mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 00:33:03 +08:00
[Model] Refactoring code of YOLOv5Cls with new model type (#1237)
* Refactoring code of YOLOv5Cls with new model type * fix reviewed problem * Normalize&HWC2CHW -> NormalizeAndPermute * remove cast()
This commit is contained in:
@@ -27,10 +27,9 @@ void CpuInfer(const std::string& model_file, const std::string& image_file) {
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
auto im_bak = im.clone();
|
||||
|
||||
fastdeploy::vision::ClassifyResult res;
|
||||
if (!model.Predict(&im, &res)) {
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
@@ -48,10 +47,9 @@ void GpuInfer(const std::string& model_file, const std::string& image_file) {
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
auto im_bak = im.clone();
|
||||
|
||||
fastdeploy::vision::ClassifyResult res;
|
||||
if (!model.Predict(&im, &res)) {
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
@@ -71,10 +69,9 @@ void TrtInfer(const std::string& model_file, const std::string& image_file) {
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
auto im_bak = im.clone();
|
||||
|
||||
fastdeploy::vision::ClassifyResult res;
|
||||
if (!model.Predict(&im, &res)) {
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
@@ -44,8 +44,9 @@ args = parse_arguments()
|
||||
runtime_option = build_option(args)
|
||||
model = fd.vision.classification.YOLOv5Cls(
|
||||
args.model, runtime_option=runtime_option)
|
||||
model.postprocessor.topk = args.topk
|
||||
|
||||
# 预测图片分类结果
|
||||
im = cv2.imread(args.image)
|
||||
result = model.predict(im, args.topk)
|
||||
result = model.predict(im)
|
||||
print(result)
|
||||
|
@@ -16,7 +16,7 @@
|
||||
#include "fastdeploy/core/config.h"
|
||||
#ifdef ENABLE_VISION
|
||||
#include "fastdeploy/vision/classification/contrib/resnet.h"
|
||||
#include "fastdeploy/vision/classification/contrib/yolov5cls.h"
|
||||
#include "fastdeploy/vision/classification/contrib/yolov5cls/yolov5cls.h"
|
||||
#include "fastdeploy/vision/classification/ppcls/model.h"
|
||||
#include "fastdeploy/vision/detection/contrib/nanodet_plus.h"
|
||||
#include "fastdeploy/vision/detection/contrib/scaledyolov4.h"
|
||||
|
@@ -1,116 +0,0 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/vision/classification/contrib/yolov5cls.h"
|
||||
|
||||
#include "fastdeploy/utils/perf.h"
|
||||
#include "fastdeploy/vision/utils/utils.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
namespace vision {
|
||||
namespace classification {
|
||||
|
||||
YOLOv5Cls::YOLOv5Cls(const std::string& model_file,
|
||||
const std::string& params_file,
|
||||
const RuntimeOption& custom_option,
|
||||
const ModelFormat& model_format) {
|
||||
if (model_format == ModelFormat::ONNX) {
|
||||
valid_cpu_backends = {Backend::OPENVINO, Backend::ORT};
|
||||
valid_gpu_backends = {Backend::ORT, Backend::TRT};
|
||||
} else {
|
||||
valid_cpu_backends = {Backend::PDINFER, Backend::ORT};
|
||||
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
|
||||
}
|
||||
runtime_option = custom_option;
|
||||
runtime_option.model_format = model_format;
|
||||
runtime_option.model_file = model_file;
|
||||
runtime_option.params_file = params_file;
|
||||
initialized = Initialize();
|
||||
}
|
||||
|
||||
bool YOLOv5Cls::Initialize() {
|
||||
// preprocess parameters
|
||||
size = {224, 224};
|
||||
if (!InitRuntime()) {
|
||||
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool YOLOv5Cls::Preprocess(Mat* mat, FDTensor* output,
|
||||
const std::vector<int>& size) {
|
||||
// CenterCrop
|
||||
int crop_size = std::min(mat->Height(), mat->Width());
|
||||
CenterCrop::Run(mat, crop_size, crop_size);
|
||||
Resize::Run(mat, size[0], size[1], -1, -1, cv::INTER_LINEAR);
|
||||
// Normalize
|
||||
BGR2RGB::Run(mat);
|
||||
std::vector<float> alpha = {1.0f / 255.0f, 1.0f / 255.0f, 1.0f / 255.0f};
|
||||
std::vector<float> beta = {0.0f, 0.0f, 0.0f};
|
||||
Convert::Run(mat, alpha, beta);
|
||||
std::vector<float> mean = {0.485f, 0.456f, 0.406f};
|
||||
std::vector<float> std = {0.229f, 0.224f, 0.225f};
|
||||
Normalize::Run(mat, mean, std, false);
|
||||
HWC2CHW::Run(mat);
|
||||
Cast::Run(mat, "float");
|
||||
|
||||
mat->ShareWithTensor(output);
|
||||
output->shape.insert(output->shape.begin(), 1);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool YOLOv5Cls::Postprocess(const FDTensor& infer_result,
|
||||
ClassifyResult* result, int topk) {
|
||||
// Softmax
|
||||
FDTensor infer_result_softmax;
|
||||
function::Softmax(infer_result, &infer_result_softmax, 1);
|
||||
int num_classes = infer_result_softmax.shape[1];
|
||||
const float* infer_result_buffer =
|
||||
reinterpret_cast<const float*>(infer_result_softmax.Data());
|
||||
topk = std::min(num_classes, topk);
|
||||
result->label_ids =
|
||||
utils::TopKIndices(infer_result_buffer, num_classes, topk);
|
||||
result->scores.resize(topk);
|
||||
for (int i = 0; i < topk; ++i) {
|
||||
result->scores[i] = *(infer_result_buffer + result->label_ids[i]);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool YOLOv5Cls::Predict(cv::Mat* im, ClassifyResult* result, int topk) {
|
||||
Mat mat(*im);
|
||||
std::vector<FDTensor> input_tensors(1);
|
||||
if (!Preprocess(&mat, &input_tensors[0], size)) {
|
||||
FDERROR << "Failed to preprocess input image." << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
input_tensors[0].name = InputInfoOfRuntime(0).name;
|
||||
std::vector<FDTensor> output_tensors(1);
|
||||
if (!Infer(input_tensors, &output_tensors)) {
|
||||
FDERROR << "Failed to inference." << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!Postprocess(output_tensors[0], result, topk)) {
|
||||
FDERROR << "Failed to post process." << std::endl;
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace classification
|
||||
} // namespace vision
|
||||
} // namespace fastdeploy
|
@@ -1,70 +0,0 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
#include "fastdeploy/fastdeploy_model.h"
|
||||
#include "fastdeploy/vision/common/processors/transform.h"
|
||||
#include "fastdeploy/vision/common/result.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
namespace vision {
|
||||
/** \brief All image classification model APIs are defined inside this namespace
|
||||
*
|
||||
*/
|
||||
namespace classification {
|
||||
|
||||
/*! @brief YOLOv5Cls model object used when to load a YOLOv5Cls model exported by YOLOv5
|
||||
*/
|
||||
class FASTDEPLOY_DECL YOLOv5Cls : public FastDeployModel {
|
||||
public:
|
||||
/** \brief Set path of model file and configuration file, and the configuration of runtime
|
||||
*
|
||||
* \param[in] model_file Path of model file, e.g yolov5cls/yolov5n-cls.onnx
|
||||
* \param[in] params_file Path of parameter file, if the model format is ONNX, this parameter will be ignored
|
||||
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends`
|
||||
* \param[in] model_format Model format of the loaded model, default is ONNX format
|
||||
*/
|
||||
YOLOv5Cls(const std::string& model_file, const std::string& params_file = "",
|
||||
const RuntimeOption& custom_option = RuntimeOption(),
|
||||
const ModelFormat& model_format = ModelFormat::ONNX);
|
||||
|
||||
/// Get model's name
|
||||
virtual std::string ModelName() const { return "yolov5cls"; }
|
||||
|
||||
/** \brief Predict the classification result for an input image
|
||||
*
|
||||
* \param[in] im The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
|
||||
* \param[in] result The output classification result will be writen to this structure
|
||||
* \param[in] topk Returns the topk classification result with the highest predicted probability, the default is 1
|
||||
* \return true if the prediction successed, otherwise false
|
||||
*/
|
||||
virtual bool Predict(cv::Mat* im, ClassifyResult* result, int topk = 1);
|
||||
|
||||
/// Preprocess image size, the default is (224, 224)
|
||||
std::vector<int> size;
|
||||
|
||||
private:
|
||||
bool Initialize();
|
||||
/// Preprocess an input image, and set the preprocessed results to `outputs`
|
||||
bool Preprocess(Mat* mat, FDTensor* output,
|
||||
const std::vector<int>& size = {224, 224});
|
||||
|
||||
/// Postprocess the inferenced results, and set the final result to `result`
|
||||
bool Postprocess(const FDTensor& infer_result, ClassifyResult* result,
|
||||
int topk = 1);
|
||||
};
|
||||
|
||||
} // namespace classification
|
||||
} // namespace vision
|
||||
} // namespace fastdeploy
|
@@ -0,0 +1,58 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/vision/classification/contrib/yolov5cls/postprocessor.h"
|
||||
#include "fastdeploy/vision/utils/utils.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
namespace vision {
|
||||
namespace classification {
|
||||
|
||||
YOLOv5ClsPostprocessor::YOLOv5ClsPostprocessor() {
|
||||
topk_ = 1;
|
||||
}
|
||||
|
||||
bool YOLOv5ClsPostprocessor::Run(
|
||||
const std::vector<FDTensor> &tensors, std::vector<ClassifyResult> *results,
|
||||
const std::vector<std::map<std::string, std::array<float, 2>>> &ims_info) {
|
||||
int batch = tensors[0].shape[0];
|
||||
FDTensor infer_result = tensors[0];
|
||||
FDTensor infer_result_softmax;
|
||||
function::Softmax(infer_result, &infer_result_softmax, 1);
|
||||
results->resize(batch);
|
||||
|
||||
for (size_t bs = 0; bs < batch; ++bs) {
|
||||
(*results)[bs].Clear();
|
||||
// output (1,1000) score classnum 1000
|
||||
int num_classes = infer_result_softmax.shape[1];
|
||||
const float* infer_result_buffer =
|
||||
reinterpret_cast<const float*>(infer_result_softmax.Data()) + bs * infer_result_softmax.shape[1];
|
||||
topk_ = std::min(num_classes, topk_);
|
||||
(*results)[bs].label_ids =
|
||||
utils::TopKIndices(infer_result_buffer, num_classes, topk_);
|
||||
(*results)[bs].scores.resize(topk_);
|
||||
for (int i = 0; i < topk_; ++i) {
|
||||
(*results)[bs].scores[i] = *(infer_result_buffer + (*results)[bs].label_ids[i]);
|
||||
}
|
||||
|
||||
if ((*results)[bs].label_ids.size() == 0) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace classification
|
||||
} // namespace vision
|
||||
} // namespace fastdeploy
|
@@ -0,0 +1,56 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
#include "fastdeploy/vision/common/processors/transform.h"
|
||||
#include "fastdeploy/vision/common/result.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
namespace vision {
|
||||
|
||||
namespace classification {
|
||||
/*! @brief Postprocessor object for YOLOv5Cls serials model.
|
||||
*/
|
||||
class FASTDEPLOY_DECL YOLOv5ClsPostprocessor {
|
||||
public:
|
||||
/** \brief Create a postprocessor instance for YOLOv5Cls serials model
|
||||
*/
|
||||
YOLOv5ClsPostprocessor();
|
||||
|
||||
/** \brief Process the result of runtime and fill to ClassifyResult structure
|
||||
*
|
||||
* \param[in] tensors The inference result from runtime
|
||||
* \param[in] result The output result of classification
|
||||
* \param[in] ims_info The shape info list, record input_shape and output_shape
|
||||
* \return true if the postprocess successed, otherwise false
|
||||
*/
|
||||
bool Run(const std::vector<FDTensor>& tensors,
|
||||
std::vector<ClassifyResult>* results,
|
||||
const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info);
|
||||
|
||||
/// Set topk, default 1
|
||||
void SetTopK(const int& topk) {
|
||||
topk_ = topk;
|
||||
}
|
||||
|
||||
/// Get topk, default 1
|
||||
float GetTopK() const { return topk_; }
|
||||
|
||||
protected:
|
||||
int topk_;
|
||||
};
|
||||
|
||||
} // namespace classification
|
||||
} // namespace vision
|
||||
} // namespace fastdeploy
|
@@ -0,0 +1,88 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/vision/classification/contrib/yolov5cls/preprocessor.h"
|
||||
#include "fastdeploy/function/concat.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
namespace vision {
|
||||
namespace classification {
|
||||
|
||||
YOLOv5ClsPreprocessor::YOLOv5ClsPreprocessor() {
|
||||
size_ = {224, 224}; //{h,w}
|
||||
}
|
||||
|
||||
bool YOLOv5ClsPreprocessor::Preprocess(FDMat* mat, FDTensor* output,
|
||||
std::map<std::string, std::array<float, 2>>* im_info) {
|
||||
// Record the shape of image and the shape of preprocessed image
|
||||
(*im_info)["input_shape"] = {static_cast<float>(mat->Height()),
|
||||
static_cast<float>(mat->Width())};
|
||||
|
||||
// process after image load
|
||||
double ratio = (size_[0] * 1.0) / std::max(static_cast<float>(mat->Height()),
|
||||
static_cast<float>(mat->Width()));
|
||||
|
||||
// yolov5cls's preprocess steps
|
||||
// 1. CenterCrop
|
||||
// 2. Normalize
|
||||
// CenterCrop
|
||||
int crop_size = std::min(mat->Height(), mat->Width());
|
||||
CenterCrop::Run(mat, crop_size, crop_size);
|
||||
Resize::Run(mat, size_[0], size_[1], -1, -1, cv::INTER_LINEAR);
|
||||
// Normalize
|
||||
BGR2RGB::Run(mat);
|
||||
std::vector<float> alpha = {1.0f / 255.0f, 1.0f / 255.0f, 1.0f / 255.0f};
|
||||
std::vector<float> beta = {0.0f, 0.0f, 0.0f};
|
||||
Convert::Run(mat, alpha, beta);
|
||||
std::vector<float> mean = {0.485f, 0.456f, 0.406f};
|
||||
std::vector<float> std = {0.229f, 0.224f, 0.225f};
|
||||
NormalizeAndPermute::Run(mat, mean, std, false);
|
||||
|
||||
// Record output shape of preprocessed image
|
||||
(*im_info)["output_shape"] = {static_cast<float>(mat->Height()),
|
||||
static_cast<float>(mat->Width())};
|
||||
|
||||
mat->ShareWithTensor(output);
|
||||
output->ExpandDim(0); // reshape to n, h, w, c
|
||||
return true;
|
||||
}
|
||||
|
||||
bool YOLOv5ClsPreprocessor::Run(std::vector<FDMat>* images, std::vector<FDTensor>* outputs,
|
||||
std::vector<std::map<std::string, std::array<float, 2>>>* ims_info) {
|
||||
if (images->size() == 0) {
|
||||
FDERROR << "The size of input images should be greater than 0." << std::endl;
|
||||
return false;
|
||||
}
|
||||
ims_info->resize(images->size());
|
||||
outputs->resize(1);
|
||||
// Concat all the preprocessed data to a batch tensor
|
||||
std::vector<FDTensor> tensors(images->size());
|
||||
for (size_t i = 0; i < images->size(); ++i) {
|
||||
if (!Preprocess(&(*images)[i], &tensors[i], &(*ims_info)[i])) {
|
||||
FDERROR << "Failed to preprocess input image." << std::endl;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
if (tensors.size() == 1) {
|
||||
(*outputs)[0] = std::move(tensors[0]);
|
||||
} else {
|
||||
function::Concat(tensors, &((*outputs)[0]), 0);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace classification
|
||||
} // namespace vision
|
||||
} // namespace fastdeploy
|
@@ -0,0 +1,57 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
#include "fastdeploy/vision/common/processors/transform.h"
|
||||
#include "fastdeploy/vision/common/result.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
namespace vision {
|
||||
|
||||
namespace classification {
|
||||
/*! @brief Preprocessor object for YOLOv5Cls serials model.
|
||||
*/
|
||||
class FASTDEPLOY_DECL YOLOv5ClsPreprocessor {
|
||||
public:
|
||||
/** \brief Create a preprocessor instance for YOLOv5Cls serials model
|
||||
*/
|
||||
YOLOv5ClsPreprocessor();
|
||||
|
||||
/** \brief Process the input image and prepare input tensors for runtime
|
||||
*
|
||||
* \param[in] images The input image data list, all the elements are returned by cv::imread()
|
||||
* \param[in] outputs The output tensors which will feed in runtime
|
||||
* \param[in] ims_info The shape info list, record input_shape and output_shape
|
||||
* \return true if the preprocess successed, otherwise false
|
||||
*/
|
||||
bool Run(std::vector<FDMat>* images, std::vector<FDTensor>* outputs,
|
||||
std::vector<std::map<std::string, std::array<float, 2>>>* ims_info);
|
||||
|
||||
/// Set target size, tuple of (width, height), default size = {224, 224}
|
||||
void SetSize(const std::vector<int>& size) { size_ = size; }
|
||||
|
||||
/// Get target size, tuple of (width, height), default size = {224, 224}
|
||||
std::vector<int> GetSize() const { return size_; }
|
||||
|
||||
protected:
|
||||
bool Preprocess(FDMat* mat, FDTensor* output,
|
||||
std::map<std::string, std::array<float, 2>>* im_info);
|
||||
|
||||
// target size, tuple of (width, height), default size = {224, 224}
|
||||
std::vector<int> size_;
|
||||
};
|
||||
|
||||
} // namespace classification
|
||||
} // namespace vision
|
||||
} // namespace fastdeploy
|
80
fastdeploy/vision/classification/contrib/yolov5cls/yolov5cls.cc
Executable file
80
fastdeploy/vision/classification/contrib/yolov5cls/yolov5cls.cc
Executable file
@@ -0,0 +1,80 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/vision/classification/contrib/yolov5cls/yolov5cls.h"
|
||||
#include "fastdeploy/vision/utils/utils.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
namespace vision {
|
||||
namespace classification {
|
||||
|
||||
YOLOv5Cls::YOLOv5Cls(const std::string& model_file, const std::string& params_file,
|
||||
const RuntimeOption& custom_option,
|
||||
const ModelFormat& model_format) {
|
||||
if (model_format == ModelFormat::ONNX) {
|
||||
valid_cpu_backends = {Backend::OPENVINO, Backend::ORT};
|
||||
valid_gpu_backends = {Backend::ORT, Backend::TRT};
|
||||
} else {
|
||||
valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::LITE};
|
||||
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
|
||||
}
|
||||
runtime_option = custom_option;
|
||||
runtime_option.model_format = model_format;
|
||||
runtime_option.model_file = model_file;
|
||||
runtime_option.params_file = params_file;
|
||||
initialized = Initialize();
|
||||
}
|
||||
|
||||
bool YOLOv5Cls::Initialize() {
|
||||
if (!InitRuntime()) {
|
||||
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool YOLOv5Cls::Predict(const cv::Mat& im, ClassifyResult* result) {
|
||||
std::vector<ClassifyResult> results;
|
||||
if (!BatchPredict({im}, &results)) {
|
||||
return false;
|
||||
}
|
||||
*result = std::move(results[0]);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool YOLOv5Cls::BatchPredict(const std::vector<cv::Mat>& images, std::vector<ClassifyResult>* results) {
|
||||
std::vector<std::map<std::string, std::array<float, 2>>> ims_info;
|
||||
std::vector<FDMat> fd_images = WrapMat(images);
|
||||
|
||||
if (!preprocessor_.Run(&fd_images, &reused_input_tensors_, &ims_info)) {
|
||||
FDERROR << "Failed to preprocess the input image." << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
|
||||
if (!Infer(reused_input_tensors_, &reused_output_tensors_)) {
|
||||
FDERROR << "Failed to inference by runtime." << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!postprocessor_.Run(reused_output_tensors_, results, ims_info)) {
|
||||
FDERROR << "Failed to postprocess the inference results by runtime." << std::endl;
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace classification
|
||||
} // namespace vision
|
||||
} // namespace fastdeploy
|
76
fastdeploy/vision/classification/contrib/yolov5cls/yolov5cls.h
Executable file
76
fastdeploy/vision/classification/contrib/yolov5cls/yolov5cls.h
Executable file
@@ -0,0 +1,76 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. //NOLINT
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "fastdeploy/fastdeploy_model.h"
|
||||
#include "fastdeploy/vision/classification/contrib/yolov5cls/preprocessor.h"
|
||||
#include "fastdeploy/vision/classification/contrib/yolov5cls/postprocessor.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
namespace vision {
|
||||
namespace classification {
|
||||
/*! @brief YOLOv5Cls model object used when to load a YOLOv5Cls model exported by YOLOv5Cls.
|
||||
*/
|
||||
class FASTDEPLOY_DECL YOLOv5Cls : public FastDeployModel {
|
||||
public:
|
||||
/** \brief Set path of model file and the configuration of runtime.
|
||||
*
|
||||
* \param[in] model_file Path of model file, e.g ./yolov5cls.onnx
|
||||
* \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, if the model format is ONNX, this parameter will be ignored
|
||||
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in "valid_cpu_backends"
|
||||
* \param[in] model_format Model format of the loaded model, default is ONNX format
|
||||
*/
|
||||
YOLOv5Cls(const std::string& model_file, const std::string& params_file = "",
|
||||
const RuntimeOption& custom_option = RuntimeOption(),
|
||||
const ModelFormat& model_format = ModelFormat::ONNX);
|
||||
|
||||
std::string ModelName() const { return "yolov5cls"; }
|
||||
|
||||
/** \brief Predict the classification result for an input image
|
||||
*
|
||||
* \param[in] img The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
|
||||
* \param[in] result The output classification result will be writen to this structure
|
||||
* \return true if the prediction successed, otherwise false
|
||||
*/
|
||||
virtual bool Predict(const cv::Mat& img, ClassifyResult* result);
|
||||
|
||||
/** \brief Predict the classification results for a batch of input images
|
||||
*
|
||||
* \param[in] imgs, The input image list, each element comes from cv::imread()
|
||||
* \param[in] results The output classification result list
|
||||
* \return true if the prediction successed, otherwise false
|
||||
*/
|
||||
virtual bool BatchPredict(const std::vector<cv::Mat>& imgs,
|
||||
std::vector<ClassifyResult>* results);
|
||||
|
||||
/// Get preprocessor reference of YOLOv5Cls
|
||||
virtual YOLOv5ClsPreprocessor& GetPreprocessor() {
|
||||
return preprocessor_;
|
||||
}
|
||||
|
||||
/// Get postprocessor reference of YOLOv5Cls
|
||||
virtual YOLOv5ClsPostprocessor& GetPostprocessor() {
|
||||
return postprocessor_;
|
||||
}
|
||||
|
||||
protected:
|
||||
bool Initialize();
|
||||
YOLOv5ClsPreprocessor preprocessor_;
|
||||
YOLOv5ClsPostprocessor postprocessor_;
|
||||
};
|
||||
|
||||
} // namespace classification
|
||||
} // namespace vision
|
||||
} // namespace fastdeploy
|
84
fastdeploy/vision/classification/contrib/yolov5cls/yolov5cls_pybind.cc
Executable file
84
fastdeploy/vision/classification/contrib/yolov5cls/yolov5cls_pybind.cc
Executable file
@@ -0,0 +1,84 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/pybind/main.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
void BindYOLOv5Cls(pybind11::module& m) {
|
||||
pybind11::class_<vision::classification::YOLOv5ClsPreprocessor>(
|
||||
m, "YOLOv5ClsPreprocessor")
|
||||
.def(pybind11::init<>())
|
||||
.def("run", [](vision::classification::YOLOv5ClsPreprocessor& self, std::vector<pybind11::array>& im_list) {
|
||||
std::vector<vision::FDMat> images;
|
||||
for (size_t i = 0; i < im_list.size(); ++i) {
|
||||
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
|
||||
}
|
||||
std::vector<FDTensor> outputs;
|
||||
std::vector<std::map<std::string, std::array<float, 2>>> ims_info;
|
||||
if (!self.Run(&images, &outputs, &ims_info)) {
|
||||
throw std::runtime_error("raise Exception('Failed to preprocess the input data in YOLOv5ClsPreprocessor.')");
|
||||
}
|
||||
for (size_t i = 0; i < outputs.size(); ++i) {
|
||||
outputs[i].StopSharing();
|
||||
}
|
||||
return make_pair(outputs, ims_info);
|
||||
})
|
||||
.def_property("size", &vision::classification::YOLOv5ClsPreprocessor::GetSize, &vision::classification::YOLOv5ClsPreprocessor::SetSize);
|
||||
|
||||
pybind11::class_<vision::classification::YOLOv5ClsPostprocessor>(
|
||||
m, "YOLOv5ClsPostprocessor")
|
||||
.def(pybind11::init<>())
|
||||
.def("run", [](vision::classification::YOLOv5ClsPostprocessor& self, std::vector<FDTensor>& inputs,
|
||||
const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info) {
|
||||
std::vector<vision::ClassifyResult> results;
|
||||
if (!self.Run(inputs, &results, ims_info)) {
|
||||
throw std::runtime_error("raise Exception('Failed to postprocess the runtime result in YOLOv5ClsPostprocessor.')");
|
||||
}
|
||||
return results;
|
||||
})
|
||||
.def("run", [](vision::classification::YOLOv5ClsPostprocessor& self, std::vector<pybind11::array>& input_array,
|
||||
const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info) {
|
||||
std::vector<vision::ClassifyResult> results;
|
||||
std::vector<FDTensor> inputs;
|
||||
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
|
||||
if (!self.Run(inputs, &results, ims_info)) {
|
||||
throw std::runtime_error("raise Exception('Failed to postprocess the runtime result in YOLOv5ClsPostprocessor.')");
|
||||
}
|
||||
return results;
|
||||
})
|
||||
.def_property("topk", &vision::classification::YOLOv5ClsPostprocessor::GetTopK, &vision::classification::YOLOv5ClsPostprocessor::SetTopK);
|
||||
|
||||
pybind11::class_<vision::classification::YOLOv5Cls, FastDeployModel>(m, "YOLOv5Cls")
|
||||
.def(pybind11::init<std::string, std::string, RuntimeOption,
|
||||
ModelFormat>())
|
||||
.def("predict",
|
||||
[](vision::classification::YOLOv5Cls& self, pybind11::array& data) {
|
||||
auto mat = PyArrayToCvMat(data);
|
||||
vision::ClassifyResult res;
|
||||
self.Predict(mat, &res);
|
||||
return res;
|
||||
})
|
||||
.def("batch_predict", [](vision::classification::YOLOv5Cls& self, std::vector<pybind11::array>& data) {
|
||||
std::vector<cv::Mat> images;
|
||||
for (size_t i = 0; i < data.size(); ++i) {
|
||||
images.push_back(PyArrayToCvMat(data[i]));
|
||||
}
|
||||
std::vector<vision::ClassifyResult> results;
|
||||
self.BatchPredict(images, &results);
|
||||
return results;
|
||||
})
|
||||
.def_property_readonly("preprocessor", &vision::classification::YOLOv5Cls::GetPreprocessor)
|
||||
.def_property_readonly("postprocessor", &vision::classification::YOLOv5Cls::GetPostprocessor);
|
||||
}
|
||||
} // namespace fastdeploy
|
@@ -1,32 +0,0 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
#include "fastdeploy/pybind/main.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
void BindYOLOv5Cls(pybind11::module& m) {
|
||||
pybind11::class_<vision::classification::YOLOv5Cls, FastDeployModel>(
|
||||
m, "YOLOv5Cls")
|
||||
.def(pybind11::init<std::string, std::string, RuntimeOption,
|
||||
ModelFormat>())
|
||||
.def("predict",
|
||||
[](vision::classification::YOLOv5Cls& self, pybind11::array& data,
|
||||
int topk = 1) {
|
||||
auto mat = PyArrayToCvMat(data);
|
||||
vision::ClassifyResult res;
|
||||
self.Predict(&mat, &res, topk);
|
||||
return res;
|
||||
})
|
||||
.def_readwrite("size", &vision::classification::YOLOv5Cls::size);
|
||||
}
|
||||
} // namespace fastdeploy
|
@@ -18,18 +18,78 @@ from .... import FastDeployModel, ModelFormat
|
||||
from .... import c_lib_wrap as C
|
||||
|
||||
|
||||
class YOLOv5ClsPreprocessor:
|
||||
def __init__(self):
|
||||
"""Create a preprocessor for YOLOv5Cls
|
||||
"""
|
||||
self._preprocessor = C.vision.classification.YOLOv5ClsPreprocessor()
|
||||
|
||||
def run(self, input_ims):
|
||||
"""Preprocess input images for YOLOv5Cls
|
||||
|
||||
:param: input_ims: (list of numpy.ndarray)The input image
|
||||
:return: list of FDTensor
|
||||
"""
|
||||
return self._preprocessor.run(input_ims)
|
||||
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default size = [224, 224]
|
||||
"""
|
||||
return self._preprocessor.size
|
||||
|
||||
@size.setter
|
||||
def size(self, wh):
|
||||
assert isinstance(wh, (list, tuple)),\
|
||||
"The value to set `size` must be type of tuple or list."
|
||||
assert len(wh) == 2,\
|
||||
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
|
||||
len(wh))
|
||||
self._preprocessor.size = wh
|
||||
|
||||
|
||||
class YOLOv5ClsPostprocessor:
|
||||
def __init__(self):
|
||||
"""Create a postprocessor for YOLOv5Cls
|
||||
"""
|
||||
self._postprocessor = C.vision.classification.YOLOv5ClsPostprocessor()
|
||||
|
||||
def run(self, runtime_results, ims_info):
|
||||
"""Postprocess the runtime results for YOLOv5Cls
|
||||
|
||||
:param: runtime_results: (list of FDTensor)The output FDTensor results from runtime
|
||||
:param: ims_info: (list of dict)Record input_shape and output_shape
|
||||
:return: list of ClassifyResult(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
|
||||
"""
|
||||
return self._postprocessor.run(runtime_results, ims_info)
|
||||
|
||||
@property
|
||||
def topk(self):
|
||||
"""
|
||||
topk for postprocessing, default is 1
|
||||
"""
|
||||
return self._postprocessor.topk
|
||||
|
||||
@topk.setter
|
||||
def topk(self, topk):
|
||||
assert isinstance(topk, int),\
|
||||
"The value to set `top k` must be type of int."
|
||||
self._postprocessor.topk = topk
|
||||
|
||||
|
||||
class YOLOv5Cls(FastDeployModel):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file="",
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.ONNX):
|
||||
"""Load a image classification model exported by YOLOv5.
|
||||
"""Load a YOLOv5Cls model exported by YOLOv5Cls.
|
||||
|
||||
:param model_file: (str)Path of model file, e.g yolov5cls/yolov5n-cls.onnx
|
||||
:param params_file: (str)Path of parameters file, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param model_file: (str)Path of model file, e.g ./YOLOv5Cls.onnx
|
||||
:param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model, default is ONNX
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
|
||||
super(YOLOv5Cls, self).__init__(runtime_option)
|
||||
@@ -37,33 +97,39 @@ class YOLOv5Cls(FastDeployModel):
|
||||
assert model_format == ModelFormat.ONNX, "YOLOv5Cls only support model format of ModelFormat.ONNX now."
|
||||
self._model = C.vision.classification.YOLOv5Cls(
|
||||
model_file, params_file, self._runtime_option, model_format)
|
||||
|
||||
assert self.initialized, "YOLOv5Cls initialize failed."
|
||||
|
||||
def predict(self, input_image, topk=1):
|
||||
def predict(self, input_image):
|
||||
"""Classify an input image
|
||||
|
||||
:param im: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
||||
:param topk: (int)The topk result by the classify confidence score, default 1
|
||||
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
||||
:return: ClassifyResult
|
||||
"""
|
||||
assert input_image is not None, "Input image is None."
|
||||
return self._model.predict(input_image)
|
||||
|
||||
return self._model.predict(input_image, topk)
|
||||
def batch_predict(self, images):
|
||||
"""Classify a batch of input image
|
||||
|
||||
:param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
|
||||
:return list of ClassifyResult
|
||||
"""
|
||||
|
||||
return self._model.batch_predict(images)
|
||||
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Returns the preprocess image size, default is (224, 224)
|
||||
"""
|
||||
return self._model.size
|
||||
def preprocessor(self):
|
||||
"""Get YOLOv5ClsPreprocessor object of the loaded model
|
||||
|
||||
@size.setter
|
||||
def size(self, wh):
|
||||
:return YOLOv5ClsPreprocessor
|
||||
"""
|
||||
Set the preprocess image size
|
||||
return self._model.preprocessor
|
||||
|
||||
@property
|
||||
def postprocessor(self):
|
||||
"""Get YOLOv5ClsPostprocessor object of the loaded model
|
||||
|
||||
:return YOLOv5ClsPostprocessor
|
||||
"""
|
||||
assert isinstance(wh, (list, tuple)),\
|
||||
"The value to set `size` must be type of tuple or list."
|
||||
assert len(wh) == 2,\
|
||||
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
|
||||
len(wh))
|
||||
self._model.size = wh
|
||||
return self._model.postprocessor
|
||||
|
Reference in New Issue
Block a user