Files
FastDeploy/fastdeploy/vision/classification/contrib/yolov5cls/preprocessor.cc
guxukai 9cd00ad4c5 [Model] Refactoring code of YOLOv5Cls with new model type (#1237)
* Refactoring code of YOLOv5Cls with new model type

* fix reviewed problem

* Normalize&HWC2CHW -> NormalizeAndPermute

* remove cast()
2023-02-08 11:19:00 +08:00

89 lines
3.2 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/classification/contrib/yolov5cls/preprocessor.h"
#include "fastdeploy/function/concat.h"
namespace fastdeploy {
namespace vision {
namespace classification {
YOLOv5ClsPreprocessor::YOLOv5ClsPreprocessor() {
size_ = {224, 224}; //{h,w}
}
bool YOLOv5ClsPreprocessor::Preprocess(FDMat* mat, FDTensor* output,
std::map<std::string, std::array<float, 2>>* im_info) {
// Record the shape of image and the shape of preprocessed image
(*im_info)["input_shape"] = {static_cast<float>(mat->Height()),
static_cast<float>(mat->Width())};
// process after image load
double ratio = (size_[0] * 1.0) / std::max(static_cast<float>(mat->Height()),
static_cast<float>(mat->Width()));
// yolov5cls's preprocess steps
// 1. CenterCrop
// 2. Normalize
// CenterCrop
int crop_size = std::min(mat->Height(), mat->Width());
CenterCrop::Run(mat, crop_size, crop_size);
Resize::Run(mat, size_[0], size_[1], -1, -1, cv::INTER_LINEAR);
// Normalize
BGR2RGB::Run(mat);
std::vector<float> alpha = {1.0f / 255.0f, 1.0f / 255.0f, 1.0f / 255.0f};
std::vector<float> beta = {0.0f, 0.0f, 0.0f};
Convert::Run(mat, alpha, beta);
std::vector<float> mean = {0.485f, 0.456f, 0.406f};
std::vector<float> std = {0.229f, 0.224f, 0.225f};
NormalizeAndPermute::Run(mat, mean, std, false);
// Record output shape of preprocessed image
(*im_info)["output_shape"] = {static_cast<float>(mat->Height()),
static_cast<float>(mat->Width())};
mat->ShareWithTensor(output);
output->ExpandDim(0); // reshape to n, h, w, c
return true;
}
bool YOLOv5ClsPreprocessor::Run(std::vector<FDMat>* images, std::vector<FDTensor>* outputs,
std::vector<std::map<std::string, std::array<float, 2>>>* ims_info) {
if (images->size() == 0) {
FDERROR << "The size of input images should be greater than 0." << std::endl;
return false;
}
ims_info->resize(images->size());
outputs->resize(1);
// Concat all the preprocessed data to a batch tensor
std::vector<FDTensor> tensors(images->size());
for (size_t i = 0; i < images->size(); ++i) {
if (!Preprocess(&(*images)[i], &tensors[i], &(*ims_info)[i])) {
FDERROR << "Failed to preprocess input image." << std::endl;
return false;
}
}
if (tensors.size() == 1) {
(*outputs)[0] = std::move(tensors[0]);
} else {
function::Concat(tensors, &((*outputs)[0]), 0);
}
return true;
}
} // namespace classification
} // namespace vision
} // namespace fastdeploy