// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/vision/classification/contrib/yolov5cls/preprocessor.h" #include "fastdeploy/function/concat.h" namespace fastdeploy { namespace vision { namespace classification { YOLOv5ClsPreprocessor::YOLOv5ClsPreprocessor() { size_ = {224, 224}; //{h,w} } bool YOLOv5ClsPreprocessor::Preprocess(FDMat* mat, FDTensor* output, std::map>* im_info) { // Record the shape of image and the shape of preprocessed image (*im_info)["input_shape"] = {static_cast(mat->Height()), static_cast(mat->Width())}; // process after image load double ratio = (size_[0] * 1.0) / std::max(static_cast(mat->Height()), static_cast(mat->Width())); // yolov5cls's preprocess steps // 1. CenterCrop // 2. Normalize // CenterCrop int crop_size = std::min(mat->Height(), mat->Width()); CenterCrop::Run(mat, crop_size, crop_size); Resize::Run(mat, size_[0], size_[1], -1, -1, cv::INTER_LINEAR); // Normalize BGR2RGB::Run(mat); std::vector alpha = {1.0f / 255.0f, 1.0f / 255.0f, 1.0f / 255.0f}; std::vector beta = {0.0f, 0.0f, 0.0f}; Convert::Run(mat, alpha, beta); std::vector mean = {0.485f, 0.456f, 0.406f}; std::vector std = {0.229f, 0.224f, 0.225f}; NormalizeAndPermute::Run(mat, mean, std, false); // Record output shape of preprocessed image (*im_info)["output_shape"] = {static_cast(mat->Height()), static_cast(mat->Width())}; mat->ShareWithTensor(output); output->ExpandDim(0); // reshape to n, h, w, c return true; } bool YOLOv5ClsPreprocessor::Run(std::vector* images, std::vector* outputs, std::vector>>* ims_info) { if (images->size() == 0) { FDERROR << "The size of input images should be greater than 0." << std::endl; return false; } ims_info->resize(images->size()); outputs->resize(1); // Concat all the preprocessed data to a batch tensor std::vector tensors(images->size()); for (size_t i = 0; i < images->size(); ++i) { if (!Preprocess(&(*images)[i], &tensors[i], &(*ims_info)[i])) { FDERROR << "Failed to preprocess input image." << std::endl; return false; } } if (tensors.size() == 1) { (*outputs)[0] = std::move(tensors[0]); } else { function::Concat(tensors, &((*outputs)[0]), 0); } return true; } } // namespace classification } // namespace vision } // namespace fastdeploy