mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* add onnx_ort_runtime demo * rm in requirements * support batch eval * fixed MattingResults bug * move assignment for DetectionResult * integrated x2paddle * add model convert readme * update readme * re-lint * add processor api * Add MattingResult Free * change valid_cpu_backends order * add ppocr benchmark * mv bs from 64 to 32 * fixed quantize.md * fixed quantize bugs * Add Monitor for benchmark * update mem monitor * Set trt_max_batch_size default 1 * fixed ocr benchmark bug * support yolov5 in serving * Fixed yolov5 serving * Fixed postprocess * update yolov5 to 7.0 * add poros runtime demos * update readme * Support poros abi=1 * rm useless note * deal with comments * support pp_trt for ppseg * fixed symlink problem * Add is_mini_pad and stride for yolov5 * Add yolo series for paddle format * fixed bugs * fixed bug * support yolov5seg * fixed bug * refactor yolov5seg * fixed bug * mv Mask int32 to uint8 * add yolov5seg example * rm log info * fixed code style * add yolov5seg example in python * fixed dtype bug * update note * deal with comments * get sorted index * add yolov5seg test case * Add GPL-3.0 License * add round func * deal with comments * deal with commens Co-authored-by: Jason <jiangjiajun@baidu.com>
106 lines
3.6 KiB
C++
106 lines
3.6 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
|
|
#include <opencv2/opencv.hpp>
|
|
#include <set>
|
|
#include <vector>
|
|
|
|
#include "fastdeploy/core/fd_tensor.h"
|
|
#include "fastdeploy/utils/utils.h"
|
|
#include "fastdeploy/vision/common/result.h"
|
|
|
|
// #include "unsupported/Eigen/CXX11/Tensor"
|
|
#include "fastdeploy/function/reduce.h"
|
|
#include "fastdeploy/function/softmax.h"
|
|
#include "fastdeploy/function/transpose.h"
|
|
#include "fastdeploy/vision/common/processors/mat.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
namespace utils {
|
|
// topk sometimes is a very small value
|
|
// so this implementation is simple but I don't think it will
|
|
// cost too much time
|
|
// Also there may be cause problem since we suppose the minimum value is
|
|
// -99999999
|
|
// Do not use this function on array which topk contains value less than
|
|
// -99999999
|
|
template <typename T>
|
|
std::vector<int32_t> TopKIndices(const T* array, int array_size, int topk) {
|
|
topk = std::min(array_size, topk);
|
|
std::vector<int32_t> res(topk);
|
|
std::set<int32_t> searched;
|
|
for (int32_t i = 0; i < topk; ++i) {
|
|
T min = static_cast<T>(-99999999);
|
|
for (int32_t j = 0; j < array_size; ++j) {
|
|
if (searched.find(j) != searched.end()) {
|
|
continue;
|
|
}
|
|
if (*(array + j) > min) {
|
|
res[i] = j;
|
|
min = *(array + j);
|
|
}
|
|
}
|
|
searched.insert(res[i]);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
void NMS(DetectionResult* output, float iou_threshold = 0.5,
|
|
std::vector<int>* index = nullptr);
|
|
|
|
void NMS(FaceDetectionResult* result, float iou_threshold = 0.5);
|
|
|
|
// MergeSort
|
|
void SortDetectionResult(DetectionResult* output);
|
|
|
|
void SortDetectionResult(FaceDetectionResult* result);
|
|
|
|
// L2 Norm / cosine similarity (for face recognition, ...)
|
|
FASTDEPLOY_DECL std::vector<float> L2Normalize(
|
|
const std::vector<float>& values);
|
|
|
|
FASTDEPLOY_DECL float CosineSimilarity(const std::vector<float>& a,
|
|
const std::vector<float>& b,
|
|
bool normalized = true);
|
|
|
|
bool CropImageByBox(Mat& src_im, Mat* dst_im,
|
|
const std::vector<float>& box, std::vector<float>* center,
|
|
std::vector<float>* scale, const float expandratio = 0.3);
|
|
|
|
/**
|
|
* Function: for keypoint detection model, fine positioning of keypoints in
|
|
* postprocess
|
|
* Parameters:
|
|
* heatmap: model inference results for keypoint detection models
|
|
* dim: shape information of the inference result
|
|
* coords: coordinates after refined positioning
|
|
* px: px = int(coords[ch * 2] + 0.5) , refer to API detection::GetFinalPredictions
|
|
* py: px = int(coords[ch * 2 + 1] + 0.5), refer to API detection::GetFinalPredictions
|
|
* index: index information of heatmap pixels
|
|
* ch: channel
|
|
* Paper reference: DARK postpocessing, Zhang et al.
|
|
* Distribution-Aware Coordinate Representation for Human Pose Estimation (CVPR
|
|
* 2020).
|
|
*/
|
|
void DarkParse(const std::vector<float>& heatmap, const std::vector<int>& dim,
|
|
std::vector<float>* coords, const int px, const int py,
|
|
const int index, const int ch);
|
|
|
|
} // namespace utils
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|