mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* 第一次提交 * 补充一处漏翻译 * deleted: docs/en/quantize.md * Update one translation * Update en version * Update one translation in code * Standardize one writing * Standardize one writing * Update some en version * Fix a grammer problem * Update en version for api/vision result * Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop * Checkout the link in README in vision_results/ to the en documents * Modify a title * Add link to serving/docs/ * Finish translation of demo.md * Update english version of serving/docs/ * Update title of readme * Update some links * Modify a title * Update some links * Update en version of java android README * Modify some titles * Modify some titles * Modify some titles * modify article to document * update some english version of documents in examples * Add english version of documents in examples/visions * Sync to current branch * Add english version of documents in examples * Add english version of documents in examples * Add english version of documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples
2.7 KiB
2.7 KiB
English | 简体中文
PP-MSVSR Python Deployment Example
Before deployment, two steps require confirmation
-
- Software and hardware should meet the requirements. Please refer to FastDeploy Environment Requirements
-
- Install FastDeploy Python whl package. Refer to FastDeploy Python Installation
This directory provides examples that infer.py
fast finishes the deployment of PP-MSVSR on CPU/GPU and GPU accelerated by TensorRT. The script is as follows
# Download the deployment example code
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/sr/ppmsvsr/python
# Download VSR model files and test videos
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP-MSVSR_reds_x4.tar
tar -xvf PP-MSVSR_reds_x4.tar
wget https://bj.bcebos.com/paddlehub/fastdeploy/vsr_src.mp4
# CPU inference
python infer.py --model PP-MSVSR_reds_x4 --video vsr_src.mp4 --frame_num 2 --device cpu
# GPU inference
python infer.py --model PP-MSVSR_reds_x4 --video vsr_src.mp4 --frame_num 2 --device gpu
# TensorRT inference on GPU (Attention: It is somewhat time-consuming for the operation of model serialization when running TensorRT inference for the first time. Please be patient.)
python infer.py --model PP-MSVSR_reds_x4 --video vsr_src.mp4 --frame_num 2 --device gpu --use_trt True
VSR Python Interface
fd.vision.sr.PPMSVSR(model_file, params_file, runtime_option=None, model_format=ModelFormat.PADDLE)
PP-MSVSR model loading and initialization, among which model_file and params_file are the Paddle inference files exported from the training model. Refer to Model Export for more information
Parameter
- model_file(str): Model file path
- params_file(str): Parameter file path
- runtime_option(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
- model_format(ModelFormat): Model format. Paddle format by default
predict function
PPMSVSR.predict(frames)
Model prediction interface. Input images and output detection results.
Parameter
- frames(list[np.ndarray]): Input data in HWC or BGR format. Frames are the video frame sequences
Return list[np.ndarray] is the video frame sequence after SR