English | [简体中文](README_CN.md) # PP-MSVSR Python Deployment Example Before deployment, two steps require confirmation - 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md) - 2. Install FastDeploy Python whl package. Refer to [FastDeploy Python Installation](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md) This directory provides examples that `infer.py` fast finishes the deployment of PP-MSVSR on CPU/GPU and GPU accelerated by TensorRT. The script is as follows ```bash # Download the deployment example code git clone https://github.com/PaddlePaddle/FastDeploy.git cd FastDeploy/examples/vision/sr/ppmsvsr/python # Download VSR model files and test videos wget https://bj.bcebos.com/paddlehub/fastdeploy/PP-MSVSR_reds_x4.tar tar -xvf PP-MSVSR_reds_x4.tar wget https://bj.bcebos.com/paddlehub/fastdeploy/vsr_src.mp4 # CPU inference python infer.py --model PP-MSVSR_reds_x4 --video vsr_src.mp4 --frame_num 2 --device cpu # GPU inference python infer.py --model PP-MSVSR_reds_x4 --video vsr_src.mp4 --frame_num 2 --device gpu # TensorRT inference on GPU (Attention: It is somewhat time-consuming for the operation of model serialization when running TensorRT inference for the first time. Please be patient.) python infer.py --model PP-MSVSR_reds_x4 --video vsr_src.mp4 --frame_num 2 --device gpu --use_trt True ``` ## VSR Python Interface ```python fd.vision.sr.PPMSVSR(model_file, params_file, runtime_option=None, model_format=ModelFormat.PADDLE) ``` PP-MSVSR model loading and initialization, among which model_file and params_file are the Paddle inference files exported from the training model. Refer to [Model Export](https://github.com/PaddlePaddle/PaddleGAN/blob/develop/docs/zh_CN/tutorials/video_super_resolution.md) for more information **Parameter** > * **model_file**(str): Model file path > * **params_file**(str): Parameter file path > * **runtime_option**(RuntimeOption): Backend inference configuration. None by default, which is the default configuration > * **model_format**(ModelFormat): Model format. Paddle format by default ### predict function > ```python > PPMSVSR.predict(frames) > ``` > > Model prediction interface. Input images and output detection results. > > **Parameter** > > > * **frames**(list[np.ndarray]): Input data in HWC or BGR format. Frames are the video frame sequences > **Return** list[np.ndarray] is the video frame sequence after SR ## Other Documents - [PP-MSVSR Model Description](..) - [PP-MSVSR C++ Deployment](../cpp) - [How to switch the model inference backend engine](../../../../../docs/en/faq/how_to_change_backend.md)