Files
FastDeploy/fastdeploy/vision/detection/contrib/yolov5seg/postprocessor.cc
WJJ1995 aa6931bee9 [Model] Add YOLOv5-seg (#988)
* add onnx_ort_runtime demo

* rm in requirements

* support batch eval

* fixed MattingResults bug

* move assignment for DetectionResult

* integrated x2paddle

* add model convert readme

* update readme

* re-lint

* add processor api

* Add MattingResult Free

* change valid_cpu_backends order

* add ppocr benchmark

* mv bs from 64 to 32

* fixed quantize.md

* fixed quantize bugs

* Add Monitor for benchmark

* update mem monitor

* Set trt_max_batch_size default 1

* fixed ocr benchmark bug

* support yolov5 in serving

* Fixed yolov5 serving

* Fixed postprocess

* update yolov5 to 7.0

* add poros runtime demos

* update readme

* Support poros abi=1

* rm useless note

* deal with comments

* support pp_trt for ppseg

* fixed symlink problem

* Add is_mini_pad and stride for yolov5

* Add yolo series for paddle format

* fixed bugs

* fixed bug

* support yolov5seg

* fixed bug

* refactor yolov5seg

* fixed bug

* mv Mask int32 to uint8

* add yolov5seg example

* rm log info

* fixed code style

* add yolov5seg example in python

* fixed dtype bug

* update note

* deal with comments

* get sorted index

* add yolov5seg test case

* Add GPL-3.0 License

* add round func

* deal with comments

* deal with commens

Co-authored-by: Jason <jiangjiajun@baidu.com>
2023-01-11 15:36:32 +08:00

218 lines
9.2 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/detection/contrib/yolov5seg/postprocessor.h"
#include "fastdeploy/vision/utils/utils.h"
namespace fastdeploy {
namespace vision {
namespace detection {
YOLOv5SegPostprocessor::YOLOv5SegPostprocessor() {
conf_threshold_ = 0.25;
nms_threshold_ = 0.5;
mask_threshold_ = 0.5;
multi_label_ = true;
max_wh_ = 7680.0;
mask_nums_ = 32;
}
bool YOLOv5SegPostprocessor::Run(
const std::vector<FDTensor>& tensors, std::vector<DetectionResult>* results,
const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info) {
int batch = tensors[0].shape[0];
results->resize(batch);
for (size_t bs = 0; bs < batch; ++bs) {
// store mask information
std::vector<std::vector<float>> mask_embeddings;
(*results)[bs].Clear();
if (multi_label_) {
(*results)[bs].Reserve(tensors[0].shape[1] *
(tensors[0].shape[2] - mask_nums_ - 5));
} else {
(*results)[bs].Reserve(tensors[0].shape[1]);
}
if (tensors[0].dtype != FDDataType::FP32) {
FDERROR << "Only support post process with float32 data." << std::endl;
return false;
}
const float* data = reinterpret_cast<const float*>(tensors[0].Data()) +
bs * tensors[0].shape[1] * tensors[0].shape[2];
for (size_t i = 0; i < tensors[0].shape[1]; ++i) {
int s = i * tensors[0].shape[2];
float cls_conf = data[s + 4];
float confidence = data[s + 4];
std::vector<float> mask_embedding(
data + s + tensors[0].shape[2] - mask_nums_,
data + s + tensors[0].shape[2]);
for (size_t k = 0; k < mask_embedding.size(); ++k) {
mask_embedding[k] *= cls_conf;
}
if (multi_label_) {
for (size_t j = 5; j < tensors[0].shape[2] - mask_nums_; ++j) {
confidence = data[s + 4];
const float* class_score = data + s + j;
confidence *= (*class_score);
// filter boxes by conf_threshold
if (confidence <= conf_threshold_) {
continue;
}
int32_t label_id = std::distance(data + s + 5, class_score);
// convert from [x, y, w, h] to [x1, y1, x2, y2]
(*results)[bs].boxes.emplace_back(std::array<float, 4>{
data[s] - data[s + 2] / 2.0f + label_id * max_wh_,
data[s + 1] - data[s + 3] / 2.0f + label_id * max_wh_,
data[s + 0] + data[s + 2] / 2.0f + label_id * max_wh_,
data[s + 1] + data[s + 3] / 2.0f + label_id * max_wh_});
(*results)[bs].label_ids.push_back(label_id);
(*results)[bs].scores.push_back(confidence);
// TODO(wangjunjie06): No zero copy
mask_embeddings.push_back(mask_embedding);
}
} else {
const float* max_class_score = std::max_element(
data + s + 5, data + s + tensors[0].shape[2] - mask_nums_);
confidence *= (*max_class_score);
// filter boxes by conf_threshold
if (confidence <= conf_threshold_) {
continue;
}
int32_t label_id = std::distance(data + s + 5, max_class_score);
// convert from [x, y, w, h] to [x1, y1, x2, y2]
(*results)[bs].boxes.emplace_back(std::array<float, 4>{
data[s] - data[s + 2] / 2.0f + label_id * max_wh_,
data[s + 1] - data[s + 3] / 2.0f + label_id * max_wh_,
data[s + 0] + data[s + 2] / 2.0f + label_id * max_wh_,
data[s + 1] + data[s + 3] / 2.0f + label_id * max_wh_});
(*results)[bs].label_ids.push_back(label_id);
(*results)[bs].scores.push_back(confidence);
mask_embeddings.push_back(mask_embedding);
}
}
if ((*results)[bs].boxes.size() == 0) {
return true;
}
// get box index after nms
std::vector<int> index;
utils::NMS(&((*results)[bs]), nms_threshold_, &index);
// deal with mask
// step1: MatMul, (box_nums * 32) x (32 * 160 * 160) = box_nums * 160 * 160
// step2: Sigmoid
// step3: Resize to original image size
// step4: Select pixels greater than threshold and crop
(*results)[bs].contain_masks = true;
(*results)[bs].masks.resize((*results)[bs].boxes.size());
const float* data_mask =
reinterpret_cast<const float*>(tensors[1].Data()) +
bs * tensors[1].shape[1] * tensors[1].shape[2] * tensors[1].shape[3];
cv::Mat mask_proto =
cv::Mat(tensors[1].shape[1], tensors[1].shape[2] * tensors[1].shape[3],
CV_32FC(1), const_cast<float*>(data_mask));
// vector to cv::Mat for MatMul
// after push_back, Mat of m*n becomes (m + 1) * n
cv::Mat mask_proposals;
for (size_t i = 0; i < index.size(); ++i) {
mask_proposals.push_back(cv::Mat(mask_embeddings[index[i]]).t());
}
cv::Mat matmul_result = (mask_proposals * mask_proto).t();
cv::Mat masks = matmul_result.reshape(
(*results)[bs].boxes.size(), {static_cast<int>(tensors[1].shape[2]),
static_cast<int>(tensors[1].shape[3])});
// split for boxes nums
std::vector<cv::Mat> mask_channels;
cv::split(masks, mask_channels);
// scale the boxes to the origin image shape
auto iter_out = ims_info[bs].find("output_shape");
auto iter_ipt = ims_info[bs].find("input_shape");
FDASSERT(iter_out != ims_info[bs].end() && iter_ipt != ims_info[bs].end(),
"Cannot find input_shape or output_shape from im_info.");
float out_h = iter_out->second[0];
float out_w = iter_out->second[1];
float ipt_h = iter_ipt->second[0];
float ipt_w = iter_ipt->second[1];
float scale = std::min(out_h / ipt_h, out_w / ipt_w);
float pad_h = (out_h - ipt_h * scale) / 2;
float pad_w = (out_w - ipt_w * scale) / 2;
// for mask
float pad_h_mask = (float)pad_h / out_h * tensors[1].shape[2];
float pad_w_mask = (float)pad_w / out_w * tensors[1].shape[3];
for (size_t i = 0; i < (*results)[bs].boxes.size(); ++i) {
int32_t label_id = ((*results)[bs].label_ids)[i];
// clip box
(*results)[bs].boxes[i][0] =
(*results)[bs].boxes[i][0] - max_wh_ * label_id;
(*results)[bs].boxes[i][1] =
(*results)[bs].boxes[i][1] - max_wh_ * label_id;
(*results)[bs].boxes[i][2] =
(*results)[bs].boxes[i][2] - max_wh_ * label_id;
(*results)[bs].boxes[i][3] =
(*results)[bs].boxes[i][3] - max_wh_ * label_id;
(*results)[bs].boxes[i][0] =
std::max(((*results)[bs].boxes[i][0] - pad_w) / scale, 0.0f);
(*results)[bs].boxes[i][1] =
std::max(((*results)[bs].boxes[i][1] - pad_h) / scale, 0.0f);
(*results)[bs].boxes[i][2] =
std::max(((*results)[bs].boxes[i][2] - pad_w) / scale, 0.0f);
(*results)[bs].boxes[i][3] =
std::max(((*results)[bs].boxes[i][3] - pad_h) / scale, 0.0f);
(*results)[bs].boxes[i][0] = std::min((*results)[bs].boxes[i][0], ipt_w);
(*results)[bs].boxes[i][1] = std::min((*results)[bs].boxes[i][1], ipt_h);
(*results)[bs].boxes[i][2] = std::min((*results)[bs].boxes[i][2], ipt_w);
(*results)[bs].boxes[i][3] = std::min((*results)[bs].boxes[i][3], ipt_h);
// deal with mask
cv::Mat dest, mask;
// sigmoid
cv::exp(-mask_channels[i], dest);
dest = 1.0 / (1.0 + dest);
// crop mask for feature map
int x1 = static_cast<int>(pad_w_mask);
int y1 = static_cast<int>(pad_h_mask);
int x2 = static_cast<int>(tensors[1].shape[3] - pad_w_mask);
int y2 = static_cast<int>(tensors[1].shape[2] - pad_h_mask);
cv::Rect roi(x1, y1, x2 - x1, y2 - y1);
dest = dest(roi);
cv::resize(dest, mask, cv::Size(ipt_w, ipt_h), 0, 0, cv::INTER_LINEAR);
// crop mask for source img
int x1_src = static_cast<int>(round((*results)[bs].boxes[i][0]));
int y1_src = static_cast<int>(round((*results)[bs].boxes[i][1]));
int x2_src = static_cast<int>(round((*results)[bs].boxes[i][2]));
int y2_src = static_cast<int>(round((*results)[bs].boxes[i][3]));
cv::Rect roi_src(x1_src, y1_src, x2_src - x1_src, y2_src - y1_src);
mask = mask(roi_src);
mask = mask > mask_threshold_;
// save mask in DetectionResult
int keep_mask_h = y2_src - y1_src;
int keep_mask_w = x2_src - x1_src;
int keep_mask_numel = keep_mask_h * keep_mask_w;
(*results)[bs].masks[i].Resize(keep_mask_numel);
(*results)[bs].masks[i].shape = {keep_mask_h, keep_mask_w};
uint8_t* keep_mask_ptr =
reinterpret_cast<uint8_t*>((*results)[bs].masks[i].Data());
std::memcpy(keep_mask_ptr, reinterpret_cast<uint8_t*>(mask.ptr()),
keep_mask_numel * sizeof(uint8_t));
}
}
return true;
}
} // namespace detection
} // namespace vision
} // namespace fastdeploy