Files
FastDeploy/fastdeploy/vision/detection/contrib/yolov5seg/preprocessor.h
WJJ1995 aa6931bee9 [Model] Add YOLOv5-seg (#988)
* add onnx_ort_runtime demo

* rm in requirements

* support batch eval

* fixed MattingResults bug

* move assignment for DetectionResult

* integrated x2paddle

* add model convert readme

* update readme

* re-lint

* add processor api

* Add MattingResult Free

* change valid_cpu_backends order

* add ppocr benchmark

* mv bs from 64 to 32

* fixed quantize.md

* fixed quantize bugs

* Add Monitor for benchmark

* update mem monitor

* Set trt_max_batch_size default 1

* fixed ocr benchmark bug

* support yolov5 in serving

* Fixed yolov5 serving

* Fixed postprocess

* update yolov5 to 7.0

* add poros runtime demos

* update readme

* Support poros abi=1

* rm useless note

* deal with comments

* support pp_trt for ppseg

* fixed symlink problem

* Add is_mini_pad and stride for yolov5

* Add yolo series for paddle format

* fixed bugs

* fixed bug

* support yolov5seg

* fixed bug

* refactor yolov5seg

* fixed bug

* mv Mask int32 to uint8

* add yolov5seg example

* rm log info

* fixed code style

* add yolov5seg example in python

* fixed dtype bug

* update note

* deal with comments

* get sorted index

* add yolov5seg test case

* Add GPL-3.0 License

* add round func

* deal with comments

* deal with commens

Co-authored-by: Jason <jiangjiajun@baidu.com>
2023-01-11 15:36:32 +08:00

114 lines
3.7 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
namespace fastdeploy {
namespace vision {
namespace detection {
/*! @brief Preprocessor object for YOLOv5Seg serials model.
*/
class FASTDEPLOY_DECL YOLOv5SegPreprocessor {
public:
/** \brief Create a preprocessor instance for YOLOv5Seg serials model
*/
YOLOv5SegPreprocessor();
/** \brief Process the input image and prepare input tensors for runtime
*
* \param[in] images The input image data list, all the elements are returned by cv::imread()
* \param[in] outputs The output tensors which will feed in runtime
* \param[in] ims_info The shape info list, record input_shape and output_shape
* \return true if the preprocess successed, otherwise false
*/
bool Run(std::vector<FDMat>* images, std::vector<FDTensor>* outputs,
std::vector<std::map<std::string, std::array<float, 2>>>* ims_info);
/// Set target size, tuple of (width, height), default size = {640, 640}
void SetSize(const std::vector<int>& size) { size_ = size; }
/// Get target size, tuple of (width, height), default size = {640, 640}
std::vector<int> GetSize() const { return size_; }
/// Set padding value, size should be the same as channels
void SetPaddingValue(const std::vector<float>& padding_value) {
padding_value_ = padding_value;
}
/// Get padding value, size should be the same as channels
std::vector<float> GetPaddingValue() const { return padding_value_; }
/// Set is_scale_up, if is_scale_up is false, the input image only
/// can be zoom out, the maximum resize scale cannot exceed 1.0, default true
void SetScaleUp(bool is_scale_up) {
is_scale_up_ = is_scale_up;
}
/// Get is_scale_up, default true
bool GetScaleUp() const { return is_scale_up_; }
/// Set is_mini_pad, pad to the minimum rectange
/// which height and width is times of stride
void SetMiniPad(bool is_mini_pad) {
is_mini_pad_ = is_mini_pad;
}
/// Get is_mini_pad, default false
bool GetMiniPad() const { return is_mini_pad_; }
/// Set padding stride, only for mini_pad mode
void SetStride(int stride) {
stride_ = stride;
}
/// Get padding stride, default 32
bool GetStride() const { return stride_; }
protected:
bool Preprocess(FDMat* mat, FDTensor* output,
std::map<std::string, std::array<float, 2>>* im_info);
void LetterBox(FDMat* mat);
// target size, tuple of (width, height), default size = {640, 640}
std::vector<int> size_;
// padding value, size should be the same as channels
std::vector<float> padding_value_;
// only pad to the minimum rectange which height and width is times of stride
bool is_mini_pad_;
// while is_mini_pad = false and is_no_pad = true,
// will resize the image to the set size
bool is_no_pad_;
// if is_scale_up is false, the input image only can be zoom out,
// the maximum resize scale cannot exceed 1.0
bool is_scale_up_;
// padding stride, for is_mini_pad
int stride_;
// for offseting the boxes by classes when using NMS
float max_wh_;
};
} // namespace detection
} // namespace vision
} // namespace fastdeploy