Files
FastDeploy/fastdeploy/vision/classification/contrib/yolov5cls/yolov5cls_pybind.cc
guxukai 9cd00ad4c5 [Model] Refactoring code of YOLOv5Cls with new model type (#1237)
* Refactoring code of YOLOv5Cls with new model type

* fix reviewed problem

* Normalize&HWC2CHW -> NormalizeAndPermute

* remove cast()
2023-02-08 11:19:00 +08:00

85 lines
4.1 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/pybind/main.h"
namespace fastdeploy {
void BindYOLOv5Cls(pybind11::module& m) {
pybind11::class_<vision::classification::YOLOv5ClsPreprocessor>(
m, "YOLOv5ClsPreprocessor")
.def(pybind11::init<>())
.def("run", [](vision::classification::YOLOv5ClsPreprocessor& self, std::vector<pybind11::array>& im_list) {
std::vector<vision::FDMat> images;
for (size_t i = 0; i < im_list.size(); ++i) {
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
}
std::vector<FDTensor> outputs;
std::vector<std::map<std::string, std::array<float, 2>>> ims_info;
if (!self.Run(&images, &outputs, &ims_info)) {
throw std::runtime_error("raise Exception('Failed to preprocess the input data in YOLOv5ClsPreprocessor.')");
}
for (size_t i = 0; i < outputs.size(); ++i) {
outputs[i].StopSharing();
}
return make_pair(outputs, ims_info);
})
.def_property("size", &vision::classification::YOLOv5ClsPreprocessor::GetSize, &vision::classification::YOLOv5ClsPreprocessor::SetSize);
pybind11::class_<vision::classification::YOLOv5ClsPostprocessor>(
m, "YOLOv5ClsPostprocessor")
.def(pybind11::init<>())
.def("run", [](vision::classification::YOLOv5ClsPostprocessor& self, std::vector<FDTensor>& inputs,
const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info) {
std::vector<vision::ClassifyResult> results;
if (!self.Run(inputs, &results, ims_info)) {
throw std::runtime_error("raise Exception('Failed to postprocess the runtime result in YOLOv5ClsPostprocessor.')");
}
return results;
})
.def("run", [](vision::classification::YOLOv5ClsPostprocessor& self, std::vector<pybind11::array>& input_array,
const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info) {
std::vector<vision::ClassifyResult> results;
std::vector<FDTensor> inputs;
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
if (!self.Run(inputs, &results, ims_info)) {
throw std::runtime_error("raise Exception('Failed to postprocess the runtime result in YOLOv5ClsPostprocessor.')");
}
return results;
})
.def_property("topk", &vision::classification::YOLOv5ClsPostprocessor::GetTopK, &vision::classification::YOLOv5ClsPostprocessor::SetTopK);
pybind11::class_<vision::classification::YOLOv5Cls, FastDeployModel>(m, "YOLOv5Cls")
.def(pybind11::init<std::string, std::string, RuntimeOption,
ModelFormat>())
.def("predict",
[](vision::classification::YOLOv5Cls& self, pybind11::array& data) {
auto mat = PyArrayToCvMat(data);
vision::ClassifyResult res;
self.Predict(mat, &res);
return res;
})
.def("batch_predict", [](vision::classification::YOLOv5Cls& self, std::vector<pybind11::array>& data) {
std::vector<cv::Mat> images;
for (size_t i = 0; i < data.size(); ++i) {
images.push_back(PyArrayToCvMat(data[i]));
}
std::vector<vision::ClassifyResult> results;
self.BatchPredict(images, &results);
return results;
})
.def_property_readonly("preprocessor", &vision::classification::YOLOv5Cls::GetPreprocessor)
.def_property_readonly("postprocessor", &vision::classification::YOLOv5Cls::GetPostprocessor);
}
} // namespace fastdeploy