mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* add onnx_ort_runtime demo * rm in requirements * support batch eval * fixed MattingResults bug * move assignment for DetectionResult * integrated x2paddle * add model convert readme * update readme * re-lint * add processor api * Add MattingResult Free * change valid_cpu_backends order * add ppocr benchmark * mv bs from 64 to 32 * fixed quantize.md * fixed quantize bugs * Add Monitor for benchmark * update mem monitor * Set trt_max_batch_size default 1 * fixed ocr benchmark bug * support yolov5 in serving * Fixed yolov5 serving * Fixed postprocess * update yolov5 to 7.0 * add poros runtime demos * update readme * Support poros abi=1 * rm useless note * deal with comments * support pp_trt for ppseg * fixed symlink problem * Add is_mini_pad and stride for yolov5 * Add yolo series for paddle format * fixed bugs * fixed bug * support yolov5seg * fixed bug * refactor yolov5seg * fixed bug * mv Mask int32 to uint8 * add yolov5seg example * rm log info * fixed code style * add yolov5seg example in python * fixed dtype bug * update note * deal with comments * get sorted index * add yolov5seg test case * Add GPL-3.0 License * add round func * deal with comments * deal with commens Co-authored-by: Jason <jiangjiajun@baidu.com>
218 lines
9.2 KiB
C++
Executable File
218 lines
9.2 KiB
C++
Executable File
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision/detection/contrib/yolov5seg/postprocessor.h"
|
|
#include "fastdeploy/vision/utils/utils.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
namespace detection {
|
|
|
|
YOLOv5SegPostprocessor::YOLOv5SegPostprocessor() {
|
|
conf_threshold_ = 0.25;
|
|
nms_threshold_ = 0.5;
|
|
mask_threshold_ = 0.5;
|
|
multi_label_ = true;
|
|
max_wh_ = 7680.0;
|
|
mask_nums_ = 32;
|
|
}
|
|
|
|
bool YOLOv5SegPostprocessor::Run(
|
|
const std::vector<FDTensor>& tensors, std::vector<DetectionResult>* results,
|
|
const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info) {
|
|
int batch = tensors[0].shape[0];
|
|
|
|
results->resize(batch);
|
|
|
|
for (size_t bs = 0; bs < batch; ++bs) {
|
|
// store mask information
|
|
std::vector<std::vector<float>> mask_embeddings;
|
|
(*results)[bs].Clear();
|
|
if (multi_label_) {
|
|
(*results)[bs].Reserve(tensors[0].shape[1] *
|
|
(tensors[0].shape[2] - mask_nums_ - 5));
|
|
} else {
|
|
(*results)[bs].Reserve(tensors[0].shape[1]);
|
|
}
|
|
if (tensors[0].dtype != FDDataType::FP32) {
|
|
FDERROR << "Only support post process with float32 data." << std::endl;
|
|
return false;
|
|
}
|
|
const float* data = reinterpret_cast<const float*>(tensors[0].Data()) +
|
|
bs * tensors[0].shape[1] * tensors[0].shape[2];
|
|
for (size_t i = 0; i < tensors[0].shape[1]; ++i) {
|
|
int s = i * tensors[0].shape[2];
|
|
float cls_conf = data[s + 4];
|
|
float confidence = data[s + 4];
|
|
std::vector<float> mask_embedding(
|
|
data + s + tensors[0].shape[2] - mask_nums_,
|
|
data + s + tensors[0].shape[2]);
|
|
for (size_t k = 0; k < mask_embedding.size(); ++k) {
|
|
mask_embedding[k] *= cls_conf;
|
|
}
|
|
if (multi_label_) {
|
|
for (size_t j = 5; j < tensors[0].shape[2] - mask_nums_; ++j) {
|
|
confidence = data[s + 4];
|
|
const float* class_score = data + s + j;
|
|
confidence *= (*class_score);
|
|
// filter boxes by conf_threshold
|
|
if (confidence <= conf_threshold_) {
|
|
continue;
|
|
}
|
|
int32_t label_id = std::distance(data + s + 5, class_score);
|
|
|
|
// convert from [x, y, w, h] to [x1, y1, x2, y2]
|
|
(*results)[bs].boxes.emplace_back(std::array<float, 4>{
|
|
data[s] - data[s + 2] / 2.0f + label_id * max_wh_,
|
|
data[s + 1] - data[s + 3] / 2.0f + label_id * max_wh_,
|
|
data[s + 0] + data[s + 2] / 2.0f + label_id * max_wh_,
|
|
data[s + 1] + data[s + 3] / 2.0f + label_id * max_wh_});
|
|
(*results)[bs].label_ids.push_back(label_id);
|
|
(*results)[bs].scores.push_back(confidence);
|
|
// TODO(wangjunjie06): No zero copy
|
|
mask_embeddings.push_back(mask_embedding);
|
|
}
|
|
} else {
|
|
const float* max_class_score = std::max_element(
|
|
data + s + 5, data + s + tensors[0].shape[2] - mask_nums_);
|
|
confidence *= (*max_class_score);
|
|
// filter boxes by conf_threshold
|
|
if (confidence <= conf_threshold_) {
|
|
continue;
|
|
}
|
|
int32_t label_id = std::distance(data + s + 5, max_class_score);
|
|
// convert from [x, y, w, h] to [x1, y1, x2, y2]
|
|
(*results)[bs].boxes.emplace_back(std::array<float, 4>{
|
|
data[s] - data[s + 2] / 2.0f + label_id * max_wh_,
|
|
data[s + 1] - data[s + 3] / 2.0f + label_id * max_wh_,
|
|
data[s + 0] + data[s + 2] / 2.0f + label_id * max_wh_,
|
|
data[s + 1] + data[s + 3] / 2.0f + label_id * max_wh_});
|
|
(*results)[bs].label_ids.push_back(label_id);
|
|
(*results)[bs].scores.push_back(confidence);
|
|
mask_embeddings.push_back(mask_embedding);
|
|
}
|
|
}
|
|
|
|
if ((*results)[bs].boxes.size() == 0) {
|
|
return true;
|
|
}
|
|
// get box index after nms
|
|
std::vector<int> index;
|
|
utils::NMS(&((*results)[bs]), nms_threshold_, &index);
|
|
|
|
// deal with mask
|
|
// step1: MatMul, (box_nums * 32) x (32 * 160 * 160) = box_nums * 160 * 160
|
|
// step2: Sigmoid
|
|
// step3: Resize to original image size
|
|
// step4: Select pixels greater than threshold and crop
|
|
(*results)[bs].contain_masks = true;
|
|
(*results)[bs].masks.resize((*results)[bs].boxes.size());
|
|
const float* data_mask =
|
|
reinterpret_cast<const float*>(tensors[1].Data()) +
|
|
bs * tensors[1].shape[1] * tensors[1].shape[2] * tensors[1].shape[3];
|
|
cv::Mat mask_proto =
|
|
cv::Mat(tensors[1].shape[1], tensors[1].shape[2] * tensors[1].shape[3],
|
|
CV_32FC(1), const_cast<float*>(data_mask));
|
|
// vector to cv::Mat for MatMul
|
|
// after push_back, Mat of m*n becomes (m + 1) * n
|
|
cv::Mat mask_proposals;
|
|
for (size_t i = 0; i < index.size(); ++i) {
|
|
mask_proposals.push_back(cv::Mat(mask_embeddings[index[i]]).t());
|
|
}
|
|
cv::Mat matmul_result = (mask_proposals * mask_proto).t();
|
|
cv::Mat masks = matmul_result.reshape(
|
|
(*results)[bs].boxes.size(), {static_cast<int>(tensors[1].shape[2]),
|
|
static_cast<int>(tensors[1].shape[3])});
|
|
// split for boxes nums
|
|
std::vector<cv::Mat> mask_channels;
|
|
cv::split(masks, mask_channels);
|
|
|
|
// scale the boxes to the origin image shape
|
|
auto iter_out = ims_info[bs].find("output_shape");
|
|
auto iter_ipt = ims_info[bs].find("input_shape");
|
|
FDASSERT(iter_out != ims_info[bs].end() && iter_ipt != ims_info[bs].end(),
|
|
"Cannot find input_shape or output_shape from im_info.");
|
|
float out_h = iter_out->second[0];
|
|
float out_w = iter_out->second[1];
|
|
float ipt_h = iter_ipt->second[0];
|
|
float ipt_w = iter_ipt->second[1];
|
|
float scale = std::min(out_h / ipt_h, out_w / ipt_w);
|
|
float pad_h = (out_h - ipt_h * scale) / 2;
|
|
float pad_w = (out_w - ipt_w * scale) / 2;
|
|
// for mask
|
|
float pad_h_mask = (float)pad_h / out_h * tensors[1].shape[2];
|
|
float pad_w_mask = (float)pad_w / out_w * tensors[1].shape[3];
|
|
for (size_t i = 0; i < (*results)[bs].boxes.size(); ++i) {
|
|
int32_t label_id = ((*results)[bs].label_ids)[i];
|
|
// clip box
|
|
(*results)[bs].boxes[i][0] =
|
|
(*results)[bs].boxes[i][0] - max_wh_ * label_id;
|
|
(*results)[bs].boxes[i][1] =
|
|
(*results)[bs].boxes[i][1] - max_wh_ * label_id;
|
|
(*results)[bs].boxes[i][2] =
|
|
(*results)[bs].boxes[i][2] - max_wh_ * label_id;
|
|
(*results)[bs].boxes[i][3] =
|
|
(*results)[bs].boxes[i][3] - max_wh_ * label_id;
|
|
(*results)[bs].boxes[i][0] =
|
|
std::max(((*results)[bs].boxes[i][0] - pad_w) / scale, 0.0f);
|
|
(*results)[bs].boxes[i][1] =
|
|
std::max(((*results)[bs].boxes[i][1] - pad_h) / scale, 0.0f);
|
|
(*results)[bs].boxes[i][2] =
|
|
std::max(((*results)[bs].boxes[i][2] - pad_w) / scale, 0.0f);
|
|
(*results)[bs].boxes[i][3] =
|
|
std::max(((*results)[bs].boxes[i][3] - pad_h) / scale, 0.0f);
|
|
(*results)[bs].boxes[i][0] = std::min((*results)[bs].boxes[i][0], ipt_w);
|
|
(*results)[bs].boxes[i][1] = std::min((*results)[bs].boxes[i][1], ipt_h);
|
|
(*results)[bs].boxes[i][2] = std::min((*results)[bs].boxes[i][2], ipt_w);
|
|
(*results)[bs].boxes[i][3] = std::min((*results)[bs].boxes[i][3], ipt_h);
|
|
// deal with mask
|
|
cv::Mat dest, mask;
|
|
// sigmoid
|
|
cv::exp(-mask_channels[i], dest);
|
|
dest = 1.0 / (1.0 + dest);
|
|
// crop mask for feature map
|
|
int x1 = static_cast<int>(pad_w_mask);
|
|
int y1 = static_cast<int>(pad_h_mask);
|
|
int x2 = static_cast<int>(tensors[1].shape[3] - pad_w_mask);
|
|
int y2 = static_cast<int>(tensors[1].shape[2] - pad_h_mask);
|
|
cv::Rect roi(x1, y1, x2 - x1, y2 - y1);
|
|
dest = dest(roi);
|
|
cv::resize(dest, mask, cv::Size(ipt_w, ipt_h), 0, 0, cv::INTER_LINEAR);
|
|
// crop mask for source img
|
|
int x1_src = static_cast<int>(round((*results)[bs].boxes[i][0]));
|
|
int y1_src = static_cast<int>(round((*results)[bs].boxes[i][1]));
|
|
int x2_src = static_cast<int>(round((*results)[bs].boxes[i][2]));
|
|
int y2_src = static_cast<int>(round((*results)[bs].boxes[i][3]));
|
|
cv::Rect roi_src(x1_src, y1_src, x2_src - x1_src, y2_src - y1_src);
|
|
mask = mask(roi_src);
|
|
mask = mask > mask_threshold_;
|
|
// save mask in DetectionResult
|
|
int keep_mask_h = y2_src - y1_src;
|
|
int keep_mask_w = x2_src - x1_src;
|
|
int keep_mask_numel = keep_mask_h * keep_mask_w;
|
|
(*results)[bs].masks[i].Resize(keep_mask_numel);
|
|
(*results)[bs].masks[i].shape = {keep_mask_h, keep_mask_w};
|
|
uint8_t* keep_mask_ptr =
|
|
reinterpret_cast<uint8_t*>((*results)[bs].masks[i].Data());
|
|
std::memcpy(keep_mask_ptr, reinterpret_cast<uint8_t*>(mask.ptr()),
|
|
keep_mask_numel * sizeof(uint8_t));
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // namespace detection
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|