
+ return;
+ }
+ std::cout << res.Str() << std::endl;
+
+ auto vis_im = fastdeploy::vision::VisDetection(im, res);
+ cv::imwrite("vis_result.jpg", vis_im);
+ std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
+}
+
+void TrtInfer(const std::string& model_file, const std::string& image_file) {
+ auto option = fastdeploy::RuntimeOption();
+ option.UseGpu();
+ option.UseTrtBackend();
+ option.SetTrtInputShape("images", {1, 3, 640, 640});
+ auto model = fastdeploy::vision::detection::YOLOv5Seg(model_file, "", option);
+ if (!model.Initialized()) {
+ std::cerr << "Failed to initialize." << std::endl;
+ return;
+ }
+
+ auto im = cv::imread(image_file);
+
+ fastdeploy::vision::DetectionResult res;
+ if (!model.Predict(im, &res)) {
+ std::cerr << "Failed to predict." << std::endl;
+ return;
+ }
+ std::cout << res.Str() << std::endl;
+
+ auto vis_im = fastdeploy::vision::VisDetection(im, res);
+ cv::imwrite("vis_result.jpg", vis_im);
+ std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
+}
+
+int main(int argc, char* argv[]) {
+ if (argc < 4) {
+ std::cout << "Usage: infer_demo path/to/model path/to/image run_option, "
+ "e.g ./infer_model ./yolov5.onnx ./test.jpeg 0"
+ << std::endl;
+ std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
+ "with gpu; 2: run with gpu and use tensorrt backend."
+ << std::endl;
+ return -1;
+ }
+
+ if (std::atoi(argv[3]) == 0) {
+ CpuInfer(argv[1], argv[2]);
+ } else if (std::atoi(argv[3]) == 1) {
+ GpuInfer(argv[1], argv[2]);
+ } else if (std::atoi(argv[3]) == 2) {
+ TrtInfer(argv[1], argv[2]);
+ }
+ return 0;
+}
diff --git a/examples/vision/detection/yolov5seg/python/README.md b/examples/vision/detection/yolov5seg/python/README.md
new file mode 100644
index 000000000..e09014dec
--- /dev/null
+++ b/examples/vision/detection/yolov5seg/python/README.md
@@ -0,0 +1,67 @@
+# YOLOv5Seg Python部署示例
+
+在部署前,需确认以下两个步骤
+
+- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
+- 2. FastDeploy Python whl包安装,参考[FastDeploy Python安装](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
+
+本目录下提供`infer.py`快速完成YOLOv5Seg在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
+
+```bash
+#下载部署示例代码
+git clone https://github.com/PaddlePaddle/FastDeploy.git
+cd examples/vision/detection/yolov5seg/python/
+
+#下载yolov5seg模型文件和测试图片
+wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s-seg.onnx
+wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
+
+# CPU推理
+python infer.py --model yolov5s-seg.onnx --image 000000014439.jpg --device cpu
+# GPU推理
+python infer.py --model yolov5s-seg.onnx --image 000000014439.jpg --device gpu
+# GPU上使用TensorRT推理
+python infer.py --model yolov5s-seg.onnx --image 000000014439.jpg --device gpu --use_trt True
+```
+
+运行完成可视化结果如下图所示
+
+
+
+## YOLOv5Seg Python接口
+
+```python
+fastdeploy.vision.detection.YOLOv5Seg(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
+```
+
+YOLOv5Seg模型加载和初始化,其中model_file为导出的ONNX模型格式
+
+**参数**
+
+> * **model_file**(str): 模型文件路径
+> * **params_file**(str): 参数文件路径,当模型格式为ONNX格式时,此参数无需设定
+> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
+> * **model_format**(ModelFormat): 模型格式,默认为ONNX
+
+### predict函数
+
+```python
+YOLOv5Seg.predict(image_data)
+```
+
+模型预测结口,输入图像直接输出检测结果。
+
+**参数**
+
+> > * **image_data**(np.ndarray): 输入数据,注意需为HWC,BGR格式
+
+**返回**
+
+> > 返回`fastdeploy.vision.DetectionResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
+
+## 其它文档
+
+- [YOLOv5Seg 模型介绍](..)
+- [YOLOv5Seg C++部署](../cpp)
+- [模型预测结果说明](../../../../../docs/api/vision_results/)
+- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)
diff --git a/examples/vision/detection/yolov5seg/python/infer.py b/examples/vision/detection/yolov5seg/python/infer.py
new file mode 100644
index 000000000..34f9b7f14
--- /dev/null
+++ b/examples/vision/detection/yolov5seg/python/infer.py
@@ -0,0 +1,56 @@
+import fastdeploy as fd
+import cv2
+import os
+
+
+def parse_arguments():
+ import argparse
+ import ast
+ parser = argparse.ArgumentParser()
+ parser.add_argument(
+ "--model", default=None, help="Path of yolov5seg model.")
+ parser.add_argument(
+ "--image", default=None, help="Path of test image file.")
+ parser.add_argument(
+ "--device",
+ type=str,
+ default='cpu',
+ help="Type of inference device, support 'cpu' or 'gpu'.")
+ parser.add_argument(
+ "--use_trt",
+ type=ast.literal_eval,
+ default=False,
+ help="Wether to use tensorrt.")
+ return parser.parse_args()
+
+
+def build_option(args):
+ option = fd.RuntimeOption()
+ if args.device.lower() == "gpu":
+ option.use_gpu()
+
+ if args.use_trt:
+ option.use_trt_backend()
+ option.set_trt_input_shape("images", [1, 3, 640, 640])
+ return option
+
+
+args = parse_arguments()
+
+# Configure runtime, load model
+runtime_option = build_option(args)
+model = fd.vision.detection.YOLOv5Seg(
+ args.model, runtime_option=runtime_option)
+
+# Predicting image
+if args.image is None:
+ image = fd.utils.get_detection_test_image()
+else:
+ image = args.image
+im = cv2.imread(image)
+result = model.predict(im)
+
+# Visualization
+vis_im = fd.vision.vis_detection(im, result)
+cv2.imwrite("visualized_result.jpg", vis_im)
+print("Visualized result save in ./visualized_result.jpg")
diff --git a/fastdeploy/runtime/backends/paddle/paddle_backend.h b/fastdeploy/runtime/backends/paddle/paddle_backend.h
old mode 100644
new mode 100755
diff --git a/fastdeploy/vision.h b/fastdeploy/vision.h
old mode 100644
new mode 100755
index 0714a9766..867de58cb
--- a/fastdeploy/vision.h
+++ b/fastdeploy/vision.h
@@ -22,6 +22,7 @@
#include "fastdeploy/vision/detection/contrib/scaledyolov4.h"
#include "fastdeploy/vision/detection/contrib/yolor.h"
#include "fastdeploy/vision/detection/contrib/yolov5/yolov5.h"
+#include "fastdeploy/vision/detection/contrib/yolov5seg/yolov5seg.h"
#include "fastdeploy/vision/detection/contrib/fastestdet/fastestdet.h"
#include "fastdeploy/vision/detection/contrib/yolov5lite.h"
#include "fastdeploy/vision/detection/contrib/yolov6.h"
diff --git a/fastdeploy/vision/common/result.cc b/fastdeploy/vision/common/result.cc
index 9fc01e565..446a39699 100755
--- a/fastdeploy/vision/common/result.cc
+++ b/fastdeploy/vision/common/result.cc
@@ -48,7 +48,7 @@ void Mask::Reserve(int size) { data.reserve(size); }
void Mask::Resize(int size) { data.resize(size); }
void Mask::Clear() {
- std::vector().swap(data);
+ std::vector().swap(data);
std::vector().swap(shape);
}
diff --git a/fastdeploy/vision/common/result.h b/fastdeploy/vision/common/result.h
index b6ff1fbf7..c68f6d4cf 100755
--- a/fastdeploy/vision/common/result.h
+++ b/fastdeploy/vision/common/result.h
@@ -67,7 +67,7 @@ struct FASTDEPLOY_DECL ClassifyResult : public BaseResult {
*/
struct FASTDEPLOY_DECL Mask : public BaseResult {
/// Mask data buffer
- std::vector data;
+ std::vector data;
/// Shape of mask
std::vector shape; // (H,W) ...
ResultType type = ResultType::MASK;
@@ -107,7 +107,7 @@ struct FASTDEPLOY_DECL DetectionResult : public BaseResult {
/** \brief For instance segmentation model, `masks` is the predict mask for all the deteced objects
*/
std::vector masks;
- //// Shows if the DetectionResult has mask
+ /// Shows if the DetectionResult has mask
bool contain_masks = false;
ResultType type = ResultType::DETECTION;
diff --git a/fastdeploy/vision/detection/contrib/yolov5seg/postprocessor.cc b/fastdeploy/vision/detection/contrib/yolov5seg/postprocessor.cc
new file mode 100755
index 000000000..50bcaba5c
--- /dev/null
+++ b/fastdeploy/vision/detection/contrib/yolov5seg/postprocessor.cc
@@ -0,0 +1,217 @@
+// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "fastdeploy/vision/detection/contrib/yolov5seg/postprocessor.h"
+#include "fastdeploy/vision/utils/utils.h"
+
+namespace fastdeploy {
+namespace vision {
+namespace detection {
+
+YOLOv5SegPostprocessor::YOLOv5SegPostprocessor() {
+ conf_threshold_ = 0.25;
+ nms_threshold_ = 0.5;
+ mask_threshold_ = 0.5;
+ multi_label_ = true;
+ max_wh_ = 7680.0;
+ mask_nums_ = 32;
+}
+
+bool YOLOv5SegPostprocessor::Run(
+ const std::vector& tensors, std::vector* results,
+ const std::vector>>& ims_info) {
+ int batch = tensors[0].shape[0];
+
+ results->resize(batch);
+
+ for (size_t bs = 0; bs < batch; ++bs) {
+ // store mask information
+ std::vector> mask_embeddings;
+ (*results)[bs].Clear();
+ if (multi_label_) {
+ (*results)[bs].Reserve(tensors[0].shape[1] *
+ (tensors[0].shape[2] - mask_nums_ - 5));
+ } else {
+ (*results)[bs].Reserve(tensors[0].shape[1]);
+ }
+ if (tensors[0].dtype != FDDataType::FP32) {
+ FDERROR << "Only support post process with float32 data." << std::endl;
+ return false;
+ }
+ const float* data = reinterpret_cast(tensors[0].Data()) +
+ bs * tensors[0].shape[1] * tensors[0].shape[2];
+ for (size_t i = 0; i < tensors[0].shape[1]; ++i) {
+ int s = i * tensors[0].shape[2];
+ float cls_conf = data[s + 4];
+ float confidence = data[s + 4];
+ std::vector mask_embedding(
+ data + s + tensors[0].shape[2] - mask_nums_,
+ data + s + tensors[0].shape[2]);
+ for (size_t k = 0; k < mask_embedding.size(); ++k) {
+ mask_embedding[k] *= cls_conf;
+ }
+ if (multi_label_) {
+ for (size_t j = 5; j < tensors[0].shape[2] - mask_nums_; ++j) {
+ confidence = data[s + 4];
+ const float* class_score = data + s + j;
+ confidence *= (*class_score);
+ // filter boxes by conf_threshold
+ if (confidence <= conf_threshold_) {
+ continue;
+ }
+ int32_t label_id = std::distance(data + s + 5, class_score);
+
+ // convert from [x, y, w, h] to [x1, y1, x2, y2]
+ (*results)[bs].boxes.emplace_back(std::array{
+ data[s] - data[s + 2] / 2.0f + label_id * max_wh_,
+ data[s + 1] - data[s + 3] / 2.0f + label_id * max_wh_,
+ data[s + 0] + data[s + 2] / 2.0f + label_id * max_wh_,
+ data[s + 1] + data[s + 3] / 2.0f + label_id * max_wh_});
+ (*results)[bs].label_ids.push_back(label_id);
+ (*results)[bs].scores.push_back(confidence);
+ // TODO(wangjunjie06): No zero copy
+ mask_embeddings.push_back(mask_embedding);
+ }
+ } else {
+ const float* max_class_score = std::max_element(
+ data + s + 5, data + s + tensors[0].shape[2] - mask_nums_);
+ confidence *= (*max_class_score);
+ // filter boxes by conf_threshold
+ if (confidence <= conf_threshold_) {
+ continue;
+ }
+ int32_t label_id = std::distance(data + s + 5, max_class_score);
+ // convert from [x, y, w, h] to [x1, y1, x2, y2]
+ (*results)[bs].boxes.emplace_back(std::array{
+ data[s] - data[s + 2] / 2.0f + label_id * max_wh_,
+ data[s + 1] - data[s + 3] / 2.0f + label_id * max_wh_,
+ data[s + 0] + data[s + 2] / 2.0f + label_id * max_wh_,
+ data[s + 1] + data[s + 3] / 2.0f + label_id * max_wh_});
+ (*results)[bs].label_ids.push_back(label_id);
+ (*results)[bs].scores.push_back(confidence);
+ mask_embeddings.push_back(mask_embedding);
+ }
+ }
+
+ if ((*results)[bs].boxes.size() == 0) {
+ return true;
+ }
+ // get box index after nms
+ std::vector index;
+ utils::NMS(&((*results)[bs]), nms_threshold_, &index);
+
+ // deal with mask
+ // step1: MatMul, (box_nums * 32) x (32 * 160 * 160) = box_nums * 160 * 160
+ // step2: Sigmoid
+ // step3: Resize to original image size
+ // step4: Select pixels greater than threshold and crop
+ (*results)[bs].contain_masks = true;
+ (*results)[bs].masks.resize((*results)[bs].boxes.size());
+ const float* data_mask =
+ reinterpret_cast(tensors[1].Data()) +
+ bs * tensors[1].shape[1] * tensors[1].shape[2] * tensors[1].shape[3];
+ cv::Mat mask_proto =
+ cv::Mat(tensors[1].shape[1], tensors[1].shape[2] * tensors[1].shape[3],
+ CV_32FC(1), const_cast(data_mask));
+ // vector to cv::Mat for MatMul
+ // after push_back, Mat of m*n becomes (m + 1) * n
+ cv::Mat mask_proposals;
+ for (size_t i = 0; i < index.size(); ++i) {
+ mask_proposals.push_back(cv::Mat(mask_embeddings[index[i]]).t());
+ }
+ cv::Mat matmul_result = (mask_proposals * mask_proto).t();
+ cv::Mat masks = matmul_result.reshape(
+ (*results)[bs].boxes.size(), {static_cast(tensors[1].shape[2]),
+ static_cast(tensors[1].shape[3])});
+ // split for boxes nums
+ std::vector mask_channels;
+ cv::split(masks, mask_channels);
+
+ // scale the boxes to the origin image shape
+ auto iter_out = ims_info[bs].find("output_shape");
+ auto iter_ipt = ims_info[bs].find("input_shape");
+ FDASSERT(iter_out != ims_info[bs].end() && iter_ipt != ims_info[bs].end(),
+ "Cannot find input_shape or output_shape from im_info.");
+ float out_h = iter_out->second[0];
+ float out_w = iter_out->second[1];
+ float ipt_h = iter_ipt->second[0];
+ float ipt_w = iter_ipt->second[1];
+ float scale = std::min(out_h / ipt_h, out_w / ipt_w);
+ float pad_h = (out_h - ipt_h * scale) / 2;
+ float pad_w = (out_w - ipt_w * scale) / 2;
+ // for mask
+ float pad_h_mask = (float)pad_h / out_h * tensors[1].shape[2];
+ float pad_w_mask = (float)pad_w / out_w * tensors[1].shape[3];
+ for (size_t i = 0; i < (*results)[bs].boxes.size(); ++i) {
+ int32_t label_id = ((*results)[bs].label_ids)[i];
+ // clip box
+ (*results)[bs].boxes[i][0] =
+ (*results)[bs].boxes[i][0] - max_wh_ * label_id;
+ (*results)[bs].boxes[i][1] =
+ (*results)[bs].boxes[i][1] - max_wh_ * label_id;
+ (*results)[bs].boxes[i][2] =
+ (*results)[bs].boxes[i][2] - max_wh_ * label_id;
+ (*results)[bs].boxes[i][3] =
+ (*results)[bs].boxes[i][3] - max_wh_ * label_id;
+ (*results)[bs].boxes[i][0] =
+ std::max(((*results)[bs].boxes[i][0] - pad_w) / scale, 0.0f);
+ (*results)[bs].boxes[i][1] =
+ std::max(((*results)[bs].boxes[i][1] - pad_h) / scale, 0.0f);
+ (*results)[bs].boxes[i][2] =
+ std::max(((*results)[bs].boxes[i][2] - pad_w) / scale, 0.0f);
+ (*results)[bs].boxes[i][3] =
+ std::max(((*results)[bs].boxes[i][3] - pad_h) / scale, 0.0f);
+ (*results)[bs].boxes[i][0] = std::min((*results)[bs].boxes[i][0], ipt_w);
+ (*results)[bs].boxes[i][1] = std::min((*results)[bs].boxes[i][1], ipt_h);
+ (*results)[bs].boxes[i][2] = std::min((*results)[bs].boxes[i][2], ipt_w);
+ (*results)[bs].boxes[i][3] = std::min((*results)[bs].boxes[i][3], ipt_h);
+ // deal with mask
+ cv::Mat dest, mask;
+ // sigmoid
+ cv::exp(-mask_channels[i], dest);
+ dest = 1.0 / (1.0 + dest);
+ // crop mask for feature map
+ int x1 = static_cast(pad_w_mask);
+ int y1 = static_cast(pad_h_mask);
+ int x2 = static_cast(tensors[1].shape[3] - pad_w_mask);
+ int y2 = static_cast(tensors[1].shape[2] - pad_h_mask);
+ cv::Rect roi(x1, y1, x2 - x1, y2 - y1);
+ dest = dest(roi);
+ cv::resize(dest, mask, cv::Size(ipt_w, ipt_h), 0, 0, cv::INTER_LINEAR);
+ // crop mask for source img
+ int x1_src = static_cast(round((*results)[bs].boxes[i][0]));
+ int y1_src = static_cast(round((*results)[bs].boxes[i][1]));
+ int x2_src = static_cast(round((*results)[bs].boxes[i][2]));
+ int y2_src = static_cast(round((*results)[bs].boxes[i][3]));
+ cv::Rect roi_src(x1_src, y1_src, x2_src - x1_src, y2_src - y1_src);
+ mask = mask(roi_src);
+ mask = mask > mask_threshold_;
+ // save mask in DetectionResult
+ int keep_mask_h = y2_src - y1_src;
+ int keep_mask_w = x2_src - x1_src;
+ int keep_mask_numel = keep_mask_h * keep_mask_w;
+ (*results)[bs].masks[i].Resize(keep_mask_numel);
+ (*results)[bs].masks[i].shape = {keep_mask_h, keep_mask_w};
+ uint8_t* keep_mask_ptr =
+ reinterpret_cast((*results)[bs].masks[i].Data());
+ std::memcpy(keep_mask_ptr, reinterpret_cast(mask.ptr()),
+ keep_mask_numel * sizeof(uint8_t));
+ }
+ }
+ return true;
+}
+
+} // namespace detection
+} // namespace vision
+} // namespace fastdeploy
diff --git a/fastdeploy/vision/detection/contrib/yolov5seg/postprocessor.h b/fastdeploy/vision/detection/contrib/yolov5seg/postprocessor.h
new file mode 100755
index 000000000..24f078542
--- /dev/null
+++ b/fastdeploy/vision/detection/contrib/yolov5seg/postprocessor.h
@@ -0,0 +1,79 @@
+// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#pragma once
+#include "fastdeploy/vision/common/processors/transform.h"
+#include "fastdeploy/vision/common/result.h"
+
+namespace fastdeploy {
+namespace vision {
+
+namespace detection {
+/*! @brief Postprocessor object for YOLOv5Seg serials model.
+ */
+class FASTDEPLOY_DECL YOLOv5SegPostprocessor {
+ public:
+ /** \brief Create a postprocessor instance for YOLOv5Seg serials model
+ */
+ YOLOv5SegPostprocessor();
+
+ /** \brief Process the result of runtime and fill to DetectionResult structure
+ *
+ * \param[in] tensors The inference result from runtime
+ * \param[in] result The output result of detection
+ * \param[in] ims_info The shape info list, record input_shape and output_shape
+ * \return true if the postprocess successed, otherwise false
+ */
+ bool Run(const std::vector& tensors,
+ std::vector* results,
+ const std::vector>>& ims_info);
+
+ /// Set conf_threshold, default 0.25
+ void SetConfThreshold(const float& conf_threshold) {
+ conf_threshold_ = conf_threshold;
+ }
+
+ /// Get conf_threshold, default 0.25
+ float GetConfThreshold() const { return conf_threshold_; }
+
+ /// Set nms_threshold, default 0.5
+ void SetNMSThreshold(const float& nms_threshold) {
+ nms_threshold_ = nms_threshold;
+ }
+
+ /// Get nms_threshold, default 0.5
+ float GetNMSThreshold() const { return nms_threshold_; }
+
+ /// Set multi_label, set true for eval, default true
+ void SetMultiLabel(bool multi_label) {
+ multi_label_ = multi_label;
+ }
+
+ /// Get multi_label, default true
+ bool GetMultiLabel() const { return multi_label_; }
+
+ protected:
+ float conf_threshold_;
+ float nms_threshold_;
+ bool multi_label_;
+ float max_wh_;
+ // channel nums of masks
+ int mask_nums_;
+ // mask threshold
+ float mask_threshold_;
+};
+
+} // namespace detection
+} // namespace vision
+} // namespace fastdeploy
diff --git a/fastdeploy/vision/detection/contrib/yolov5seg/preprocessor.cc b/fastdeploy/vision/detection/contrib/yolov5seg/preprocessor.cc
new file mode 100644
index 000000000..b880ed337
--- /dev/null
+++ b/fastdeploy/vision/detection/contrib/yolov5seg/preprocessor.cc
@@ -0,0 +1,116 @@
+// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "fastdeploy/vision/detection/contrib/yolov5seg/preprocessor.h"
+#include "fastdeploy/function/concat.h"
+
+namespace fastdeploy {
+namespace vision {
+namespace detection {
+
+YOLOv5SegPreprocessor::YOLOv5SegPreprocessor() {
+ size_ = {640, 640};
+ padding_value_ = {114.0, 114.0, 114.0};
+ is_mini_pad_ = false;
+ is_no_pad_ = false;
+ is_scale_up_ = true;
+ stride_ = 32;
+ max_wh_ = 7680.0;
+}
+
+void YOLOv5SegPreprocessor::LetterBox(FDMat* mat) {
+ float scale =
+ std::min(size_[1] * 1.0 / mat->Height(), size_[0] * 1.0 / mat->Width());
+ if (!is_scale_up_) {
+ scale = std::min(scale, 1.0f);
+ }
+
+ int resize_h = int(round(mat->Height() * scale));
+ int resize_w = int(round(mat->Width() * scale));
+
+ int pad_w = size_[0] - resize_w;
+ int pad_h = size_[1] - resize_h;
+ if (is_mini_pad_) {
+ pad_h = pad_h % stride_;
+ pad_w = pad_w % stride_;
+ } else if (is_no_pad_) {
+ pad_h = 0;
+ pad_w = 0;
+ resize_h = size_[1];
+ resize_w = size_[0];
+ }
+ if (std::fabs(scale - 1.0f) > 1e-06) {
+ Resize::Run(mat, resize_w, resize_h);
+ }
+ if (pad_h > 0 || pad_w > 0) {
+ float half_h = pad_h * 1.0 / 2;
+ int top = int(round(half_h - 0.1));
+ int bottom = int(round(half_h + 0.1));
+ float half_w = pad_w * 1.0 / 2;
+ int left = int(round(half_w - 0.1));
+ int right = int(round(half_w + 0.1));
+ Pad::Run(mat, top, bottom, left, right, padding_value_);
+ }
+}
+
+bool YOLOv5SegPreprocessor::Preprocess(FDMat* mat, FDTensor* output,
+ std::map>* im_info) {
+ // Record the shape of image and the shape of preprocessed image
+ (*im_info)["input_shape"] = {static_cast(mat->Height()),
+ static_cast(mat->Width())};
+ // yolov5seg's preprocess steps
+ // 1. letterbox
+ // 2. convert_and_permute(swap_rb=true)
+ LetterBox(mat);
+ std::vector alpha = {1.0f / 255.0f, 1.0f / 255.0f, 1.0f / 255.0f};
+ std::vector beta = {0.0f, 0.0f, 0.0f};
+ ConvertAndPermute::Run(mat, alpha, beta, true);
+
+ // Record output shape of preprocessed image
+ (*im_info)["output_shape"] = {static_cast(mat->Height()),
+ static_cast(mat->Width())};
+
+ mat->ShareWithTensor(output);
+ output->ExpandDim(0); // reshape to n, h, w, c
+ return true;
+}
+
+bool YOLOv5SegPreprocessor::Run(std::vector* images, std::vector* outputs,
+ std::vector>>* ims_info) {
+ if (images->size() == 0) {
+ FDERROR << "The size of input images should be greater than 0." << std::endl;
+ return false;
+ }
+ ims_info->resize(images->size());
+ outputs->resize(1);
+ // Concat all the preprocessed data to a batch tensor
+ std::vector tensors(images->size());
+ for (size_t i = 0; i < images->size(); ++i) {
+ if (!Preprocess(&(*images)[i], &tensors[i], &(*ims_info)[i])) {
+ FDERROR << "Failed to preprocess input image." << std::endl;
+ return false;
+ }
+ }
+
+ if (tensors.size() == 1) {
+ (*outputs)[0] = std::move(tensors[0]);
+ } else {
+ function::Concat(tensors, &((*outputs)[0]), 0);
+ }
+ return true;
+}
+
+} // namespace detection
+} // namespace vision
+} // namespace fastdeploy
diff --git a/fastdeploy/vision/detection/contrib/yolov5seg/preprocessor.h b/fastdeploy/vision/detection/contrib/yolov5seg/preprocessor.h
new file mode 100644
index 000000000..241bdda6b
--- /dev/null
+++ b/fastdeploy/vision/detection/contrib/yolov5seg/preprocessor.h
@@ -0,0 +1,113 @@
+// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#pragma once
+#include "fastdeploy/vision/common/processors/transform.h"
+#include "fastdeploy/vision/common/result.h"
+
+namespace fastdeploy {
+namespace vision {
+
+namespace detection {
+/*! @brief Preprocessor object for YOLOv5Seg serials model.
+ */
+class FASTDEPLOY_DECL YOLOv5SegPreprocessor {
+ public:
+ /** \brief Create a preprocessor instance for YOLOv5Seg serials model
+ */
+ YOLOv5SegPreprocessor();
+
+ /** \brief Process the input image and prepare input tensors for runtime
+ *
+ * \param[in] images The input image data list, all the elements are returned by cv::imread()
+ * \param[in] outputs The output tensors which will feed in runtime
+ * \param[in] ims_info The shape info list, record input_shape and output_shape
+ * \return true if the preprocess successed, otherwise false
+ */
+ bool Run(std::vector* images, std::vector* outputs,
+ std::vector>>* ims_info);
+
+ /// Set target size, tuple of (width, height), default size = {640, 640}
+ void SetSize(const std::vector& size) { size_ = size; }
+
+ /// Get target size, tuple of (width, height), default size = {640, 640}
+ std::vector GetSize() const { return size_; }
+
+ /// Set padding value, size should be the same as channels
+ void SetPaddingValue(const std::vector& padding_value) {
+ padding_value_ = padding_value;
+ }
+
+ /// Get padding value, size should be the same as channels
+ std::vector GetPaddingValue() const { return padding_value_; }
+
+ /// Set is_scale_up, if is_scale_up is false, the input image only
+ /// can be zoom out, the maximum resize scale cannot exceed 1.0, default true
+ void SetScaleUp(bool is_scale_up) {
+ is_scale_up_ = is_scale_up;
+ }
+
+ /// Get is_scale_up, default true
+ bool GetScaleUp() const { return is_scale_up_; }
+
+ /// Set is_mini_pad, pad to the minimum rectange
+ /// which height and width is times of stride
+ void SetMiniPad(bool is_mini_pad) {
+ is_mini_pad_ = is_mini_pad;
+ }
+
+ /// Get is_mini_pad, default false
+ bool GetMiniPad() const { return is_mini_pad_; }
+
+ /// Set padding stride, only for mini_pad mode
+ void SetStride(int stride) {
+ stride_ = stride;
+ }
+
+ /// Get padding stride, default 32
+ bool GetStride() const { return stride_; }
+
+ protected:
+ bool Preprocess(FDMat* mat, FDTensor* output,
+ std::map>* im_info);
+
+ void LetterBox(FDMat* mat);
+
+ // target size, tuple of (width, height), default size = {640, 640}
+ std::vector size_;
+
+ // padding value, size should be the same as channels
+ std::vector padding_value_;
+
+ // only pad to the minimum rectange which height and width is times of stride
+ bool is_mini_pad_;
+
+ // while is_mini_pad = false and is_no_pad = true,
+ // will resize the image to the set size
+ bool is_no_pad_;
+
+ // if is_scale_up is false, the input image only can be zoom out,
+ // the maximum resize scale cannot exceed 1.0
+ bool is_scale_up_;
+
+ // padding stride, for is_mini_pad
+ int stride_;
+
+ // for offseting the boxes by classes when using NMS
+ float max_wh_;
+};
+
+} // namespace detection
+} // namespace vision
+} // namespace fastdeploy
diff --git a/fastdeploy/vision/detection/contrib/yolov5seg/yolov5seg.cc b/fastdeploy/vision/detection/contrib/yolov5seg/yolov5seg.cc
new file mode 100644
index 000000000..716c8d253
--- /dev/null
+++ b/fastdeploy/vision/detection/contrib/yolov5seg/yolov5seg.cc
@@ -0,0 +1,80 @@
+// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "fastdeploy/vision/detection/contrib/yolov5seg/yolov5seg.h"
+
+namespace fastdeploy {
+namespace vision {
+namespace detection {
+
+YOLOv5Seg::YOLOv5Seg(const std::string& model_file, const std::string& params_file,
+ const RuntimeOption& custom_option,
+ const ModelFormat& model_format) {
+ if (model_format == ModelFormat::ONNX) {
+ valid_cpu_backends = {Backend::OPENVINO, Backend::ORT};
+ valid_gpu_backends = {Backend::ORT, Backend::TRT};
+ } else {
+ valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::LITE};
+ valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
+ }
+ runtime_option = custom_option;
+ runtime_option.model_format = model_format;
+ runtime_option.model_file = model_file;
+ runtime_option.params_file = params_file;
+ initialized = Initialize();
+}
+
+bool YOLOv5Seg::Initialize() {
+ if (!InitRuntime()) {
+ FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
+ return false;
+ }
+ return true;
+}
+
+bool YOLOv5Seg::Predict(const cv::Mat& im, DetectionResult* result) {
+ std::vector results;
+ if (!BatchPredict({im}, &results)) {
+ return false;
+ }
+ *result = std::move(results[0]);
+ return true;
+}
+
+bool YOLOv5Seg::BatchPredict(const std::vector& images, std::vector* results) {
+ std::vector>> ims_info;
+ std::vector fd_images = WrapMat(images);
+
+ if (!preprocessor_.Run(&fd_images, &reused_input_tensors_, &ims_info)) {
+ FDERROR << "Failed to preprocess the input image." << std::endl;
+ return false;
+ }
+
+ reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
+ if (!Infer(reused_input_tensors_, &reused_output_tensors_)) {
+ FDERROR << "Failed to inference by runtime." << std::endl;
+ return false;
+ }
+
+ if (!postprocessor_.Run(reused_output_tensors_, results, ims_info)) {
+ FDERROR << "Failed to postprocess the inference results by runtime." << std::endl;
+ return false;
+ }
+
+ return true;
+}
+
+} // namespace detection
+} // namespace vision
+} // namespace fastdeploy
diff --git a/fastdeploy/vision/detection/contrib/yolov5seg/yolov5seg.h b/fastdeploy/vision/detection/contrib/yolov5seg/yolov5seg.h
new file mode 100755
index 000000000..ca4549957
--- /dev/null
+++ b/fastdeploy/vision/detection/contrib/yolov5seg/yolov5seg.h
@@ -0,0 +1,76 @@
+// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. //NOLINT
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#pragma once
+
+#include "fastdeploy/fastdeploy_model.h"
+#include "fastdeploy/vision/detection/contrib/yolov5seg/preprocessor.h"
+#include "fastdeploy/vision/detection/contrib/yolov5seg/postprocessor.h"
+
+namespace fastdeploy {
+namespace vision {
+namespace detection {
+/*! @brief YOLOv5Seg model object used when to load a YOLOv5Seg model exported by YOLOv5.
+ */
+class FASTDEPLOY_DECL YOLOv5Seg : public FastDeployModel {
+ public:
+ /** \brief Set path of model file and the configuration of runtime.
+ *
+ * \param[in] model_file Path of model file, e.g ./yolov5seg.onnx
+ * \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, if the model format is ONNX, this parameter will be ignored
+ * \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in "valid_cpu_backends"
+ * \param[in] model_format Model format of the loaded model, default is ONNX format
+ */
+ YOLOv5Seg(const std::string& model_file, const std::string& params_file = "",
+ const RuntimeOption& custom_option = RuntimeOption(),
+ const ModelFormat& model_format = ModelFormat::ONNX);
+
+ std::string ModelName() const { return "yolov5seg"; }
+
+ /** \brief Predict the detection result for an input image
+ *
+ * \param[in] img The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
+ * \param[in] result The output detection result will be writen to this structure
+ * \return true if the prediction successed, otherwise false
+ */
+ virtual bool Predict(const cv::Mat& img, DetectionResult* result);
+
+ /** \brief Predict the detection results for a batch of input images
+ *
+ * \param[in] imgs, The input image list, each element comes from cv::imread()
+ * \param[in] results The output detection result list
+ * \return true if the prediction successed, otherwise false
+ */
+ virtual bool BatchPredict(const std::vector& imgs,
+ std::vector* results);
+
+ /// Get preprocessor reference of YOLOv5Seg
+ virtual YOLOv5SegPreprocessor& GetPreprocessor() {
+ return preprocessor_;
+ }
+
+ /// Get postprocessor reference of YOLOv5Seg
+ virtual YOLOv5SegPostprocessor& GetPostprocessor() {
+ return postprocessor_;
+ }
+
+ protected:
+ bool Initialize();
+ YOLOv5SegPreprocessor preprocessor_;
+ YOLOv5SegPostprocessor postprocessor_;
+};
+
+} // namespace detection
+} // namespace vision
+} // namespace fastdeploy
diff --git a/fastdeploy/vision/detection/contrib/yolov5seg/yolov5seg_pybind.cc b/fastdeploy/vision/detection/contrib/yolov5seg/yolov5seg_pybind.cc
new file mode 100755
index 000000000..0306c7b02
--- /dev/null
+++ b/fastdeploy/vision/detection/contrib/yolov5seg/yolov5seg_pybind.cc
@@ -0,0 +1,90 @@
+// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "fastdeploy/pybind/main.h"
+
+namespace fastdeploy {
+void BindYOLOv5Seg(pybind11::module& m) {
+ pybind11::class_(
+ m, "YOLOv5SegPreprocessor")
+ .def(pybind11::init<>())
+ .def("run", [](vision::detection::YOLOv5SegPreprocessor& self, std::vector& im_list) {
+ std::vector images;
+ for (size_t i = 0; i < im_list.size(); ++i) {
+ images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
+ }
+ std::vector outputs;
+ std::vector>> ims_info;
+ if (!self.Run(&images, &outputs, &ims_info)) {
+ throw std::runtime_error("Failed to preprocess the input data in PaddleClasPreprocessor.");
+ }
+ for (size_t i = 0; i < outputs.size(); ++i) {
+ outputs[i].StopSharing();
+ }
+ return make_pair(outputs, ims_info);
+ })
+ .def_property("size", &vision::detection::YOLOv5SegPreprocessor::GetSize, &vision::detection::YOLOv5SegPreprocessor::SetSize)
+ .def_property("padding_value", &vision::detection::YOLOv5SegPreprocessor::GetPaddingValue, &vision::detection::YOLOv5SegPreprocessor::SetPaddingValue)
+ .def_property("is_scale_up", &vision::detection::YOLOv5SegPreprocessor::GetScaleUp, &vision::detection::YOLOv5SegPreprocessor::SetScaleUp)
+ .def_property("is_mini_pad", &vision::detection::YOLOv5SegPreprocessor::GetMiniPad, &vision::detection::YOLOv5SegPreprocessor::SetMiniPad)
+ .def_property("stride", &vision::detection::YOLOv5SegPreprocessor::GetStride, &vision::detection::YOLOv5SegPreprocessor::SetStride);
+
+ pybind11::class_(
+ m, "YOLOv5SegPostprocessor")
+ .def(pybind11::init<>())
+ .def("run", [](vision::detection::YOLOv5SegPostprocessor& self, std::vector& inputs,
+ const std::vector>>& ims_info) {
+ std::vector results;
+ if (!self.Run(inputs, &results, ims_info)) {
+ throw std::runtime_error("Failed to postprocess the runtime result in YOLOv5SegPostprocessor.");
+ }
+ return results;
+ })
+ .def("run", [](vision::detection::YOLOv5SegPostprocessor& self, std::vector& input_array,
+ const std::vector>>& ims_info) {
+ std::vector results;
+ std::vector inputs;
+ PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
+ if (!self.Run(inputs, &results, ims_info)) {
+ throw std::runtime_error("Failed to postprocess the runtime result in YOLOv5SegPostprocessor.");
+ }
+ return results;
+ })
+ .def_property("conf_threshold", &vision::detection::YOLOv5SegPostprocessor::GetConfThreshold, &vision::detection::YOLOv5SegPostprocessor::SetConfThreshold)
+ .def_property("nms_threshold", &vision::detection::YOLOv5SegPostprocessor::GetNMSThreshold, &vision::detection::YOLOv5SegPostprocessor::SetNMSThreshold)
+ .def_property("multi_label", &vision::detection::YOLOv5SegPostprocessor::GetMultiLabel, &vision::detection::YOLOv5SegPostprocessor::SetMultiLabel);
+
+ pybind11::class_(m, "YOLOv5Seg")
+ .def(pybind11::init())
+ .def("predict",
+ [](vision::detection::YOLOv5Seg& self, pybind11::array& data) {
+ auto mat = PyArrayToCvMat(data);
+ vision::DetectionResult res;
+ self.Predict(mat, &res);
+ return res;
+ })
+ .def("batch_predict", [](vision::detection::YOLOv5Seg& self, std::vector& data) {
+ std::vector images;
+ for (size_t i = 0; i < data.size(); ++i) {
+ images.push_back(PyArrayToCvMat(data[i]));
+ }
+ std::vector results;
+ self.BatchPredict(images, &results);
+ return results;
+ })
+ .def_property_readonly("preprocessor", &vision::detection::YOLOv5Seg::GetPreprocessor)
+ .def_property_readonly("postprocessor", &vision::detection::YOLOv5Seg::GetPostprocessor);
+}
+} // namespace fastdeploy
diff --git a/fastdeploy/vision/detection/detection_pybind.cc b/fastdeploy/vision/detection/detection_pybind.cc
old mode 100644
new mode 100755
index 80bdff859..b46f229ae
--- a/fastdeploy/vision/detection/detection_pybind.cc
+++ b/fastdeploy/vision/detection/detection_pybind.cc
@@ -22,6 +22,7 @@ void BindYOLOR(pybind11::module& m);
void BindYOLOv6(pybind11::module& m);
void BindYOLOv5Lite(pybind11::module& m);
void BindYOLOv5(pybind11::module& m);
+void BindYOLOv5Seg(pybind11::module& m);
void BindFastestDet(pybind11::module& m);
void BindYOLOX(pybind11::module& m);
void BindNanoDetPlus(pybind11::module& m);
@@ -40,6 +41,7 @@ void BindDetection(pybind11::module& m) {
BindYOLOv6(detection_module);
BindYOLOv5Lite(detection_module);
BindYOLOv5(detection_module);
+ BindYOLOv5Seg(detection_module);
BindFastestDet(detection_module);
BindYOLOX(detection_module);
BindNanoDetPlus(detection_module);
diff --git a/fastdeploy/vision/detection/ppdet/postprocessor.cc b/fastdeploy/vision/detection/ppdet/postprocessor.cc
old mode 100644
new mode 100755
index a453c4d74..e65e5941b
--- a/fastdeploy/vision/detection/ppdet/postprocessor.cc
+++ b/fastdeploy/vision/detection/ppdet/postprocessor.cc
@@ -32,30 +32,30 @@ bool PaddleDetPostprocessor::ProcessMask(
int64_t out_mask_h = shape[1];
int64_t out_mask_w = shape[2];
int64_t out_mask_numel = shape[1] * shape[2];
- const int32_t* data = reinterpret_cast(tensor.CpuData());
+ const uint8_t* data = reinterpret_cast(tensor.CpuData());
int index = 0;
for (int i = 0; i < results->size(); ++i) {
(*results)[i].contain_masks = true;
(*results)[i].masks.resize((*results)[i].boxes.size());
for (int j = 0; j < (*results)[i].boxes.size(); ++j) {
- int x1 = static_cast((*results)[i].boxes[j][0]);
- int y1 = static_cast((*results)[i].boxes[j][1]);
- int x2 = static_cast((*results)[i].boxes[j][2]);
- int y2 = static_cast((*results)[i].boxes[j][3]);
+ int x1 = static_cast(round((*results)[i].boxes[j][0]));
+ int y1 = static_cast(round((*results)[i].boxes[j][1]));
+ int x2 = static_cast(round((*results)[i].boxes[j][2]));
+ int y2 = static_cast(round((*results)[i].boxes[j][3]));
int keep_mask_h = y2 - y1;
int keep_mask_w = x2 - x1;
int keep_mask_numel = keep_mask_h * keep_mask_w;
(*results)[i].masks[j].Resize(keep_mask_numel);
(*results)[i].masks[j].shape = {keep_mask_h, keep_mask_w};
- const int32_t* current_ptr = data + index * out_mask_numel;
+ const uint8_t* current_ptr = data + index * out_mask_numel;
- int32_t* keep_mask_ptr =
- reinterpret_cast((*results)[i].masks[j].Data());
+ uint8_t* keep_mask_ptr =
+ reinterpret_cast((*results)[i].masks[j].Data());
for (int row = y1; row < y2; ++row) {
- size_t keep_nbytes_in_col = keep_mask_w * sizeof(int32_t);
- const int32_t* out_row_start_ptr = current_ptr + row * out_mask_w + x1;
- int32_t* keep_row_start_ptr = keep_mask_ptr + (row - y1) * keep_mask_w;
+ size_t keep_nbytes_in_col = keep_mask_w * sizeof(uint8_t);
+ const uint8_t* out_row_start_ptr = current_ptr + row * out_mask_w + x1;
+ uint8_t* keep_row_start_ptr = keep_mask_ptr + (row - y1) * keep_mask_w;
std::memcpy(keep_row_start_ptr, out_row_start_ptr, keep_nbytes_in_col);
}
index += 1;
diff --git a/fastdeploy/vision/utils/nms.cc b/fastdeploy/vision/utils/nms.cc
index 900acf84d..e206ff8a7 100644
--- a/fastdeploy/vision/utils/nms.cc
+++ b/fastdeploy/vision/utils/nms.cc
@@ -21,7 +21,19 @@ namespace utils {
// The implementation refers to
// https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.4/deploy/cpp/src/utils.cc
-void NMS(DetectionResult* result, float iou_threshold) {
+void NMS(DetectionResult* result, float iou_threshold,
+ std::vector* index) {
+ // get sorted score indices
+ std::vector sorted_indices;
+ if (index != nullptr) {
+ std::map> score_map;
+ for (size_t i = 0; i < result->scores.size(); ++i) {
+ score_map.insert(std::pair(result->scores[i], i));
+ }
+ for (auto iter : score_map) {
+ sorted_indices.push_back(iter.second);
+ }
+ }
utils::SortDetectionResult(result);
std::vector area_of_boxes(result->boxes.size());
@@ -63,6 +75,9 @@ void NMS(DetectionResult* result, float iou_threshold) {
result->boxes.emplace_back(backup.boxes[i]);
result->scores.push_back(backup.scores[i]);
result->label_ids.push_back(backup.label_ids[i]);
+ if (index != nullptr) {
+ index->push_back(sorted_indices[i]);
+ }
}
}
diff --git a/fastdeploy/vision/utils/utils.h b/fastdeploy/vision/utils/utils.h
index 1590922d8..c36d8d036 100644
--- a/fastdeploy/vision/utils/utils.h
+++ b/fastdeploy/vision/utils/utils.h
@@ -59,7 +59,8 @@ std::vector TopKIndices(const T* array, int array_size, int topk) {
return res;
}
-void NMS(DetectionResult* output, float iou_threshold = 0.5);
+void NMS(DetectionResult* output, float iou_threshold = 0.5,
+ std::vector* index = nullptr);
void NMS(FaceDetectionResult* result, float iou_threshold = 0.5);
diff --git a/fastdeploy/vision/vision_pybind.cc b/fastdeploy/vision/vision_pybind.cc
old mode 100644
new mode 100755
index 0bd2f0067..22f7581be
--- a/fastdeploy/vision/vision_pybind.cc
+++ b/fastdeploy/vision/vision_pybind.cc
@@ -46,7 +46,7 @@ void BindVision(pybind11::module& m) {
"vision::Mask pickle with invalid state!");
vision::Mask m;
- m.data = t[0].cast>();
+ m.data = t[0].cast>();
m.shape = t[1].cast>();
return m;
diff --git a/fastdeploy/vision/visualize/detection.cc b/fastdeploy/vision/visualize/detection.cc
index e8180cafe..d03c9da43 100644
--- a/fastdeploy/vision/visualize/detection.cc
+++ b/fastdeploy/vision/visualize/detection.cc
@@ -39,10 +39,10 @@ cv::Mat VisDetection(const cv::Mat& im, const DetectionResult& result,
if (result.scores[i] < score_threshold) {
continue;
}
- int x1 = static_cast(result.boxes[i][0]);
- int y1 = static_cast(result.boxes[i][1]);
- int x2 = static_cast(result.boxes[i][2]);
- int y2 = static_cast(result.boxes[i][3]);
+ int x1 = static_cast(round(result.boxes[i][0]));
+ int y1 = static_cast(round(result.boxes[i][1]));
+ int x2 = static_cast(round(result.boxes[i][2]));
+ int y2 = static_cast(round(result.boxes[i][3]));
int box_h = y2 - y1;
int box_w = x2 - x1;
int c0 = color_map[3 * result.label_ids[i] + 0];
@@ -54,7 +54,7 @@ cv::Mat VisDetection(const cv::Mat& im, const DetectionResult& result,
if (score.size() > 4) {
score = score.substr(0, 4);
}
- std::string text = id + "," + score;
+ std::string text = id + ", " + score;
int font = cv::FONT_HERSHEY_SIMPLEX;
cv::Size text_size = cv::getTextSize(text, font, font_size, 1, nullptr);
cv::Point origin;
@@ -68,10 +68,10 @@ cv::Mat VisDetection(const cv::Mat& im, const DetectionResult& result,
int mask_h = static_cast(result.masks[i].shape[0]);
int mask_w = static_cast(result.masks[i].shape[1]);
// non-const pointer for cv:Mat constructor
- int32_t* mask_raw_data = const_cast(
- static_cast(result.masks[i].Data()));
+ uint8_t* mask_raw_data = const_cast(
+ static_cast(result.masks[i].Data()));
// only reference to mask data (zero copy)
- cv::Mat mask(mask_h, mask_w, CV_32SC1, mask_raw_data);
+ cv::Mat mask(mask_h, mask_w, CV_8UC1, mask_raw_data);
if ((mask_h != box_h) || (mask_w != box_w)) {
cv::resize(mask, mask, cv::Size(box_w, box_h));
}
@@ -79,7 +79,7 @@ cv::Mat VisDetection(const cv::Mat& im, const DetectionResult& result,
int mc0 = 255 - c0 >= 127 ? 255 - c0 : 127;
int mc1 = 255 - c1 >= 127 ? 255 - c1 : 127;
int mc2 = 255 - c2 >= 127 ? 255 - c2 : 127;
- int32_t* mask_data = reinterpret_cast(mask.data);
+ uint8_t* mask_data = reinterpret_cast(mask.data);
// inplace blending (zero copy)
uchar* vis_im_data = static_cast(vis_im.data);
for (size_t i = y1; i < y2; ++i) {
diff --git a/python/fastdeploy/vision/detection/__init__.py b/python/fastdeploy/vision/detection/__init__.py
index 70d00bcdb..cfa19bfb7 100755
--- a/python/fastdeploy/vision/detection/__init__.py
+++ b/python/fastdeploy/vision/detection/__init__.py
@@ -19,6 +19,7 @@ from .contrib.scaled_yolov4 import ScaledYOLOv4
from .contrib.nanodet_plus import NanoDetPlus
from .contrib.yolox import YOLOX
from .contrib.yolov5 import *
+from .contrib.yolov5seg import *
from .contrib.fastestdet import *
from .contrib.yolov5lite import YOLOv5Lite
from .contrib.yolov6 import YOLOv6
diff --git a/python/fastdeploy/vision/detection/contrib/yolov5seg.py b/python/fastdeploy/vision/detection/contrib/yolov5seg.py
new file mode 100644
index 000000000..a7c35bf68
--- /dev/null
+++ b/python/fastdeploy/vision/detection/contrib/yolov5seg.py
@@ -0,0 +1,219 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from __future__ import absolute_import
+import logging
+from .... import FastDeployModel, ModelFormat
+from .... import c_lib_wrap as C
+
+
+class YOLOv5SegPreprocessor:
+ def __init__(self):
+ """Create a preprocessor for YOLOv5Seg
+ """
+ self._preprocessor = C.vision.detection.YOLOv5SegPreprocessor()
+
+ def run(self, input_ims):
+ """Preprocess input images for YOLOv5Seg
+
+ :param: input_ims: (list of numpy.ndarray)The input image
+ :return: list of FDTensor
+ """
+ return self._preprocessor.run(input_ims)
+
+ @property
+ def size(self):
+ """
+ Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default size = [640, 640]
+ """
+ return self._preprocessor.size
+
+ @property
+ def padding_value(self):
+ """
+ padding value for preprocessing, default [114.0, 114.0, 114.0]
+ """
+ # padding value, size should be the same as channels
+ return self._preprocessor.padding_value
+
+ @property
+ def is_scale_up(self):
+ """
+ is_scale_up for preprocessing, the input image only can be zoom out, the maximum resize scale cannot exceed 1.0, default true
+ """
+ return self._preprocessor.is_scale_up
+
+ @property
+ def is_mini_pad(self):
+ """
+ is_mini_pad for preprocessing, pad to the minimum rectange which height and width is times of stride, default false
+ """
+ return self._preprocessor.is_mini_pad
+
+ @property
+ def stride(self):
+ """
+ stride for preprocessing, only for mini_pad mode, default 32
+ """
+ return self._preprocessor.stride
+
+ @size.setter
+ def size(self, wh):
+ assert isinstance(wh, (list, tuple)),\
+ "The value to set `size` must be type of tuple or list."
+ assert len(wh) == 2,\
+ "The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
+ len(wh))
+ self._preprocessor.size = wh
+
+ @padding_value.setter
+ def padding_value(self, value):
+ assert isinstance(
+ value,
+ list), "The value to set `padding_value` must be type of list."
+ self._preprocessor.padding_value = value
+
+ @is_scale_up.setter
+ def is_scale_up(self, value):
+ assert isinstance(
+ value,
+ bool), "The value to set `is_scale_up` must be type of bool."
+ self._preprocessor.is_scale_up = value
+
+ @is_mini_pad.setter
+ def is_mini_pad(self, value):
+ assert isinstance(
+ value,
+ bool), "The value to set `is_mini_pad` must be type of bool."
+ self._preprocessor.is_mini_pad = value
+
+ @stride.setter
+ def stride(self, value):
+ assert isinstance(
+ stride, int), "The value to set `stride` must be type of int."
+ self._preprocessor.stride = value
+
+
+class YOLOv5SegPostprocessor:
+ def __init__(self):
+ """Create a postprocessor for YOLOv5Seg
+ """
+ self._postprocessor = C.vision.detection.YOLOv5SegPostprocessor()
+
+ def run(self, runtime_results, ims_info):
+ """Postprocess the runtime results for YOLOv5Seg
+
+ :param: runtime_results: (list of FDTensor)The output FDTensor results from runtime
+ :param: ims_info: (list of dict)Record input_shape and output_shape
+ :return: list of DetectionResult(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
+ """
+ return self._postprocessor.run(runtime_results, ims_info)
+
+ @property
+ def conf_threshold(self):
+ """
+ confidence threshold for postprocessing, default is 0.25
+ """
+ return self._postprocessor.conf_threshold
+
+ @property
+ def nms_threshold(self):
+ """
+ nms threshold for postprocessing, default is 0.5
+ """
+ return self._postprocessor.nms_threshold
+
+ @property
+ def multi_label(self):
+ """
+ multi_label for postprocessing, set true for eval, default is True
+ """
+ return self._postprocessor.multi_label
+
+ @conf_threshold.setter
+ def conf_threshold(self, conf_threshold):
+ assert isinstance(conf_threshold, float),\
+ "The value to set `conf_threshold` must be type of float."
+ self._postprocessor.conf_threshold = conf_threshold
+
+ @nms_threshold.setter
+ def nms_threshold(self, nms_threshold):
+ assert isinstance(nms_threshold, float),\
+ "The value to set `nms_threshold` must be type of float."
+ self._postprocessor.nms_threshold = nms_threshold
+
+ @multi_label.setter
+ def multi_label(self, value):
+ assert isinstance(
+ value,
+ bool), "The value to set `multi_label` must be type of bool."
+ self._postprocessor.multi_label = value
+
+
+class YOLOv5Seg(FastDeployModel):
+ def __init__(self,
+ model_file,
+ params_file="",
+ runtime_option=None,
+ model_format=ModelFormat.ONNX):
+ """Load a YOLOv5Seg model exported by YOLOv5.
+
+ :param model_file: (str)Path of model file, e.g ./yolov5s-seg.onnx
+ :param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
+ :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
+ :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
+ """
+ super(YOLOv5Seg, self).__init__(runtime_option)
+
+ self._model = C.vision.detection.YOLOv5Seg(
+ model_file, params_file, self._runtime_option, model_format)
+ assert self.initialized, "YOLOv5Seg initialize failed."
+
+ def predict(self, input_image, conf_threshold=0.25, nms_iou_threshold=0.5):
+ """Detect an input image
+
+ :param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
+ :param conf_threshold: confidence threshold for postprocessing, default is 0.25
+ :param nms_iou_threshold: iou threshold for NMS, default is 0.5
+ :return: DetectionResult
+ """
+
+ self.postprocessor.conf_threshold = conf_threshold
+ self.postprocessor.nms_threshold = nms_iou_threshold
+ return self._model.predict(input_image)
+
+ def batch_predict(self, images):
+ """Classify a batch of input image
+
+ :param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
+ :return list of DetectionResult
+ """
+
+ return self._model.batch_predict(images)
+
+ @property
+ def preprocessor(self):
+ """Get YOLOv5SegPreprocessor object of the loaded model
+
+ :return YOLOv5SegPreprocessor
+ """
+ return self._model.preprocessor
+
+ @property
+ def postprocessor(self):
+ """Get YOLOv5SegPostprocessor object of the loaded model
+
+ :return YOLOv5SegPostprocessor
+ """
+ return self._model.postprocessor
diff --git a/tests/models/test_mask_rcnn.py b/tests/models/test_mask_rcnn.py
index 8cd0a614e..0bc0fcc05 100755
--- a/tests/models/test_mask_rcnn.py
+++ b/tests/models/test_mask_rcnn.py
@@ -61,10 +61,6 @@ def test_detection_mask_rcnn():
) < 1e-04, "There's diff in label_ids."
-# result = model.predict(im1)
-# with open("mask_rcnn_baseline.pkl", "wb") as f:
-# pickle.dump([np.array(result.boxes), np.array(result.scores), np.array(result.label_ids)], f)
-
def test_detection_mask_rcnn1():
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/mask_rcnn_r50_1x_coco.tgz"
input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg"
@@ -79,18 +75,22 @@ def test_detection_mask_rcnn1():
config_file = os.path.join(model_path, "infer_cfg.yml")
preprocessor = fd.vision.detection.PaddleDetPreprocessor(config_file)
postprocessor = fd.vision.detection.PaddleDetPostprocessor()
-
+
option = rc.test_option
option.set_model_path(model_file, params_file)
option.use_paddle_infer_backend()
- runtime = fd.Runtime(option);
+ runtime = fd.Runtime(option)
# compare diff
im1 = cv2.imread("./resources/000000014439.jpg")
for i in range(2):
im1 = cv2.imread("./resources/000000014439.jpg")
input_tensors = preprocessor.run([im1])
- output_tensors = runtime.infer({"image": input_tensors[0], "scale_factor": input_tensors[1], "im_shape": input_tensors[2]})
+ output_tensors = runtime.infer({
+ "image": input_tensors[0],
+ "scale_factor": input_tensors[1],
+ "im_shape": input_tensors[2]
+ })
results = postprocessor.run(output_tensors)
result = results[0]
@@ -114,6 +114,7 @@ def test_detection_mask_rcnn1():
assert diff_label_ids[scores > score_threshold].max(
) < 1e-04, "There's diff in label_ids."
+
if __name__ == "__main__":
test_detection_mask_rcnn()
test_detection_mask_rcnn1()
diff --git a/tests/models/test_yolov5seg.py b/tests/models/test_yolov5seg.py
new file mode 100644
index 000000000..8eb88411f
--- /dev/null
+++ b/tests/models/test_yolov5seg.py
@@ -0,0 +1,220 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from fastdeploy import ModelFormat
+import fastdeploy as fd
+import cv2
+import os
+import pickle
+import numpy as np
+import runtime_config as rc
+
+
+def test_detection_yolov5seg():
+ model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s-seg.onnx"
+ input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg"
+ input_url2 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000570688.jpg"
+ result_url1 = "https://bj.bcebos.com/paddlehub/fastdeploy/yolov5seg_result1.pkl"
+ result_url2 = "https://bj.bcebos.com/paddlehub/fastdeploy/yolov5seg_result2.pkl"
+ fd.download(model_url, "resources")
+ fd.download(input_url1, "resources")
+ fd.download(input_url2, "resources")
+ fd.download(result_url1, "resources")
+ fd.download(result_url2, "resources")
+
+ model_file = "resources/yolov5s-seg.onnx"
+ rc.test_option.use_ort_backend()
+ model = fd.vision.detection.YOLOv5Seg(
+ model_file, runtime_option=rc.test_option)
+
+ with open("resources/yolov5seg_result1.pkl", "rb") as f:
+ expect1 = pickle.load(f)
+
+ with open("resources/yolov5seg_result2.pkl", "rb") as f:
+ expect2 = pickle.load(f)
+
+ # compare diff
+ im1 = cv2.imread("./resources/000000014439.jpg")
+ im2 = cv2.imread("./resources/000000570688.jpg")
+
+ for i in range(3):
+ # test single predict
+ result1 = model.predict(im1)
+ result2 = model.predict(im2)
+
+ diff_boxes_1 = np.fabs(
+ np.array(result1.boxes) - np.array(expect1["boxes"]))
+ diff_boxes_2 = np.fabs(
+ np.array(result2.boxes) - np.array(expect2["boxes"]))
+
+ diff_label_1 = np.fabs(
+ np.array(result1.label_ids) - np.array(expect1["label_ids"]))
+ diff_label_2 = np.fabs(
+ np.array(result2.label_ids) - np.array(expect2["label_ids"]))
+
+ diff_scores_1 = np.fabs(
+ np.array(result1.scores) - np.array(expect1["scores"]))
+ diff_scores_2 = np.fabs(
+ np.array(result2.scores) - np.array(expect2["scores"]))
+
+ # for masks
+ for j in range(np.array(result1.boxes).shape[0]):
+ result_mask_1 = np.array(result1.masks[j].data).reshape(
+ result1.masks[j].shape)
+ diff_mask_1 = np.fabs(result_mask_1 - np.array(expect1["mask_" +
+ str(j)]))
+ nonzero_nums = np.count_nonzero(diff_mask_1)
+ nonzero_count = nonzero_nums / (diff_mask_1.shape[0] *
+ diff_mask_1.shape[1])
+ assert nonzero_count < 1e-02, "The different pixel ratio of mask1 is greater than 1%."
+
+ for k in range(np.array(result2.boxes).shape[0]):
+ result_mask_2 = np.array(result2.masks[k].data).reshape(
+ result2.masks[k].shape)
+ diff_mask_2 = np.fabs(result_mask_2 - np.array(expect2["mask_" +
+ str(k)]))
+ nonzero_nums = np.count_nonzero(diff_mask_2)
+ nonzero_count = nonzero_nums / (diff_mask_2.shape[0] *
+ diff_mask_2.shape[1])
+ assert nonzero_count < 1e-02, "The different pixel ratio of mask2 is greater than 1%."
+
+ assert diff_boxes_1.max(
+ ) < 1e-01, "There's difference in detection boxes 1."
+ assert diff_label_1.max(
+ ) < 1e-02, "There's difference in detection label 1."
+ assert diff_scores_1.max(
+ ) < 1e-04, "There's difference in detection score 1."
+
+ assert diff_boxes_2.max(
+ ) < 1e-01, "There's difference in detection boxes 2."
+ assert diff_label_2.max(
+ ) < 1e-02, "There's difference in detection label 2."
+ assert diff_scores_2.max(
+ ) < 1e-04, "There's difference in detection score 2."
+
+ # test batch predict
+ results = model.batch_predict([im1, im2])
+ result1 = results[0]
+ result2 = results[1]
+
+ diff_boxes_1 = np.fabs(
+ np.array(result1.boxes) - np.array(expect1["boxes"]))
+ diff_boxes_2 = np.fabs(
+ np.array(result2.boxes) - np.array(expect2["boxes"]))
+
+ diff_label_1 = np.fabs(
+ np.array(result1.label_ids) - np.array(expect1["label_ids"]))
+ diff_label_2 = np.fabs(
+ np.array(result2.label_ids) - np.array(expect2["label_ids"]))
+
+ diff_scores_1 = np.fabs(
+ np.array(result1.scores) - np.array(expect1["scores"]))
+ diff_scores_2 = np.fabs(
+ np.array(result2.scores) - np.array(expect2["scores"]))
+
+ # for masks
+ for j in range(np.array(result1.boxes).shape[0]):
+ result_mask_1 = np.array(result1.masks[j].data).reshape(
+ result1.masks[j].shape)
+ diff_mask_1 = np.fabs(result_mask_1 - np.array(expect1["mask_" +
+ str(j)]))
+ nonzero_nums = np.count_nonzero(diff_mask_1)
+ nonzero_count = nonzero_nums / (diff_mask_1.shape[0] *
+ diff_mask_1.shape[1])
+ assert nonzero_count < 1e-02, "The different pixel ratio of mask1 is greater than 1%."
+
+ for k in range(np.array(result2.boxes).shape[0]):
+ result_mask_2 = np.array(result2.masks[k].data).reshape(
+ result2.masks[k].shape)
+ diff_mask_2 = np.fabs(result_mask_2 - np.array(expect2["mask_" +
+ str(k)]))
+ nonzero_nums = np.count_nonzero(diff_mask_2)
+ nonzero_count = nonzero_nums / (diff_mask_2.shape[0] *
+ diff_mask_2.shape[1])
+ assert nonzero_count < 1e-02, "The different pixel ratio of mask2 is greater than 1%."
+
+ assert diff_boxes_1.max(
+ ) < 1e-01, "There's difference in detection boxes 1."
+ assert diff_label_1.max(
+ ) < 1e-02, "There's difference in detection label 1."
+ assert diff_scores_1.max(
+ ) < 1e-03, "There's difference in detection score 1."
+
+ assert diff_boxes_2.max(
+ ) < 1e-01, "There's difference in detection boxes 2."
+ assert diff_label_2.max(
+ ) < 1e-02, "There's difference in detection label 2."
+ assert diff_scores_2.max(
+ ) < 1e-04, "There's difference in detection score 2."
+
+
+def test_detection_yolov5seg_runtime():
+ model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s-seg.onnx"
+ input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg"
+ result_url1 = "https://bj.bcebos.com/paddlehub/fastdeploy/yolov5seg_result1.pkl"
+ fd.download(model_url, "resources")
+ fd.download(input_url1, "resources")
+ fd.download(result_url1, "resources")
+
+ model_file = "resources/yolov5s-seg.onnx"
+
+ preprocessor = fd.vision.detection.YOLOv5SegPreprocessor()
+ postprocessor = fd.vision.detection.YOLOv5SegPostprocessor()
+
+ rc.test_option.set_model_path(model_file, model_format=ModelFormat.ONNX)
+ rc.test_option.use_ort_backend()
+ runtime = fd.Runtime(rc.test_option)
+
+ with open("resources/yolov5seg_result1.pkl", "rb") as f:
+ expect1 = pickle.load(f)
+
+ # compare diff
+ im1 = cv2.imread("./resources/000000014439.jpg")
+
+ for i in range(3):
+ # test runtime
+ input_tensors, ims_info = preprocessor.run([im1.copy()])
+ output_tensors = runtime.infer({"images": input_tensors[0]})
+ results = postprocessor.run(output_tensors, ims_info)
+ result1 = results[0]
+
+ diff_boxes_1 = np.fabs(
+ np.array(result1.boxes) - np.array(expect1["boxes"]))
+ diff_label_1 = np.fabs(
+ np.array(result1.label_ids) - np.array(expect1["label_ids"]))
+ diff_scores_1 = np.fabs(
+ np.array(result1.scores) - np.array(expect1["scores"]))
+
+ # for masks
+ for j in range(np.array(result1.boxes).shape[0]):
+ result_mask_1 = np.array(result1.masks[j].data).reshape(
+ result1.masks[j].shape)
+ diff_mask_1 = np.fabs(result_mask_1 - np.array(expect1["mask_" +
+ str(j)]))
+ nonzero_nums = np.count_nonzero(diff_mask_1)
+ nonzero_count = nonzero_nums / (diff_mask_1.shape[0] *
+ diff_mask_1.shape[1])
+ assert nonzero_count < 1e-02, "The different pixel ratio of mask1 is greater than 1%."
+
+ assert diff_boxes_1.max(
+ ) < 1e-01, "There's difference in detection boxes 1."
+ assert diff_label_1.max(
+ ) < 1e-02, "There's difference in detection label 1."
+ assert diff_scores_1.max(
+ ) < 1e-04, "There's difference in detection score 1."
+
+
+if __name__ == "__main__":
+ test_detection_yolov5seg()
+ test_detection_yolov5seg_runtime()