Files
FastDeploy/examples/vision/sr/ppmsvsr/python/README.md
charl-u cbf88a46fa [Doc]Update English version of some documents (#1083)
* 第一次提交

* 补充一处漏翻译

* deleted:    docs/en/quantize.md

* Update one translation

* Update en version

* Update one translation in code

* Standardize one writing

* Standardize one writing

* Update some en version

* Fix a grammer problem

* Update en version for api/vision result

* Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop

* Checkout the link in README in vision_results/ to the en documents

* Modify a title

* Add link to serving/docs/

* Finish translation of demo.md

* Update english version of serving/docs/

* Update title of readme

* Update some links

* Modify a title

* Update some links

* Update en version of java android README

* Modify some titles

* Modify some titles

* Modify some titles

* modify article to document

* update some english version of documents in examples

* Add english version of documents in examples/visions

* Sync to current branch

* Add english version of documents in examples

* Add english version of documents in examples

* Add english version of documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples
2023-01-09 10:08:19 +08:00

62 lines
2.7 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

English | [简体中文](README_CN.md)
# PP-MSVSR Python Deployment Example
Before deployment, two steps require confirmation
- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
- 2. Install FastDeploy Python whl package. Refer to [FastDeploy Python Installation](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
This directory provides examples that `infer.py` fast finishes the deployment of PP-MSVSR on CPU/GPU and GPU accelerated by TensorRT. The script is as follows
```bash
# Download the deployment example code
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/sr/ppmsvsr/python
# Download VSR model files and test videos
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP-MSVSR_reds_x4.tar
tar -xvf PP-MSVSR_reds_x4.tar
wget https://bj.bcebos.com/paddlehub/fastdeploy/vsr_src.mp4
# CPU inference
python infer.py --model PP-MSVSR_reds_x4 --video vsr_src.mp4 --frame_num 2 --device cpu
# GPU inference
python infer.py --model PP-MSVSR_reds_x4 --video vsr_src.mp4 --frame_num 2 --device gpu
# TensorRT inference on GPU Attention: It is somewhat time-consuming for the operation of model serialization when running TensorRT inference for the first time. Please be patient.
python infer.py --model PP-MSVSR_reds_x4 --video vsr_src.mp4 --frame_num 2 --device gpu --use_trt True
```
## VSR Python Interface
```python
fd.vision.sr.PPMSVSR(model_file, params_file, runtime_option=None, model_format=ModelFormat.PADDLE)
```
PP-MSVSR model loading and initialization, among which model_file and params_file are the Paddle inference files exported from the training model. Refer to [Model Export](https://github.com/PaddlePaddle/PaddleGAN/blob/develop/docs/zh_CN/tutorials/video_super_resolution.md) for more information
**Parameter**
> * **model_file**(str): Model file path
> * **params_file**(str): Parameter file path
> * **runtime_option**(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
> * **model_format**(ModelFormat): Model format. Paddle format by default
### predict function
> ```python
> PPMSVSR.predict(frames)
> ```
>
> Model prediction interface. Input images and output detection results.
>
> **Parameter**
>
> > * **frames**(list[np.ndarray]): Input data in HWC or BGR format. Frames are the video frame sequences
> **Return** list[np.ndarray] is the video frame sequence after SR
## Other Documents
- [PP-MSVSR Model Description](..)
- [PP-MSVSR C++ Deployment](../cpp)
- [How to switch the model inference backend engine](../../../../../docs/en/faq/how_to_change_backend.md)