mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* add onnx_ort_runtime demo * rm in requirements * support batch eval * fixed MattingResults bug * move assignment for DetectionResult * integrated x2paddle * add model convert readme * update readme * re-lint * add processor api * Add MattingResult Free * change valid_cpu_backends order * add ppocr benchmark * mv bs from 64 to 32 * fixed quantize.md * fixed quantize bugs * Add Monitor for benchmark * update mem monitor * Set trt_max_batch_size default 1 * fixed ocr benchmark bug * support yolov5 in serving * Fixed yolov5 serving * Fixed postprocess * update yolov5 to 7.0 * add poros runtime demos * update readme * Support poros abi=1 * rm useless note * deal with comments * support pp_trt for ppseg * fixed symlink problem * Add is_mini_pad and stride for yolov5 * Add yolo series for paddle format * fixed bugs * fixed bug * support yolov5seg * fixed bug * refactor yolov5seg * fixed bug * mv Mask int32 to uint8 * add yolov5seg example * rm log info * fixed code style * add yolov5seg example in python * fixed dtype bug * update note * deal with comments * get sorted index * add yolov5seg test case * Add GPL-3.0 License * add round func * deal with comments * deal with commens Co-authored-by: Jason <jiangjiajun@baidu.com>
114 lines
3.7 KiB
C++
114 lines
3.7 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
#include "fastdeploy/vision/common/processors/transform.h"
|
|
#include "fastdeploy/vision/common/result.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
|
|
namespace detection {
|
|
/*! @brief Preprocessor object for YOLOv5Seg serials model.
|
|
*/
|
|
class FASTDEPLOY_DECL YOLOv5SegPreprocessor {
|
|
public:
|
|
/** \brief Create a preprocessor instance for YOLOv5Seg serials model
|
|
*/
|
|
YOLOv5SegPreprocessor();
|
|
|
|
/** \brief Process the input image and prepare input tensors for runtime
|
|
*
|
|
* \param[in] images The input image data list, all the elements are returned by cv::imread()
|
|
* \param[in] outputs The output tensors which will feed in runtime
|
|
* \param[in] ims_info The shape info list, record input_shape and output_shape
|
|
* \return true if the preprocess successed, otherwise false
|
|
*/
|
|
bool Run(std::vector<FDMat>* images, std::vector<FDTensor>* outputs,
|
|
std::vector<std::map<std::string, std::array<float, 2>>>* ims_info);
|
|
|
|
/// Set target size, tuple of (width, height), default size = {640, 640}
|
|
void SetSize(const std::vector<int>& size) { size_ = size; }
|
|
|
|
/// Get target size, tuple of (width, height), default size = {640, 640}
|
|
std::vector<int> GetSize() const { return size_; }
|
|
|
|
/// Set padding value, size should be the same as channels
|
|
void SetPaddingValue(const std::vector<float>& padding_value) {
|
|
padding_value_ = padding_value;
|
|
}
|
|
|
|
/// Get padding value, size should be the same as channels
|
|
std::vector<float> GetPaddingValue() const { return padding_value_; }
|
|
|
|
/// Set is_scale_up, if is_scale_up is false, the input image only
|
|
/// can be zoom out, the maximum resize scale cannot exceed 1.0, default true
|
|
void SetScaleUp(bool is_scale_up) {
|
|
is_scale_up_ = is_scale_up;
|
|
}
|
|
|
|
/// Get is_scale_up, default true
|
|
bool GetScaleUp() const { return is_scale_up_; }
|
|
|
|
/// Set is_mini_pad, pad to the minimum rectange
|
|
/// which height and width is times of stride
|
|
void SetMiniPad(bool is_mini_pad) {
|
|
is_mini_pad_ = is_mini_pad;
|
|
}
|
|
|
|
/// Get is_mini_pad, default false
|
|
bool GetMiniPad() const { return is_mini_pad_; }
|
|
|
|
/// Set padding stride, only for mini_pad mode
|
|
void SetStride(int stride) {
|
|
stride_ = stride;
|
|
}
|
|
|
|
/// Get padding stride, default 32
|
|
bool GetStride() const { return stride_; }
|
|
|
|
protected:
|
|
bool Preprocess(FDMat* mat, FDTensor* output,
|
|
std::map<std::string, std::array<float, 2>>* im_info);
|
|
|
|
void LetterBox(FDMat* mat);
|
|
|
|
// target size, tuple of (width, height), default size = {640, 640}
|
|
std::vector<int> size_;
|
|
|
|
// padding value, size should be the same as channels
|
|
std::vector<float> padding_value_;
|
|
|
|
// only pad to the minimum rectange which height and width is times of stride
|
|
bool is_mini_pad_;
|
|
|
|
// while is_mini_pad = false and is_no_pad = true,
|
|
// will resize the image to the set size
|
|
bool is_no_pad_;
|
|
|
|
// if is_scale_up is false, the input image only can be zoom out,
|
|
// the maximum resize scale cannot exceed 1.0
|
|
bool is_scale_up_;
|
|
|
|
// padding stride, for is_mini_pad
|
|
int stride_;
|
|
|
|
// for offseting the boxes by classes when using NMS
|
|
float max_wh_;
|
|
};
|
|
|
|
} // namespace detection
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|