mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00

* Refactoring code of YOLOv5Cls with new model type * fix reviewed problem * Normalize&HWC2CHW -> NormalizeAndPermute * remove cast()
136 lines
4.8 KiB
Python
136 lines
4.8 KiB
Python
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
import logging
|
|
from .... import FastDeployModel, ModelFormat
|
|
from .... import c_lib_wrap as C
|
|
|
|
|
|
class YOLOv5ClsPreprocessor:
|
|
def __init__(self):
|
|
"""Create a preprocessor for YOLOv5Cls
|
|
"""
|
|
self._preprocessor = C.vision.classification.YOLOv5ClsPreprocessor()
|
|
|
|
def run(self, input_ims):
|
|
"""Preprocess input images for YOLOv5Cls
|
|
|
|
:param: input_ims: (list of numpy.ndarray)The input image
|
|
:return: list of FDTensor
|
|
"""
|
|
return self._preprocessor.run(input_ims)
|
|
|
|
@property
|
|
def size(self):
|
|
"""
|
|
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default size = [224, 224]
|
|
"""
|
|
return self._preprocessor.size
|
|
|
|
@size.setter
|
|
def size(self, wh):
|
|
assert isinstance(wh, (list, tuple)),\
|
|
"The value to set `size` must be type of tuple or list."
|
|
assert len(wh) == 2,\
|
|
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
|
|
len(wh))
|
|
self._preprocessor.size = wh
|
|
|
|
|
|
class YOLOv5ClsPostprocessor:
|
|
def __init__(self):
|
|
"""Create a postprocessor for YOLOv5Cls
|
|
"""
|
|
self._postprocessor = C.vision.classification.YOLOv5ClsPostprocessor()
|
|
|
|
def run(self, runtime_results, ims_info):
|
|
"""Postprocess the runtime results for YOLOv5Cls
|
|
|
|
:param: runtime_results: (list of FDTensor)The output FDTensor results from runtime
|
|
:param: ims_info: (list of dict)Record input_shape and output_shape
|
|
:return: list of ClassifyResult(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
|
|
"""
|
|
return self._postprocessor.run(runtime_results, ims_info)
|
|
|
|
@property
|
|
def topk(self):
|
|
"""
|
|
topk for postprocessing, default is 1
|
|
"""
|
|
return self._postprocessor.topk
|
|
|
|
@topk.setter
|
|
def topk(self, topk):
|
|
assert isinstance(topk, int),\
|
|
"The value to set `top k` must be type of int."
|
|
self._postprocessor.topk = topk
|
|
|
|
|
|
class YOLOv5Cls(FastDeployModel):
|
|
def __init__(self,
|
|
model_file,
|
|
params_file="",
|
|
runtime_option=None,
|
|
model_format=ModelFormat.ONNX):
|
|
"""Load a YOLOv5Cls model exported by YOLOv5Cls.
|
|
|
|
:param model_file: (str)Path of model file, e.g ./YOLOv5Cls.onnx
|
|
:param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
|
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
|
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
|
"""
|
|
|
|
super(YOLOv5Cls, self).__init__(runtime_option)
|
|
|
|
assert model_format == ModelFormat.ONNX, "YOLOv5Cls only support model format of ModelFormat.ONNX now."
|
|
self._model = C.vision.classification.YOLOv5Cls(
|
|
model_file, params_file, self._runtime_option, model_format)
|
|
|
|
assert self.initialized, "YOLOv5Cls initialize failed."
|
|
|
|
def predict(self, input_image):
|
|
"""Classify an input image
|
|
|
|
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
|
:return: ClassifyResult
|
|
"""
|
|
assert input_image is not None, "Input image is None."
|
|
return self._model.predict(input_image)
|
|
|
|
def batch_predict(self, images):
|
|
"""Classify a batch of input image
|
|
|
|
:param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
|
|
:return list of ClassifyResult
|
|
"""
|
|
|
|
return self._model.batch_predict(images)
|
|
|
|
@property
|
|
def preprocessor(self):
|
|
"""Get YOLOv5ClsPreprocessor object of the loaded model
|
|
|
|
:return YOLOv5ClsPreprocessor
|
|
"""
|
|
return self._model.preprocessor
|
|
|
|
@property
|
|
def postprocessor(self):
|
|
"""Get YOLOv5ClsPostprocessor object of the loaded model
|
|
|
|
:return YOLOv5ClsPostprocessor
|
|
"""
|
|
return self._model.postprocessor
|