Files
FastDeploy/examples/vision/sr/ppmsvsr/cpp
charl-u cbf88a46fa [Doc]Update English version of some documents (#1083)
* 第一次提交

* 补充一处漏翻译

* deleted:    docs/en/quantize.md

* Update one translation

* Update en version

* Update one translation in code

* Standardize one writing

* Standardize one writing

* Update some en version

* Fix a grammer problem

* Update en version for api/vision result

* Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop

* Checkout the link in README in vision_results/ to the en documents

* Modify a title

* Add link to serving/docs/

* Finish translation of demo.md

* Update english version of serving/docs/

* Update title of readme

* Update some links

* Modify a title

* Update some links

* Update en version of java android README

* Modify some titles

* Modify some titles

* Modify some titles

* modify article to document

* update some english version of documents in examples

* Add english version of documents in examples/visions

* Sync to current branch

* Add english version of documents in examples

* Add english version of documents in examples

* Add english version of documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples
2023-01-09 10:08:19 +08:00
..
2022-11-25 18:31:22 +08:00

English | 简体中文

VSR C++ Deployment Example

This directory provides examples that infer.cc fast finishes the deployment of PP-MSVSR on CPU/GPU and GPU accelerated by TensorRT.

Before deployment, two steps require confirmation

Taking the PP-MSVSR inference on Linux as an example, the compilation test can be completed by executing the following command in this directory. FastDeploy version 0.7.0 or above (x.x.x>=0.7.0) is required to support this model.

mkdir build
cd build
# Download the FastDeploy precompiled library. Users can choose your appropriate version in the `FastDeploy Precompiled Library` mentioned above 
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j

# Download PP-MSVSR model files and test videos
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP-MSVSR_reds_x4.tar
tar -xvf PP-MSVSR_reds_x4.tar
wget https://bj.bcebos.com/paddlehub/fastdeploy/vsr_src.mp4


# CPU inference
./infer_demo PP-MSVSR_reds_x4 vsr_src.mp4 0 2
# GPU inference
./infer_demo PP-MSVSR_reds_x4 vsr_src.mp4 1 2
# TensorRT Inference on GPU
./infer_demo PP-MSVSR_reds_x4 vsr_src.mp4 2 2

The above command works for Linux or MacOS. For SDK use-pattern in Windows, refer to:

PP-MSVSR C++ Interface

PPMSVSR Class

fastdeploy::vision::sr::PPMSVSR(
        const string& model_file,
        const string& params_file = "",
        const RuntimeOption& runtime_option = RuntimeOption(),
        const ModelFormat& model_format = ModelFormat::PADDLE)

PP-MSVSR model loading and initialization, among which model_file is the exported Paddle model format.

Parameter

  • model_file(str): Model file path
  • params_file(str): Parameter file path
  • runtime_option(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
  • model_format(ModelFormat): Model format. Paddle format by default

Predict Function

PPMSVSR::Predict(std::vector<cv::Mat>& imgs, std::vector<cv::Mat>& results)

Model prediction interface. Input images and output detection results.

Parameter

  • imgs: Input video frame sequences in HWC or BGR format
  • results: Video SR results: video frame sequence after SR