mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00

* Refactoring code of YOLOv5Cls with new model type * fix reviewed problem * Normalize&HWC2CHW -> NormalizeAndPermute * remove cast()
89 lines
3.2 KiB
C++
89 lines
3.2 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision/classification/contrib/yolov5cls/preprocessor.h"
|
|
#include "fastdeploy/function/concat.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
namespace classification {
|
|
|
|
YOLOv5ClsPreprocessor::YOLOv5ClsPreprocessor() {
|
|
size_ = {224, 224}; //{h,w}
|
|
}
|
|
|
|
bool YOLOv5ClsPreprocessor::Preprocess(FDMat* mat, FDTensor* output,
|
|
std::map<std::string, std::array<float, 2>>* im_info) {
|
|
// Record the shape of image and the shape of preprocessed image
|
|
(*im_info)["input_shape"] = {static_cast<float>(mat->Height()),
|
|
static_cast<float>(mat->Width())};
|
|
|
|
// process after image load
|
|
double ratio = (size_[0] * 1.0) / std::max(static_cast<float>(mat->Height()),
|
|
static_cast<float>(mat->Width()));
|
|
|
|
// yolov5cls's preprocess steps
|
|
// 1. CenterCrop
|
|
// 2. Normalize
|
|
// CenterCrop
|
|
int crop_size = std::min(mat->Height(), mat->Width());
|
|
CenterCrop::Run(mat, crop_size, crop_size);
|
|
Resize::Run(mat, size_[0], size_[1], -1, -1, cv::INTER_LINEAR);
|
|
// Normalize
|
|
BGR2RGB::Run(mat);
|
|
std::vector<float> alpha = {1.0f / 255.0f, 1.0f / 255.0f, 1.0f / 255.0f};
|
|
std::vector<float> beta = {0.0f, 0.0f, 0.0f};
|
|
Convert::Run(mat, alpha, beta);
|
|
std::vector<float> mean = {0.485f, 0.456f, 0.406f};
|
|
std::vector<float> std = {0.229f, 0.224f, 0.225f};
|
|
NormalizeAndPermute::Run(mat, mean, std, false);
|
|
|
|
// Record output shape of preprocessed image
|
|
(*im_info)["output_shape"] = {static_cast<float>(mat->Height()),
|
|
static_cast<float>(mat->Width())};
|
|
|
|
mat->ShareWithTensor(output);
|
|
output->ExpandDim(0); // reshape to n, h, w, c
|
|
return true;
|
|
}
|
|
|
|
bool YOLOv5ClsPreprocessor::Run(std::vector<FDMat>* images, std::vector<FDTensor>* outputs,
|
|
std::vector<std::map<std::string, std::array<float, 2>>>* ims_info) {
|
|
if (images->size() == 0) {
|
|
FDERROR << "The size of input images should be greater than 0." << std::endl;
|
|
return false;
|
|
}
|
|
ims_info->resize(images->size());
|
|
outputs->resize(1);
|
|
// Concat all the preprocessed data to a batch tensor
|
|
std::vector<FDTensor> tensors(images->size());
|
|
for (size_t i = 0; i < images->size(); ++i) {
|
|
if (!Preprocess(&(*images)[i], &tensors[i], &(*ims_info)[i])) {
|
|
FDERROR << "Failed to preprocess input image." << std::endl;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (tensors.size() == 1) {
|
|
(*outputs)[0] = std::move(tensors[0]);
|
|
} else {
|
|
function::Concat(tensors, &((*outputs)[0]), 0);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // namespace classification
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|