Files
FastDeploy/fastdeploy/vision/classification/contrib/yolov5cls/postprocessor.cc
guxukai 9cd00ad4c5 [Model] Refactoring code of YOLOv5Cls with new model type (#1237)
* Refactoring code of YOLOv5Cls with new model type

* fix reviewed problem

* Normalize&HWC2CHW -> NormalizeAndPermute

* remove cast()
2023-02-08 11:19:00 +08:00

59 lines
2.0 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/classification/contrib/yolov5cls/postprocessor.h"
#include "fastdeploy/vision/utils/utils.h"
namespace fastdeploy {
namespace vision {
namespace classification {
YOLOv5ClsPostprocessor::YOLOv5ClsPostprocessor() {
topk_ = 1;
}
bool YOLOv5ClsPostprocessor::Run(
const std::vector<FDTensor> &tensors, std::vector<ClassifyResult> *results,
const std::vector<std::map<std::string, std::array<float, 2>>> &ims_info) {
int batch = tensors[0].shape[0];
FDTensor infer_result = tensors[0];
FDTensor infer_result_softmax;
function::Softmax(infer_result, &infer_result_softmax, 1);
results->resize(batch);
for (size_t bs = 0; bs < batch; ++bs) {
(*results)[bs].Clear();
// output (1,1000) score classnum 1000
int num_classes = infer_result_softmax.shape[1];
const float* infer_result_buffer =
reinterpret_cast<const float*>(infer_result_softmax.Data()) + bs * infer_result_softmax.shape[1];
topk_ = std::min(num_classes, topk_);
(*results)[bs].label_ids =
utils::TopKIndices(infer_result_buffer, num_classes, topk_);
(*results)[bs].scores.resize(topk_);
for (int i = 0; i < topk_; ++i) {
(*results)[bs].scores[i] = *(infer_result_buffer + (*results)[bs].label_ids[i]);
}
if ((*results)[bs].label_ids.size() == 0) {
return true;
}
}
return true;
}
} // namespace classification
} // namespace vision
} // namespace fastdeploy