mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* add onnx_ort_runtime demo * rm in requirements * support batch eval * fixed MattingResults bug * move assignment for DetectionResult * integrated x2paddle * add model convert readme * update readme * re-lint * add processor api * Add MattingResult Free * change valid_cpu_backends order * add ppocr benchmark * mv bs from 64 to 32 * fixed quantize.md * fixed quantize bugs * Add Monitor for benchmark * update mem monitor * Set trt_max_batch_size default 1 * fixed ocr benchmark bug * support yolov5 in serving * Fixed yolov5 serving * Fixed postprocess * update yolov5 to 7.0 * add poros runtime demos * update readme * Support poros abi=1 * rm useless note * deal with comments * support pp_trt for ppseg * fixed symlink problem * Add is_mini_pad and stride for yolov5 * Add yolo series for paddle format * fixed bugs * fixed bug * support yolov5seg * fixed bug * refactor yolov5seg * fixed bug * mv Mask int32 to uint8 * add yolov5seg example * rm log info * fixed code style * add yolov5seg example in python * fixed dtype bug * update note * deal with comments * get sorted index * add yolov5seg test case * Add GPL-3.0 License * add round func * deal with comments * deal with commens Co-authored-by: Jason <jiangjiajun@baidu.com>
91 lines
4.9 KiB
C++
Executable File
91 lines
4.9 KiB
C++
Executable File
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/pybind/main.h"
|
|
|
|
namespace fastdeploy {
|
|
void BindYOLOv5Seg(pybind11::module& m) {
|
|
pybind11::class_<vision::detection::YOLOv5SegPreprocessor>(
|
|
m, "YOLOv5SegPreprocessor")
|
|
.def(pybind11::init<>())
|
|
.def("run", [](vision::detection::YOLOv5SegPreprocessor& self, std::vector<pybind11::array>& im_list) {
|
|
std::vector<vision::FDMat> images;
|
|
for (size_t i = 0; i < im_list.size(); ++i) {
|
|
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
|
|
}
|
|
std::vector<FDTensor> outputs;
|
|
std::vector<std::map<std::string, std::array<float, 2>>> ims_info;
|
|
if (!self.Run(&images, &outputs, &ims_info)) {
|
|
throw std::runtime_error("Failed to preprocess the input data in PaddleClasPreprocessor.");
|
|
}
|
|
for (size_t i = 0; i < outputs.size(); ++i) {
|
|
outputs[i].StopSharing();
|
|
}
|
|
return make_pair(outputs, ims_info);
|
|
})
|
|
.def_property("size", &vision::detection::YOLOv5SegPreprocessor::GetSize, &vision::detection::YOLOv5SegPreprocessor::SetSize)
|
|
.def_property("padding_value", &vision::detection::YOLOv5SegPreprocessor::GetPaddingValue, &vision::detection::YOLOv5SegPreprocessor::SetPaddingValue)
|
|
.def_property("is_scale_up", &vision::detection::YOLOv5SegPreprocessor::GetScaleUp, &vision::detection::YOLOv5SegPreprocessor::SetScaleUp)
|
|
.def_property("is_mini_pad", &vision::detection::YOLOv5SegPreprocessor::GetMiniPad, &vision::detection::YOLOv5SegPreprocessor::SetMiniPad)
|
|
.def_property("stride", &vision::detection::YOLOv5SegPreprocessor::GetStride, &vision::detection::YOLOv5SegPreprocessor::SetStride);
|
|
|
|
pybind11::class_<vision::detection::YOLOv5SegPostprocessor>(
|
|
m, "YOLOv5SegPostprocessor")
|
|
.def(pybind11::init<>())
|
|
.def("run", [](vision::detection::YOLOv5SegPostprocessor& self, std::vector<FDTensor>& inputs,
|
|
const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info) {
|
|
std::vector<vision::DetectionResult> results;
|
|
if (!self.Run(inputs, &results, ims_info)) {
|
|
throw std::runtime_error("Failed to postprocess the runtime result in YOLOv5SegPostprocessor.");
|
|
}
|
|
return results;
|
|
})
|
|
.def("run", [](vision::detection::YOLOv5SegPostprocessor& self, std::vector<pybind11::array>& input_array,
|
|
const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info) {
|
|
std::vector<vision::DetectionResult> results;
|
|
std::vector<FDTensor> inputs;
|
|
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
|
|
if (!self.Run(inputs, &results, ims_info)) {
|
|
throw std::runtime_error("Failed to postprocess the runtime result in YOLOv5SegPostprocessor.");
|
|
}
|
|
return results;
|
|
})
|
|
.def_property("conf_threshold", &vision::detection::YOLOv5SegPostprocessor::GetConfThreshold, &vision::detection::YOLOv5SegPostprocessor::SetConfThreshold)
|
|
.def_property("nms_threshold", &vision::detection::YOLOv5SegPostprocessor::GetNMSThreshold, &vision::detection::YOLOv5SegPostprocessor::SetNMSThreshold)
|
|
.def_property("multi_label", &vision::detection::YOLOv5SegPostprocessor::GetMultiLabel, &vision::detection::YOLOv5SegPostprocessor::SetMultiLabel);
|
|
|
|
pybind11::class_<vision::detection::YOLOv5Seg, FastDeployModel>(m, "YOLOv5Seg")
|
|
.def(pybind11::init<std::string, std::string, RuntimeOption,
|
|
ModelFormat>())
|
|
.def("predict",
|
|
[](vision::detection::YOLOv5Seg& self, pybind11::array& data) {
|
|
auto mat = PyArrayToCvMat(data);
|
|
vision::DetectionResult res;
|
|
self.Predict(mat, &res);
|
|
return res;
|
|
})
|
|
.def("batch_predict", [](vision::detection::YOLOv5Seg& self, std::vector<pybind11::array>& data) {
|
|
std::vector<cv::Mat> images;
|
|
for (size_t i = 0; i < data.size(); ++i) {
|
|
images.push_back(PyArrayToCvMat(data[i]));
|
|
}
|
|
std::vector<vision::DetectionResult> results;
|
|
self.BatchPredict(images, &results);
|
|
return results;
|
|
})
|
|
.def_property_readonly("preprocessor", &vision::detection::YOLOv5Seg::GetPreprocessor)
|
|
.def_property_readonly("postprocessor", &vision::detection::YOLOv5Seg::GetPostprocessor);
|
|
}
|
|
} // namespace fastdeploy
|