mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-10-05 07:27:11 +08:00
Compare commits
4 Commits
release_wo
...
person_fil
Author | SHA1 | Date | |
---|---|---|---|
![]() |
a7d68a4998 | ||
![]() |
03e46efcdd | ||
![]() |
27e39edd65 | ||
![]() |
4f829e818e |
BIN
config/back-mask.bmp
Normal file
BIN
config/back-mask.bmp
Normal file
Binary file not shown.
After Width: | Height: | Size: 1.8 MiB |
@@ -17,33 +17,26 @@ cameras:
|
||||
- size: 350
|
||||
x_offset: 0
|
||||
y_offset: 300
|
||||
min_person_area: 5000
|
||||
- size: 400
|
||||
x_offset: 350
|
||||
y_offset: 250
|
||||
min_person_area: 2000
|
||||
- size: 400
|
||||
x_offset: 750
|
||||
y_offset: 250
|
||||
min_person_area: 2000
|
||||
back2:
|
||||
rtsp:
|
||||
user: viewer
|
||||
host: 10.0.10.10
|
||||
port: 554
|
||||
# values that begin with a "$" will be replaced with environment variable
|
||||
password: $RTSP_PASSWORD
|
||||
path: /cam/realmonitor?channel=1&subtype=2
|
||||
regions:
|
||||
- size: 350
|
||||
x_offset: 0
|
||||
y_offset: 300
|
||||
min_person_area: 5000
|
||||
- size: 400
|
||||
x_offset: 350
|
||||
y_offset: 250
|
||||
min_person_area: 2000
|
||||
- size: 400
|
||||
x_offset: 750
|
||||
y_offset: 250
|
||||
min_person_area: 2000
|
||||
mask: back-mask.bmp
|
||||
known_sizes:
|
||||
- y: 300
|
||||
min: 700
|
||||
max: 1800
|
||||
- y: 400
|
||||
min: 3000
|
||||
max: 7200
|
||||
- y: 500
|
||||
min: 8500
|
||||
max: 20400
|
||||
- y: 600
|
||||
min: 10000
|
||||
max: 50000
|
||||
- y: 700
|
||||
min: 10000
|
||||
max: 125000
|
@@ -36,12 +36,12 @@ def main():
|
||||
client.loop_start()
|
||||
|
||||
# Queue for prepped frames, max size set to (number of cameras * 5)
|
||||
max_queue_size = len(CONFIG['cameras'].items())*5
|
||||
max_queue_size = len(CONFIG['cameras'].items())*10
|
||||
prepped_frame_queue = queue.Queue(max_queue_size)
|
||||
|
||||
cameras = {}
|
||||
for name, config in CONFIG['cameras'].items():
|
||||
cameras[name] = Camera(name, config, prepped_frame_queue, client, MQTT_TOPIC_PREFIX)
|
||||
cameras[name] = Camera(name, config, prepped_frame_queue, client, MQTT_TOPIC_PREFIX, DEBUG)
|
||||
|
||||
prepped_queue_processor = PreppedQueueProcessor(
|
||||
cameras,
|
||||
|
117
frigate/video.py
117
frigate/video.py
@@ -5,6 +5,7 @@ import cv2
|
||||
import threading
|
||||
import ctypes
|
||||
import multiprocessing as mp
|
||||
import numpy as np
|
||||
from object_detection.utils import visualization_utils as vis_util
|
||||
from . util import tonumpyarray
|
||||
from . object_detection import FramePrepper
|
||||
@@ -12,7 +13,7 @@ from . objects import ObjectCleaner, BestPersonFrame
|
||||
from . mqtt import MqttObjectPublisher
|
||||
|
||||
# fetch the frames as fast a possible and store current frame in a shared memory array
|
||||
def fetch_frames(shared_arr, shared_frame_time, frame_lock, frame_ready, frame_shape, rtsp_url):
|
||||
def fetch_frames(shared_arr, shared_frame_time, frame_lock, frame_ready, frame_shape, rtsp_url, take_frame=1):
|
||||
# convert shared memory array into numpy and shape into image array
|
||||
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
||||
|
||||
@@ -23,6 +24,7 @@ def fetch_frames(shared_arr, shared_frame_time, frame_lock, frame_ready, frame_s
|
||||
video.set(cv2.CAP_PROP_BUFFERSIZE,1)
|
||||
|
||||
bad_frame_counter = 0
|
||||
frame_num = 0
|
||||
while True:
|
||||
# check if the video stream is still open, and reopen if needed
|
||||
if not video.isOpened():
|
||||
@@ -35,6 +37,9 @@ def fetch_frames(shared_arr, shared_frame_time, frame_lock, frame_ready, frame_s
|
||||
# snapshot the time the frame was grabbed
|
||||
frame_time = datetime.datetime.now()
|
||||
if ret:
|
||||
frame_num += 1
|
||||
if (frame_num % take_frame) != 0:
|
||||
continue
|
||||
# go ahead and decode the current frame
|
||||
ret, frame = video.retrieve()
|
||||
if ret:
|
||||
@@ -108,17 +113,70 @@ def get_rtsp_url(rtsp_config):
|
||||
rtsp_config['password'], rtsp_config['host'], rtsp_config['port'],
|
||||
rtsp_config['path'])
|
||||
|
||||
def compute_sizes(frame_shape, known_sizes, mask):
|
||||
# create a 3 dimensional numpy array to store estimated sizes
|
||||
estimated_sizes = np.zeros((frame_shape[0], frame_shape[1], 2), np.uint32)
|
||||
|
||||
sorted_positions = sorted(known_sizes, key=lambda s: s['y'])
|
||||
|
||||
last_position = {'y': 0, 'min': 0, 'max': 0}
|
||||
next_position = sorted_positions.pop(0)
|
||||
# if the next position has the same y coordinate, skip
|
||||
while next_position['y'] == last_position['y']:
|
||||
next_position = sorted_positions.pop(0)
|
||||
y_change = next_position['y']-last_position['y']
|
||||
min_size_change = next_position['min']-last_position['min']
|
||||
max_size_change = next_position['max']-last_position['max']
|
||||
min_step_size = min_size_change/y_change
|
||||
max_step_size = max_size_change/y_change
|
||||
|
||||
min_current_size = 0
|
||||
max_current_size = 0
|
||||
|
||||
for y_position in range(frame_shape[0]):
|
||||
# fill the row with the estimated size
|
||||
estimated_sizes[y_position,:] = [min_current_size, max_current_size]
|
||||
|
||||
# if you have reached the next size
|
||||
if y_position == next_position['y']:
|
||||
last_position = next_position
|
||||
# if there are still positions left
|
||||
if len(sorted_positions) > 0:
|
||||
next_position = sorted_positions.pop(0)
|
||||
# if the next position has the same y coordinate, skip
|
||||
while next_position['y'] == last_position['y']:
|
||||
next_position = sorted_positions.pop(0)
|
||||
y_change = next_position['y']-last_position['y']
|
||||
min_size_change = next_position['min']-last_position['min']
|
||||
max_size_change = next_position['max']-last_position['max']
|
||||
min_step_size = min_size_change/y_change
|
||||
max_step_size = max_size_change/y_change
|
||||
else:
|
||||
min_step_size = 0
|
||||
max_step_size = 0
|
||||
|
||||
min_current_size += min_step_size
|
||||
max_current_size += max_step_size
|
||||
|
||||
# apply mask by filling 0s for all locations a person could not be standing
|
||||
if mask is not None:
|
||||
pass
|
||||
|
||||
return estimated_sizes
|
||||
|
||||
class Camera:
|
||||
def __init__(self, name, config, prepped_frame_queue, mqtt_client, mqtt_prefix):
|
||||
def __init__(self, name, config, prepped_frame_queue, mqtt_client, mqtt_prefix, debug=False):
|
||||
self.name = name
|
||||
self.config = config
|
||||
self.detected_objects = []
|
||||
self.recent_frames = {}
|
||||
self.rtsp_url = get_rtsp_url(self.config['rtsp'])
|
||||
self.take_frame = self.config.get('take_frame', 1)
|
||||
self.regions = self.config['regions']
|
||||
self.frame_shape = get_frame_shape(self.rtsp_url)
|
||||
self.mqtt_client = mqtt_client
|
||||
self.mqtt_topic_prefix = '{}/{}'.format(mqtt_prefix, self.name)
|
||||
self.debug = debug
|
||||
|
||||
# compute the flattened array length from the shape of the frame
|
||||
flat_array_length = self.frame_shape[0] * self.frame_shape[1] * self.frame_shape[2]
|
||||
@@ -138,7 +196,8 @@ class Camera:
|
||||
|
||||
# create the process to capture frames from the RTSP stream and store in a shared array
|
||||
self.capture_process = mp.Process(target=fetch_frames, args=(self.shared_frame_array,
|
||||
self.shared_frame_time, self.frame_lock, self.frame_ready, self.frame_shape, self.rtsp_url))
|
||||
self.shared_frame_time, self.frame_lock, self.frame_ready, self.frame_shape,
|
||||
self.rtsp_url, self.take_frame))
|
||||
self.capture_process.daemon = True
|
||||
|
||||
# for each region, create a separate thread to resize the region and prep for detection
|
||||
@@ -170,6 +229,20 @@ class Camera:
|
||||
# start a thread to publish object scores (currently only person)
|
||||
mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self.objects_parsed, self.detected_objects)
|
||||
mqtt_publisher.start()
|
||||
|
||||
# load in the mask for person detection
|
||||
if 'mask' in self.config:
|
||||
self.mask = cv2.imread("/config/{}".format(self.config['mask']), cv2.IMREAD_GRAYSCALE)
|
||||
else:
|
||||
self.mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
|
||||
self.mask[:] = 255
|
||||
|
||||
# pre-compute estimated person size for every pixel in the image
|
||||
if 'known_sizes' in self.config:
|
||||
self.calculated_person_sizes = compute_sizes((self.frame_shape[0], self.frame_shape[1]),
|
||||
self.config['known_sizes'], None)
|
||||
else:
|
||||
self.calculated_person_sizes = None
|
||||
|
||||
def start(self):
|
||||
self.capture_process.start()
|
||||
@@ -188,23 +261,27 @@ class Camera:
|
||||
return
|
||||
|
||||
for obj in objects:
|
||||
if obj['name'] == 'person':
|
||||
person_area = (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin'])
|
||||
# find the matching region
|
||||
region = None
|
||||
for r in self.regions:
|
||||
if (
|
||||
obj['xmin'] >= r['x_offset'] and
|
||||
obj['ymin'] >= r['y_offset'] and
|
||||
obj['xmax'] <= r['x_offset']+r['size'] and
|
||||
obj['ymax'] <= r['y_offset']+r['size']
|
||||
):
|
||||
region = r
|
||||
break
|
||||
|
||||
# if the min person area is larger than the
|
||||
# detected person, don't add it to detected objects
|
||||
if region and region['min_person_area'] > person_area:
|
||||
if self.debug:
|
||||
# print out the detected objects, scores and locations
|
||||
print(self.name, obj['name'], obj['score'], obj['xmin'], obj['ymin'], obj['xmax'], obj['ymax'])
|
||||
|
||||
location = (int(obj['ymax']), int((obj['xmax']-obj['xmin'])/2))
|
||||
|
||||
# if the person is in a masked location, continue
|
||||
if self.mask[location[0]][location[1]] == [0]:
|
||||
continue
|
||||
|
||||
if self.calculated_person_sizes is not None and obj['name'] == 'person':
|
||||
person_size_range = self.calculated_person_sizes[location[0]][location[1]]
|
||||
|
||||
# if the person isnt on the ground, continue
|
||||
if(person_size_range[0] == 0 and person_size_range[1] == 0):
|
||||
continue
|
||||
|
||||
person_size = (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin'])
|
||||
|
||||
# if the person is not within 20% of the estimated size for that location, continue
|
||||
if person_size < person_size_range[0] or person_size > person_size_range[1]:
|
||||
continue
|
||||
|
||||
self.detected_objects.append(obj)
|
||||
|
Reference in New Issue
Block a user