Compare commits
205 Commits
live-view-
...
v0.8.0-rc5
Author | SHA1 | Date | |
---|---|---|---|
![]() |
714d76887d | ||
![]() |
0c0e1416ff | ||
![]() |
c6044ba9a1 | ||
![]() |
a7739a0a62 | ||
![]() |
84ed126db6 | ||
![]() |
a76f54c326 | ||
![]() |
b93d354c60 | ||
![]() |
14d218af46 | ||
![]() |
bd4973e3f7 | ||
![]() |
d94f81969b | ||
![]() |
d32fed2c01 | ||
![]() |
7b4e510b95 | ||
![]() |
bb4f79cdfe | ||
![]() |
e32e69c2d0 | ||
![]() |
a71ae053e4 | ||
![]() |
fcc9cd56cc | ||
![]() |
b981a3110b | ||
![]() |
2da50cc538 | ||
![]() |
cb4a0aa594 | ||
![]() |
52da1fddc7 | ||
![]() |
14645ce4f8 | ||
![]() |
97ce7f3028 | ||
![]() |
3b5302f6ea | ||
![]() |
74eb16f213 | ||
![]() |
a3d6bf214c | ||
![]() |
16121ffd00 | ||
![]() |
91628bd5d8 | ||
![]() |
b10b64bf57 | ||
![]() |
749c34be9f | ||
![]() |
8cfdfab985 | ||
![]() |
ef25f8a31e | ||
![]() |
2a0551a08a | ||
![]() |
0b80419f15 | ||
![]() |
0dc81117aa | ||
![]() |
49b29d72a7 | ||
![]() |
21ece238ff | ||
![]() |
f6ba3f2daa | ||
![]() |
bb0d3cb59a | ||
![]() |
ca9b6d6c5c | ||
![]() |
3103ad2bfe | ||
![]() |
eab3998ad0 | ||
![]() |
a3dfd3a8e0 | ||
![]() |
f1c3087775 | ||
![]() |
1be91ed3f2 | ||
![]() |
fd83c4f229 | ||
![]() |
de99221ad5 | ||
![]() |
6892ce56ac | ||
![]() |
41cea6f62e | ||
![]() |
4bbffa97df | ||
![]() |
614f8abfef | ||
![]() |
14289b5fd1 | ||
![]() |
4164beff1c | ||
![]() |
9b3ab486de | ||
![]() |
232a49814a | ||
![]() |
6c61f0b135 | ||
![]() |
c572cec253 | ||
![]() |
d4941f2a5f | ||
![]() |
bf5ec2f65f | ||
![]() |
f8e21584b6 | ||
![]() |
3cba83f84b | ||
![]() |
dcb4255d7e | ||
![]() |
9fc3c0dc2f | ||
![]() |
a78830b48e | ||
![]() |
949fbadcdc | ||
![]() |
12c9e63b13 | ||
![]() |
157b230702 | ||
![]() |
c69299d659 | ||
![]() |
285d630770 | ||
![]() |
b9318092f4 | ||
![]() |
905c361d52 | ||
![]() |
4443abbc49 | ||
![]() |
dabb36ad93 | ||
![]() |
2bc8736fd9 | ||
![]() |
e9b3b09cc2 | ||
![]() |
ca337c32b4 | ||
![]() |
24b8bd7c85 | ||
![]() |
3ad75a441d | ||
![]() |
f006e9be8d | ||
![]() |
03f3ba8008 | ||
![]() |
96a44eb7bf | ||
![]() |
006782fe3d | ||
![]() |
ff3e95bbf7 | ||
![]() |
4b95a37e65 | ||
![]() |
38c661b3a8 | ||
![]() |
0d6e4f6a66 | ||
![]() |
1ad2219f1c | ||
![]() |
dfcdd289c3 | ||
![]() |
32f5f2cca9 | ||
![]() |
24bfe9f3e8 | ||
![]() |
004667dc99 | ||
![]() |
9d785dc781 | ||
![]() |
cbba5a7af0 | ||
![]() |
29b29ee349 | ||
![]() |
9ad53e09af | ||
![]() |
c9278991c9 | ||
![]() |
729de48934 | ||
![]() |
7476bff5fb | ||
![]() |
1e9eae8d9a | ||
![]() |
8113a53381 | ||
![]() |
72833686f1 | ||
![]() |
096c21f105 | ||
![]() |
181f66357b | ||
![]() |
a54fbc483c | ||
![]() |
92d5a002d3 | ||
![]() |
f9184903d7 | ||
![]() |
91cde6ce7b | ||
![]() |
186a4587c7 | ||
![]() |
6049acb1f3 | ||
![]() |
2d2ebf313c | ||
![]() |
3d329dcb52 | ||
![]() |
06854fc34f | ||
![]() |
e01e14d866 | ||
![]() |
3dfd251ebb | ||
![]() |
dcea807f77 | ||
![]() |
87d83ff33a | ||
![]() |
1d31cbdf0d | ||
![]() |
e05b27b8dc | ||
![]() |
7111bd208e | ||
![]() |
04a80280da | ||
![]() |
3bda092140 | ||
![]() |
9086820479 | ||
![]() |
d1da57aedc | ||
![]() |
6ded12c566 | ||
![]() |
70352566a7 | ||
![]() |
cf5cc86588 | ||
![]() |
e41db49ab8 | ||
![]() |
1b7effafee | ||
![]() |
69e9e0b0bf | ||
![]() |
89624df411 | ||
![]() |
d1a7405211 | ||
![]() |
040f8c7c20 | ||
![]() |
6d7acabf4c | ||
![]() |
45a8b42157 | ||
![]() |
8785be24b7 | ||
![]() |
cc0812540c | ||
![]() |
5cf38ca4f7 | ||
![]() |
7e4395c30e | ||
![]() |
598d3aeda2 | ||
![]() |
012dbf81f7 | ||
![]() |
f869def12e | ||
![]() |
31f7666337 | ||
![]() |
9e339acbca | ||
![]() |
8f8054a299 | ||
![]() |
f7021eec4c | ||
![]() |
c124153da4 | ||
![]() |
706c2f921e | ||
![]() |
de1d66bcb9 | ||
![]() |
4502ca8e80 | ||
![]() |
32a66fe5e8 | ||
![]() |
e1251aafdb | ||
![]() |
587494068c | ||
![]() |
7a4d90a47a | ||
![]() |
d06b587d33 | ||
![]() |
eef70e434b | ||
![]() |
b39da3ee01 | ||
![]() |
e07c4e0d8c | ||
![]() |
2f41ba6f77 | ||
![]() |
bf95af0f22 | ||
![]() |
2e15847f86 | ||
![]() |
5992e85dc8 | ||
![]() |
24d416b869 | ||
![]() |
5dbf368c4b | ||
![]() |
7d56fe105f | ||
![]() |
e9327aa18c | ||
![]() |
df56e079de | ||
![]() |
8c5bfbd187 | ||
![]() |
2613e74f97 | ||
![]() |
9a7fb96357 | ||
![]() |
37f9dfed92 | ||
![]() |
68c1544808 | ||
![]() |
2b3d3c5824 | ||
![]() |
efea87a3ea | ||
![]() |
977785fb10 | ||
![]() |
4e113e62c0 | ||
![]() |
5080b2d781 | ||
![]() |
5cfd6d1edb | ||
![]() |
27ae4d8ab0 | ||
![]() |
3db33302ec | ||
![]() |
f2910d48e0 | ||
![]() |
cf0f8892e2 | ||
![]() |
4d22e172ff | ||
![]() |
8874a55b0f | ||
![]() |
24b703a875 | ||
![]() |
8b8f5b5c40 | ||
![]() |
eac81136d2 | ||
![]() |
d1e27b43ea | ||
![]() |
105dcb7094 | ||
![]() |
c0a16efdc1 | ||
![]() |
2800c54743 | ||
![]() |
2a24e8abcb | ||
![]() |
37ee746ebb | ||
![]() |
7ee6bfe855 | ||
![]() |
40f57a8754 | ||
![]() |
e0da462223 | ||
![]() |
47a9fc4292 | ||
![]() |
03fe5158db | ||
![]() |
72be6b480d | ||
![]() |
a8964dcc1f | ||
![]() |
732e91ee42 | ||
![]() |
27da080ce6 | ||
![]() |
075d06b108 | ||
![]() |
95dc17ffcd | ||
![]() |
408b53f8b4 | ||
![]() |
3ef68a297a | ||
![]() |
3e9b3711dc |
@@ -3,4 +3,5 @@ docs/
|
||||
.gitignore
|
||||
debug
|
||||
config/
|
||||
*.pyc
|
||||
*.pyc
|
||||
.git
|
17
.github/ISSUE_TEMPLATE/bug_report.md
vendored
@@ -1,6 +1,6 @@
|
||||
---
|
||||
name: Bug report
|
||||
about: Create a report to help us improve
|
||||
name: Bug report or Support request
|
||||
about: ''
|
||||
title: ''
|
||||
labels: ''
|
||||
assignees: ''
|
||||
@@ -8,10 +8,10 @@ assignees: ''
|
||||
---
|
||||
|
||||
**Describe the bug**
|
||||
A clear and concise description of what the bug is.
|
||||
A clear and concise description of what your issue is.
|
||||
|
||||
**Version of frigate**
|
||||
What version are you using?
|
||||
Output from `/version`
|
||||
|
||||
**Config file**
|
||||
Include your full config file wrapped in triple back ticks.
|
||||
@@ -19,14 +19,14 @@ Include your full config file wrapped in triple back ticks.
|
||||
config here
|
||||
```
|
||||
|
||||
**Logs**
|
||||
**Frigate container logs**
|
||||
```
|
||||
Include relevant log output here
|
||||
```
|
||||
|
||||
**Frigate debug stats**
|
||||
```
|
||||
Output from frigate's /debug/stats endpoint
|
||||
**Frigate stats**
|
||||
```json
|
||||
Output from frigate's /stats endpoint
|
||||
```
|
||||
|
||||
**FFprobe from your camera**
|
||||
@@ -41,6 +41,7 @@ If applicable, add screenshots to help explain your problem.
|
||||
|
||||
**Computer Hardware**
|
||||
- OS: [e.g. Ubuntu, Windows]
|
||||
- Install method: [e.g. Addon, Docker Compose, Docker Command]
|
||||
- Virtualization: [e.g. Proxmox, Virtualbox]
|
||||
- Coral Version: [e.g. USB, PCIe, None]
|
||||
- Network Setup: [e.g. Wired, WiFi]
|
||||
|
28
.github/workflows/push.yml
vendored
Normal file
@@ -0,0 +1,28 @@
|
||||
name: On push
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
- release-0.8.0
|
||||
|
||||
jobs:
|
||||
deploy-docs:
|
||||
name: Deploy docs
|
||||
runs-on: ubuntu-latest
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ./docs
|
||||
steps:
|
||||
- uses: actions/checkout@master
|
||||
- uses: actions/setup-node@master
|
||||
with:
|
||||
node-version: 12.x
|
||||
- run: npm install
|
||||
- name: Build docs
|
||||
run: npm run build
|
||||
- name: Deploy documentation
|
||||
uses: peaceiris/actions-gh-pages@v3
|
||||
with:
|
||||
github_token: ${{ secrets.GITHUB_TOKEN }}
|
||||
publish_dir: ./docs/build
|
11
.gitignore
vendored
@@ -1,4 +1,11 @@
|
||||
*.pyc
|
||||
.DS_Store
|
||||
*.pyc
|
||||
debug
|
||||
.vscode
|
||||
config/config.yml
|
||||
config/config.yml
|
||||
models
|
||||
*.mp4
|
||||
*.db
|
||||
frigate/version.py
|
||||
web/build
|
||||
web/node_modules
|
||||
|
42
Makefile
@@ -1,49 +1,59 @@
|
||||
default_target: amd64_frigate
|
||||
|
||||
COMMIT_HASH := $(shell git log -1 --pretty=format:"%h"|tail -1)
|
||||
|
||||
version:
|
||||
echo "VERSION='0.8.0-$(COMMIT_HASH)'" > frigate/version.py
|
||||
|
||||
web:
|
||||
docker build --tag frigate-web --file docker/Dockerfile.web web/
|
||||
|
||||
amd64_wheels:
|
||||
docker build --tag blakeblackshear/frigate-wheels:amd64 --file docker/Dockerfile.wheels .
|
||||
docker build --tag blakeblackshear/frigate-wheels:1.0.1-amd64 --file docker/Dockerfile.wheels .
|
||||
|
||||
amd64_ffmpeg:
|
||||
docker build --tag blakeblackshear/frigate-ffmpeg:amd64 --file docker/Dockerfile.ffmpeg.amd64 .
|
||||
docker build --tag blakeblackshear/frigate-ffmpeg:1.1.0-amd64 --file docker/Dockerfile.ffmpeg.amd64 .
|
||||
|
||||
amd64_frigate:
|
||||
docker build --tag frigate-base --build-arg ARCH=amd64 --file docker/Dockerfile.base .
|
||||
amd64_frigate: version web
|
||||
docker build --tag frigate-base --build-arg ARCH=amd64 --build-arg FFMPEG_VERSION=1.1.0 --build-arg WHEELS_VERSION=1.0.1 --file docker/Dockerfile.base .
|
||||
docker build --tag frigate --file docker/Dockerfile.amd64 .
|
||||
|
||||
amd64_all: amd64_wheels amd64_ffmpeg amd64_frigate
|
||||
|
||||
amd64nvidia_wheels:
|
||||
docker build --tag blakeblackshear/frigate-wheels:amd64nvidia --file docker/Dockerfile.wheels .
|
||||
docker build --tag blakeblackshear/frigate-wheels:1.0.1-amd64nvidia --file docker/Dockerfile.wheels .
|
||||
|
||||
amd64nvidia_ffmpeg:
|
||||
docker build --tag blakeblackshear/frigate-ffmpeg:amd64nvidia --file docker/Dockerfile.ffmpeg.amd64nvidia .
|
||||
docker build --tag blakeblackshear/frigate-ffmpeg:1.0.0-amd64nvidia --file docker/Dockerfile.ffmpeg.amd64nvidia .
|
||||
|
||||
amd64nvidia_frigate:
|
||||
docker build --tag frigate-base --build-arg ARCH=amd64nvidia --file docker/Dockerfile.base .
|
||||
amd64nvidia_frigate: version web
|
||||
docker build --tag frigate-base --build-arg ARCH=amd64nvidia --build-arg FFMPEG_VERSION=1.0.0 --build-arg WHEELS_VERSION=1.0.1 --file docker/Dockerfile.base .
|
||||
docker build --tag frigate --file docker/Dockerfile.amd64nvidia .
|
||||
|
||||
amd64nvidia_all: amd64nvidia_wheels amd64nvidia_ffmpeg amd64nvidia_frigate
|
||||
|
||||
aarch64_wheels:
|
||||
docker build --tag blakeblackshear/frigate-wheels:aarch64 --file docker/Dockerfile.wheels.aarch64 .
|
||||
docker build --tag blakeblackshear/frigate-wheels:1.0.1-aarch64 --file docker/Dockerfile.wheels .
|
||||
|
||||
aarch64_ffmpeg:
|
||||
docker build --tag blakeblackshear/frigate-ffmpeg:aarch64 --file docker/Dockerfile.ffmpeg.aarch64 .
|
||||
docker build --tag blakeblackshear/frigate-ffmpeg:1.0.0-aarch64 --file docker/Dockerfile.ffmpeg.aarch64 .
|
||||
|
||||
aarch64_frigate:
|
||||
docker build --tag frigate-base --build-arg ARCH=aarch64 --file docker/Dockerfile.base .
|
||||
aarch64_frigate: version web
|
||||
docker build --tag frigate-base --build-arg ARCH=aarch64 --build-arg FFMPEG_VERSION=1.0.0 --build-arg WHEELS_VERSION=1.0.1 --file docker/Dockerfile.base .
|
||||
docker build --tag frigate --file docker/Dockerfile.aarch64 .
|
||||
|
||||
armv7_all: armv7_wheels armv7_ffmpeg armv7_frigate
|
||||
|
||||
armv7_wheels:
|
||||
docker build --tag blakeblackshear/frigate-wheels:armv7 --file docker/Dockerfile.wheels .
|
||||
docker build --tag blakeblackshear/frigate-wheels:1.0.1-armv7 --file docker/Dockerfile.wheels .
|
||||
|
||||
armv7_ffmpeg:
|
||||
docker build --tag blakeblackshear/frigate-ffmpeg:armv7 --file docker/Dockerfile.ffmpeg.armv7 .
|
||||
docker build --tag blakeblackshear/frigate-ffmpeg:1.0.0-armv7 --file docker/Dockerfile.ffmpeg.armv7 .
|
||||
|
||||
armv7_frigate:
|
||||
docker build --tag frigate-base --build-arg ARCH=armv7 --file docker/Dockerfile.base .
|
||||
armv7_frigate: version web
|
||||
docker build --tag frigate-base --build-arg ARCH=armv7 --build-arg FFMPEG_VERSION=1.0.0 --build-arg WHEELS_VERSION=1.0.1 --file docker/Dockerfile.base .
|
||||
docker build --tag frigate --file docker/Dockerfile.armv7 .
|
||||
|
||||
armv7_all: armv7_wheels armv7_ffmpeg armv7_frigate
|
||||
|
||||
.PHONY: web
|
||||
|
775
README.md
@@ -1,783 +1,22 @@
|
||||
<p align="center">
|
||||
<img align="center" alt="logo" src="docs/frigate.png">
|
||||
<img align="center" alt="logo" src="docs/static/img/frigate.png">
|
||||
</p>
|
||||
|
||||
# Frigate - NVR With Realtime Object Detection for IP Cameras
|
||||
Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras. Designed for integration with HomeAssistant or others via MQTT.
|
||||
|
||||
A complete and local NVR designed for HomeAssistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras.
|
||||
|
||||
Use of a [Google Coral Accelerator](https://coral.ai/products/) is optional, but highly recommended. The Coral will outperform even the best CPUs and can process 100+ FPS with very little overhead.
|
||||
|
||||
- Tight integration with HomeAssistant via a [custom component](https://github.com/blakeblackshear/frigate-hass-integration)
|
||||
- Designed to minimize resource use and maximize performance by only looking for objects when and where it is necessary
|
||||
- Leverages multiprocessing heavily with an emphasis on realtime over processing every frame
|
||||
- Uses a very low overhead motion detection to determine where to run object detection
|
||||
- Object detection with TensorFlow runs in separate processes for maximum FPS
|
||||
- Communicates over MQTT for easy integration into other systems
|
||||
- 24/7 recording
|
||||
- Re-streaming via RTMP to reduce the number of connections to your camera
|
||||
|
||||
## Documentation
|
||||
- [How Frigate Works](docs/how-frigate-works.md)
|
||||
- [Recommended Hardware](#recommended-hardware)
|
||||
- [Installing](#installing)
|
||||
- [Configuration File](#configuration)
|
||||
- [Optimizing Performance](#optimizing-performance)
|
||||
- [Detectors](#detectors)
|
||||
- [Object Filters](#object-filters)
|
||||
- [Masks](#masks)
|
||||
- [Zones](#zones)
|
||||
- [Integration with HomeAssistant](#integration-with-homeassistant)
|
||||
- [MQTT Topics](#mqtt-topics)
|
||||
- [HTTP Endpoints](#http-endpoints)
|
||||
- [Custom Models](#custom-models)
|
||||
- [Troubleshooting](#troubleshooting)
|
||||
|
||||
## Recommended Hardware
|
||||
|Name|Inference Speed|Notes|
|
||||
|----|---------------|-----|
|
||||
|Atomic Pi|16ms|Good option for a dedicated low power board with a small number of cameras. Can leverage Intel QuickSync for stream decoding.|
|
||||
|Intel NUC NUC7i3BNK|8-10ms|Great performance. Can handle many cameras at 5fps depending on typical amounts of motion.|
|
||||
|BMAX B2 Plus|10-12ms|Good balance of performance and cost. Also capable of running many other services at the same time as frigate.|
|
||||
|Minisforum GK41|9-10ms|Great alternative to a NUC with dual Gigabit NICs. Easily handles several 1080p cameras.|
|
||||
|Raspberry Pi 3B (32bit)|60ms|Can handle a small number of cameras, but the detection speeds are slow due to USB 2.0.|
|
||||
|Raspberry Pi 4 (32bit)|15-20ms|Can handle a small number of cameras. The 2GB version runs fine.|
|
||||
|Raspberry Pi 4 (64bit)|10-15ms|Can handle a small number of cameras. The 2GB version runs fine.|
|
||||
|
||||
[Back to top](#documentation)
|
||||
|
||||
## Installing
|
||||
|
||||
### HassOS Addon
|
||||
HassOS users can install via the addon repository. Frigate requires that an MQTT server be running.
|
||||
1. Navigate to Supervisor > Add-on Store > Repositories
|
||||
1. Add https://github.com/blakeblackshear/frigate-hass-addons
|
||||
1. Setup your configuration in the `Configuration` tab
|
||||
1. Start the addon container
|
||||
|
||||
### Docker
|
||||
Make sure you choose the right image for your architecture:
|
||||
|Arch|Image Name|
|
||||
|-|-|
|
||||
|amd64|blakeblackshear/frigate:stable-amd64|
|
||||
|armv7|blakeblackshear/frigate:stable-armv7|
|
||||
|aarch64|blakeblackshear/frigate:stable-aarch64|
|
||||
|
||||
It is recommended to run with docker-compose:
|
||||
```yaml
|
||||
frigate:
|
||||
container_name: frigate
|
||||
restart: unless-stopped
|
||||
privileged: true
|
||||
image: blakeblackshear/frigate:stable-amd64
|
||||
volumes:
|
||||
- /dev/bus/usb:/dev/bus/usb
|
||||
- /etc/localtime:/etc/localtime:ro
|
||||
- <path_to_config>:/config
|
||||
- <path_to_directory_for_clips>:/clips
|
||||
- type: tmpfs # 1GB of memory, reduces SSD/SD Card wear
|
||||
target: /cache
|
||||
tmpfs:
|
||||
size: 100000000
|
||||
ports:
|
||||
- "5000:5000"
|
||||
environment:
|
||||
FRIGATE_RTSP_PASSWORD: "password"
|
||||
healthcheck:
|
||||
test: ["CMD", "wget" , "-q", "-O-", "http://localhost:5000"]
|
||||
interval: 30s
|
||||
timeout: 10s
|
||||
retries: 5
|
||||
start_period: 3m
|
||||
```
|
||||
|
||||
If you can't use docker compose, you can run the container with:
|
||||
```bash
|
||||
docker run --rm \
|
||||
--name frigate \
|
||||
--privileged \
|
||||
-v /dev/bus/usb:/dev/bus/usb \
|
||||
-v <path_to_config_dir>:/config:ro \
|
||||
-v /etc/localtime:/etc/localtime:ro \
|
||||
-p 5000:5000 \
|
||||
-e FRIGATE_RTSP_PASSWORD='password' \
|
||||
blakeblackshear/frigate:stable-amd64
|
||||
```
|
||||
|
||||
### Kubernetes
|
||||
Use the [helm chart](https://github.com/k8s-at-home/charts/tree/master/charts/frigate).
|
||||
|
||||
### Virtualization
|
||||
For ideal performance, Frigate needs access to underlying hardware for the Coral and GPU devices for ffmpeg decoding. Running Frigate in a VM on top of Proxmox, ESXi, Virtualbox, etc. is not recommended. The virtualization layer typically introduces a sizable amount of overhead for communication with Coral devices.
|
||||
|
||||
#### Proxmox
|
||||
Some people have had success running Frigate in LXC directly with the following config:
|
||||
```
|
||||
arch: amd64
|
||||
cores: 2
|
||||
features: nesting=1
|
||||
hostname: FrigateLXC
|
||||
memory: 4096
|
||||
net0: name=eth0,bridge=vmbr0,firewall=1,hwaddr=2E:76:AE:5A:58:48,ip=dhcp,ip6=auto,type=veth
|
||||
ostype: debian
|
||||
rootfs: local-lvm:vm-115-disk-0,size=12G
|
||||
swap: 512
|
||||
lxc.cgroup.devices.allow: c 189:385 rwm
|
||||
lxc.mount.entry: /dev/dri/renderD128 dev/dri/renderD128 none bind,optional,create=file
|
||||
lxc.mount.entry: /dev/bus/usb/004/002 dev/bus/usb/004/002 none bind,optional,create=file
|
||||
lxc.apparmor.profile: unconfined
|
||||
lxc.cgroup.devices.allow: a
|
||||
lxc.cap.drop:
|
||||
```
|
||||
|
||||
### Calculating shm-size
|
||||
The default shm-size of 64m is fine for setups with 3 or less 1080p cameras. If frigate is exiting with "Bus error" messages, it could be because you have too many high resolution cameras and you need to specify a higher shm size.
|
||||
|
||||
You can calculate the necessary shm-size for each camera with the following formula:
|
||||
```
|
||||
(width * height * 1.5 * 7 + 270480)/1048576 = <shm size in mb>
|
||||
```
|
||||
[Back to top](#documentation)
|
||||
|
||||
## Configuration
|
||||
HassOS users can manage their configuration directly in the addon Configuration tab. For other installations, the default location for the config file is `/config/config.yml`. This can be overridden with the `CONFIG_FILE` environment variable. Camera specific ffmpeg parameters are documented [here](docs/cameras.md).
|
||||
|
||||
```yaml
|
||||
# Optional: port for http server (default: shown below)
|
||||
web_port: 5000
|
||||
|
||||
# Optional: detectors configuration
|
||||
# USB Coral devices will be auto detected with CPU fallback
|
||||
detectors:
|
||||
# Required: name of the detector
|
||||
coral:
|
||||
# Required: type of the detector
|
||||
# Valid values are 'edgetpu' (requires device property below) and 'cpu'.
|
||||
type: edgetpu
|
||||
# Optional: device name as defined here: https://coral.ai/docs/edgetpu/multiple-edgetpu/#using-the-tensorflow-lite-python-api
|
||||
device: usb
|
||||
|
||||
# Required: mqtt configuration
|
||||
mqtt:
|
||||
# Required: host name
|
||||
host: mqtt.server.com
|
||||
# Optional: port (default: shown below)
|
||||
port: 1883
|
||||
# Optional: topic prefix (default: shown below)
|
||||
# WARNING: must be unique if you are running multiple instances
|
||||
topic_prefix: frigate
|
||||
# Optional: client id (default: shown below)
|
||||
# WARNING: must be unique if you are running multiple instances
|
||||
client_id: frigate
|
||||
# Optional: user
|
||||
user: mqtt_user
|
||||
# Optional: password
|
||||
# NOTE: Environment variables that begin with 'FRIGATE_' may be referenced in {}.
|
||||
# eg. password: '{FRIGATE_MQTT_PASSWORD}'
|
||||
password: password
|
||||
|
||||
# Optional: Global configuration for saving clips
|
||||
save_clips:
|
||||
# Optional: Maximum length of time to retain video during long events. (default: shown below)
|
||||
# NOTE: If an object is being tracked for longer than this amount of time, the cache
|
||||
# will begin to expire and the resulting clip will be the last x seconds of the event.
|
||||
max_seconds: 300
|
||||
# Optional: Location to save event clips. (default: shown below)
|
||||
clips_dir: /clips
|
||||
# Optional: Location to save cache files for creating clips. (default: shown below)
|
||||
# NOTE: To reduce wear on SSDs and SD cards, use a tmpfs volume.
|
||||
cache_dir: /cache
|
||||
|
||||
# Optional: Global ffmpeg args
|
||||
# "ffmpeg" + global_args + input_args + "-i" + input + output_args
|
||||
ffmpeg:
|
||||
# Optional: global ffmpeg args (default: shown below)
|
||||
global_args:
|
||||
- -hide_banner
|
||||
- -loglevel
|
||||
- panic
|
||||
# Optional: global hwaccel args (default: shown below)
|
||||
# NOTE: See hardware acceleration docs for your specific device
|
||||
hwaccel_args: []
|
||||
# Optional: global input args (default: shown below)
|
||||
input_args:
|
||||
- -avoid_negative_ts
|
||||
- make_zero
|
||||
- -fflags
|
||||
- nobuffer
|
||||
- -flags
|
||||
- low_delay
|
||||
- -strict
|
||||
- experimental
|
||||
- -fflags
|
||||
- +genpts+discardcorrupt
|
||||
- -rtsp_transport
|
||||
- tcp
|
||||
- -stimeout
|
||||
- '5000000'
|
||||
- -use_wallclock_as_timestamps
|
||||
- '1'
|
||||
# Optional: global output args (default: shown below)
|
||||
output_args:
|
||||
- -f
|
||||
- rawvideo
|
||||
- -pix_fmt
|
||||
- yuv420p
|
||||
|
||||
# Optional: Global object filters for all cameras.
|
||||
# NOTE: can be overridden at the camera level
|
||||
objects:
|
||||
# Optional: list of objects to track from labelmap.txt (default: shown below)
|
||||
track:
|
||||
- person
|
||||
# Optional: filters to reduce false positives for specific object types
|
||||
filters:
|
||||
person:
|
||||
# Optional: minimum width*height of the bounding box for the detected object (default: 0)
|
||||
min_area: 5000
|
||||
# Optional: maximum width*height of the bounding box for the detected object (default: max_int)
|
||||
max_area: 100000
|
||||
# Optional: minimum score for the object to initiate tracking (default: shown below)
|
||||
min_score: 0.5
|
||||
# Optional: minimum decimal percentage for tracked object's computed score to be considered a true positive (default: shown below)
|
||||
threshold: 0.85
|
||||
|
||||
# Required: configuration section for cameras
|
||||
cameras:
|
||||
# Required: name of the camera
|
||||
back:
|
||||
# Required: ffmpeg settings for the camera
|
||||
ffmpeg:
|
||||
# Required: Source passed to ffmpeg after the -i parameter.
|
||||
# NOTE: Environment variables that begin with 'FRIGATE_' may be referenced in {}
|
||||
input: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/cam/realmonitor?channel=1&subtype=2
|
||||
# Optional: camera specific global args (default: inherit)
|
||||
global_args:
|
||||
# Optional: camera specific hwaccel args (default: inherit)
|
||||
hwaccel_args:
|
||||
# Optional: camera specific input args (default: inherit)
|
||||
input_args:
|
||||
# Optional: camera specific output args (default: inherit)
|
||||
output_args:
|
||||
|
||||
# Optional: height of the frame
|
||||
# NOTE: Recommended to set this value, but frigate will attempt to autodetect.
|
||||
height: 720
|
||||
# Optional: width of the frame
|
||||
# NOTE: Recommended to set this value, but frigate will attempt to autodetect.
|
||||
width: 1280
|
||||
# Optional: desired fps for your camera
|
||||
# NOTE: Recommended value of 5. Ideally, try and reduce your FPS on the camera.
|
||||
# Frigate will attempt to autodetect if not specified.
|
||||
fps: 5
|
||||
|
||||
# Optional: motion mask
|
||||
# NOTE: see docs for more detailed info on creating masks
|
||||
mask: poly,0,900,1080,900,1080,1920,0,1920
|
||||
|
||||
# Optional: timeout for highest scoring image before allowing it
|
||||
# to be replaced by a newer image. (default: shown below)
|
||||
best_image_timeout: 60
|
||||
|
||||
# Optional: camera specific mqtt settings
|
||||
mqtt:
|
||||
# Optional: crop the camera frame to the detection region of the object (default: False)
|
||||
crop_to_region: True
|
||||
# Optional: resize the image before publishing over mqtt
|
||||
snapshot_height: 300
|
||||
|
||||
# Optional: zones for this camera
|
||||
zones:
|
||||
# Required: name of the zone
|
||||
# NOTE: This must be different than any camera names, but can match with another zone on another
|
||||
# camera.
|
||||
front_steps:
|
||||
# Required: List of x,y coordinates to define the polygon of the zone.
|
||||
# NOTE: Coordinates can be generated at https://www.image-map.net/
|
||||
coordinates: 545,1077,747,939,788,805
|
||||
# Optional: Zone level object filters.
|
||||
# NOTE: The global and camera filters are applied upstream.
|
||||
filters:
|
||||
person:
|
||||
min_area: 5000
|
||||
max_area: 100000
|
||||
threshold: 0.8
|
||||
|
||||
# Optional: save clips configuration
|
||||
# NOTE: This feature does not work if you have added "-vsync drop" in your input params.
|
||||
# This will only work for camera feeds that can be copied into the mp4 container format without
|
||||
# encoding such as h264. It may not work for some types of streams.
|
||||
save_clips:
|
||||
# Required: enables clips for the camera (default: shown below)
|
||||
enabled: False
|
||||
# Optional: Number of seconds before the event to include in the clips (default: shown below)
|
||||
pre_capture: 30
|
||||
# Optional: Objects to save clips for. (default: all tracked objects)
|
||||
objects:
|
||||
- person
|
||||
|
||||
# Optional: Configuration for the snapshots in the debug view and mqtt
|
||||
snapshots:
|
||||
# Optional: print a timestamp on the snapshots (default: shown below)
|
||||
show_timestamp: True
|
||||
# Optional: draw zones on the debug mjpeg feed (default: shown below)
|
||||
draw_zones: False
|
||||
# Optional: draw bounding boxes on the mqtt snapshots (default: shown below)
|
||||
draw_bounding_boxes: True
|
||||
|
||||
# Optional: Camera level object filters config. If defined, this is used instead of the global config.
|
||||
objects:
|
||||
track:
|
||||
- person
|
||||
- car
|
||||
filters:
|
||||
person:
|
||||
min_area: 5000
|
||||
max_area: 100000
|
||||
min_score: 0.5
|
||||
threshold: 0.85
|
||||
```
|
||||
[Back to top](#documentation)
|
||||
|
||||
## Optimizing Performance
|
||||
- **Google Coral**: It is strongly recommended to use a Google Coral, but Frigate will fall back to CPU in the event one is not found. Offloading TensorFlow to the Google Coral is an order of magnitude faster and will reduce your CPU load dramatically. A $60 device will outperform $2000 CPU.
|
||||
- **Resolution**: Choose a camera resolution where the smallest object you want to detect barely fits inside a 300x300px square. The model used by Frigate is trained on 300x300px images, so you will get worse performance and no improvement in accuracy by using a larger resolution since Frigate resizes the area where it is looking for objects to 300x300 anyway.
|
||||
- **FPS**: 5 frames per second should be adequate. Higher frame rates will require more CPU usage without improving detections or accuracy. Reducing the frame rate on your camera will have the greatest improvement on system resources.
|
||||
- **Hardware Acceleration**: Make sure you configure the `hwaccel_args` for your hardware. They provide a significant reduction in CPU usage if they are available.
|
||||
- **Masks**: Masks can be used to ignore motion and reduce your idle CPU load. If you have areas with regular motion such as timestamps or trees blowing in the wind, frigate will constantly try to determine if that motion is from a person or other object you are tracking. Those detections not only increase your average CPU usage, but also clog the pipeline for detecting objects elsewhere. If you are experiencing high values for `detection_fps` when no objects of interest are in the cameras, you should use masks to tell frigate to ignore movement from trees, bushes, timestamps, or any part of the image where detections should not be wasted looking for objects.
|
||||
|
||||
### FFmpeg Hardware Acceleration
|
||||
Frigate works on Raspberry Pi 3b/4 and x86 machines. It is recommended to update your configuration to enable hardware accelerated decoding in ffmpeg. Depending on your system, these parameters may not be compatible.
|
||||
|
||||
Raspberry Pi 3/4 (32-bit OS):
|
||||
```yaml
|
||||
ffmpeg:
|
||||
hwaccel_args:
|
||||
- -c:v
|
||||
- h264_mmal
|
||||
```
|
||||
|
||||
Raspberry Pi 3/4 (64-bit OS)
|
||||
```yaml
|
||||
ffmpeg:
|
||||
hwaccel_args:
|
||||
- -c:v
|
||||
- h264_v4l2m2m
|
||||
```
|
||||
|
||||
Intel-based CPUs (<10th Generation) via Quicksync (https://trac.ffmpeg.org/wiki/Hardware/QuickSync)
|
||||
```yaml
|
||||
ffmpeg:
|
||||
hwaccel_args:
|
||||
- -hwaccel
|
||||
- vaapi
|
||||
- -hwaccel_device
|
||||
- /dev/dri/renderD128
|
||||
- -hwaccel_output_format
|
||||
- yuv420p
|
||||
```
|
||||
|
||||
Intel-based CPUs (>=10th Generation) via Quicksync (https://trac.ffmpeg.org/wiki/Hardware/QuickSync)
|
||||
**Note:** You also need to set `LIBVA_DRIVER_NAME=iHD` as an environment variable on the container.
|
||||
```yaml
|
||||
ffmpeg:
|
||||
hwaccel_args:
|
||||
- -hwaccel
|
||||
- vaapi
|
||||
- -hwaccel_device
|
||||
- /dev/dri/renderD128
|
||||
```
|
||||
|
||||
Nvidia GPU based decoding via NVDEC is supported, but requires special configuration. See the [nvidia NVDEC documentation](docs/nvdec.md) for more details.
|
||||
|
||||
[Back to top](#documentation)
|
||||
|
||||
## Detectors
|
||||
By default Frigate will look for a USB Coral device and fall back to the CPU if it cannot be found. If you have PCI or multiple Coral devices, you need to configure your detector devices in the config file. When using multiple detectors, they run in dedicated processes, but pull from a common queue of requested detections across all cameras.
|
||||
|
||||
Frigate supports `edgetpu` and `cpu` as detector types. The device value should be specified according to the [Documentation for the TensorFlow Lite Python API](https://coral.ai/docs/edgetpu/multiple-edgetpu/#using-the-tensorflow-lite-python-api).
|
||||
|
||||
Single USB Coral:
|
||||
```yaml
|
||||
detectors:
|
||||
coral:
|
||||
type: edgetpu
|
||||
device: usb
|
||||
```
|
||||
|
||||
Multiple USB Corals:
|
||||
```yaml
|
||||
detectors:
|
||||
coral1:
|
||||
type: edgetpu
|
||||
device: usb:0
|
||||
coral2:
|
||||
type: edgetpu
|
||||
device: usb:1
|
||||
```
|
||||
|
||||
Mixing Corals:
|
||||
```yaml
|
||||
detectors:
|
||||
coral_usb:
|
||||
type: edgetpu
|
||||
device: usb
|
||||
coral_pci:
|
||||
type: edgetpu
|
||||
device: pci
|
||||
```
|
||||
|
||||
CPU Detectors (not recommended):
|
||||
```yaml
|
||||
detectors:
|
||||
cpu1:
|
||||
type: cpu
|
||||
cpu2:
|
||||
type: cpu
|
||||
```
|
||||
[Back to top](#documentation)
|
||||
|
||||
## Reducing False Positives
|
||||
Tune your object filters to adjust false positives: `min_area`, `max_area`, `min_score`, `threshold`.
|
||||
|
||||
For object filters in your configuration, any single detection below `min_score` will be ignored as a false positive. `threshold` is based on the median of the history of scores (padded to 3 values) for a tracked object. Consider the following frames when `min_score` is set to 0.6 and threshold is set to 0.85:
|
||||
|
||||
| Frame | Current Score | Score History | Computed Score | Detected Object |
|
||||
| --- | --- | --- | --- | --- |
|
||||
| 1 | 0.7 | 0.0, 0, 0.7 | 0.0 | No
|
||||
| 2 | 0.55 | 0.0, 0.7, 0.0 | 0.0 | No
|
||||
| 3 | 0.85 | 0.7, 0.0, 0.85 | 0.7 | No
|
||||
| 4 | 0.90 | 0.7, 0.85, 0.95, 0.90 | 0.875 | Yes
|
||||
| 5 | 0.88 | 0.7, 0.85, 0.95, 0.90, 0.88 | 0.88 | Yes
|
||||
| 6 | 0.95 | 0.7, 0.85, 0.95, 0.90, 0.88, 0.95 | 0.89 | Yes
|
||||
|
||||
In frame 2, the score is below the `min_score` value, so frigate ignores it and it becomes a 0.0. The computed score is the median of the score history (padding to at least 3 values), and only when that computed score crosses the `threshold` is the object marked as a true positive. That happens in frame 4 in the example.
|
||||
|
||||
[Back to top](#documentation)
|
||||
|
||||
## Masks
|
||||
The following types of masks are supported:
|
||||
- `poly`: (Recommended) List of x,y points like zone configuration
|
||||
- `base64`: Base64 encoded image file
|
||||
- `image`: Image file in the `/config` directory
|
||||
|
||||
`base64` and `image` masks must be the same aspect ratio and resolution as your camera.
|
||||
|
||||
The mask in the second image would limit motion detection on this camera to only the front yard and not the street.
|
||||
|
||||
<a href="docs/example-mask-check-point.png"><img src="docs/example-mask-check-point.png" height="300"></a>
|
||||
<a href="docs/example-mask.bmp"><img src="docs/example-mask.bmp" height="300"></a>
|
||||
<a href="docs/example-mask-overlay.png"><img src="docs/example-mask-overlay.png" height="300"></a>
|
||||
|
||||
To create a poly mask:
|
||||
1. Download a camera snapshot image with the same resolution as the camera feed (`/<camera_name>/latest.jpg`).
|
||||
1. Upload the image to https://www.image-map.net/
|
||||
1. Select "shape" poly - start in the lowest left corner and place the first marker (point) and continue upwards and then to the right until the polygon shape covers the area that you want to mask out (ignore).
|
||||
1. When you are finished with the polygon click "Show me the code!" and copy all coordinates (point), ie. `"0,461,3,0,1919,0,1919,843,1699,492,1344,458,1346,336,973,317,869,375,866,432"`
|
||||
1. Adjust any -1 values to 0 and then add it all to the configuration (see the example configuration for correct indentation and placement)
|
||||
|
||||
Example of a finished row corresponding to the below example image:
|
||||
```yaml
|
||||
mask: 'poly,0,461,3,0,1919,0,1919,843,1699,492,1344,458,1346,336,973,317,869,375,866,432'
|
||||
```
|
||||
|
||||
<a href="docs/example-mask-poly.png"><img src="docs/example-mask-poly.png" height="300"></a>
|
||||
|
||||
You can test your mask by temporarily configuring it as a [zone](#zones) and enabling `draw_zones` in your config. Zones are visible on the [MJPEG feed](#camera_name).
|
||||
|
||||
[Back to top](#documentation)
|
||||
|
||||
## Zones
|
||||
Zones allow you to define a specific area of the frame and apply additional filters for object types so you can determine whether or not an object is within a particular area. Zones cannot have the same name as a camera. If desired, a single zone can include multiple cameras if you have multiple cameras covering the same area by configuring zones with the same name for each camera.
|
||||
|
||||
During testing, `draw_zones` should be set in the config to draw the zone on the frames so you can adjust as needed. The zone line will increase in thickness when any object enters the zone. Zones are visible on the [MJPEG feed](#camera_name).
|
||||
|
||||

|
||||
|
||||
[Back to top](#documentation)
|
||||
|
||||
## Recording Clips
|
||||
**Note**: Previous versions of frigate included `-vsync drop` in input parameters. This is not compatible with FFmpeg's segment feature and must be removed from your input parameters if you have overrides set.
|
||||
|
||||
Frigate can save video clips without any CPU overhead for encoding by simply copying the stream directly with FFmpeg. It leverages FFmpeg's segment functionality to maintain a cache of video for each camera. The cache files are written to disk at `cache_dir` and do not introduce memory overhead. When an object is being tracked, it will extend the cache to ensure it can assemble a clip when the event ends. Once the event ends, it again uses FFmpeg to assemble a clip by combining the video clips without any encoding by the CPU. Assembled clips are are saved to the `clips_dir` directory along with a json file containing the current information about the tracked object.
|
||||
|
||||
### Global Configuration Options
|
||||
- `max_seconds`: This limits the size of the cache when an object is being tracked. If an object is stationary and being tracked for a long time, the cache files will expire and this value will be the maximum clip length for the *end* of the event. For example, if this is set to 300 seconds and an object is being tracked for 600 seconds, the clip will end up being the last 300 seconds. Defaults to 300 seconds.
|
||||
|
||||
### Per-camera Configuration Options
|
||||
- `pre_capture`: Defines how much time should be included in the clip prior to the beginning of the event. Defaults to 30 seconds.
|
||||
- `objects`: List of object types to save clips for. Object types here must be listed for tracking at the camera or global configuration. Defaults to all tracked objects.
|
||||
|
||||
[Back to top](#documentation)
|
||||
|
||||
## Integration with HomeAssistant
|
||||
Setup a camera, binary_sensor, sensor and optionally automation as shown for each camera you define in frigate. Replace <camera_name> with the camera name as defined in the frigate `config.yml` (The `frigate_coral_fps` and `frigate_coral_inference` sensors only need to be defined once)
|
||||
|
||||
```yaml
|
||||
camera:
|
||||
- name: <camera_name> Last Person
|
||||
platform: mqtt
|
||||
topic: frigate/<camera_name>/person/snapshot
|
||||
- name: <camera_name> Last Car
|
||||
platform: mqtt
|
||||
topic: frigate/<camera_name>/car/snapshot
|
||||
|
||||
binary_sensor:
|
||||
- name: <camera_name> Person
|
||||
platform: mqtt
|
||||
state_topic: "frigate/<camera_name>/person"
|
||||
device_class: motion
|
||||
availability_topic: "frigate/available"
|
||||
|
||||
sensor:
|
||||
- platform: rest
|
||||
name: Frigate Debug
|
||||
resource: http://localhost:5000/debug/stats
|
||||
scan_interval: 5
|
||||
json_attributes:
|
||||
- <camera_name>
|
||||
- detection_fps
|
||||
- detectors
|
||||
value_template: 'OK'
|
||||
- platform: template
|
||||
sensors:
|
||||
<camera_name>_fps:
|
||||
value_template: '{{ states.sensor.frigate_debug.attributes["<camera_name>"]["camera_fps"] }}'
|
||||
unit_of_measurement: 'FPS'
|
||||
<camera_name>_skipped_fps:
|
||||
value_template: '{{ states.sensor.frigate_debug.attributes["<camera_name>"]["skipped_fps"] }}'
|
||||
unit_of_measurement: 'FPS'
|
||||
<camera_name>_detection_fps:
|
||||
value_template: '{{ states.sensor.frigate_debug.attributes["<camera_name>"]["detection_fps"] }}'
|
||||
unit_of_measurement: 'FPS'
|
||||
frigate_detection_fps:
|
||||
value_template: '{{ states.sensor.frigate_debug.attributes["detection_fps"] }}'
|
||||
unit_of_measurement: 'FPS'
|
||||
frigate_coral_inference:
|
||||
value_template: '{{ states.sensor.frigate_debug.attributes["detectors"]["coral"]["inference_speed"] }}'
|
||||
unit_of_measurement: 'ms'
|
||||
|
||||
automation:
|
||||
- alias: Alert me if a person is detected while armed away
|
||||
trigger:
|
||||
platform: state
|
||||
entity_id: binary_sensor.camera_person
|
||||
from: 'off'
|
||||
to: 'on'
|
||||
condition:
|
||||
- condition: state
|
||||
entity_id: alarm_control_panel.home_alarm
|
||||
state: armed_away
|
||||
action:
|
||||
- service: notify.user_telegram
|
||||
data:
|
||||
message: "A person was detected."
|
||||
data:
|
||||
photo:
|
||||
- url: http://<ip>:5000/<camera_name>/person/best.jpg
|
||||
caption: A person was detected.
|
||||
```
|
||||
|
||||
[Back to top](#documentation)
|
||||
|
||||
## HTTP Endpoints
|
||||
A web server is available on port 5000 with the following endpoints.
|
||||
|
||||
### `/<camera_name>`
|
||||
An mjpeg stream for debugging. Keep in mind the mjpeg endpoint is for debugging only and will put additional load on the system when in use.
|
||||
|
||||
You can access a higher resolution mjpeg stream by appending `h=height-in-pixels` to the endpoint. For example `http://localhost:5000/back?h=1080`. You can also increase the FPS by appending `fps=frame-rate` to the URL such as `http://localhost:5000/back?fps=10` or both with `?fps=10&h=1000`
|
||||
|
||||
### `/<camera_name>/<object_name>/best.jpg[?h=300&crop=1]`
|
||||
The best snapshot for any object type. It is a full resolution image by default.
|
||||
|
||||
Example parameters:
|
||||
- `h=300`: resizes the image to 300 pixes tall
|
||||
- `crop=1`: crops the image to the region of the detection rather than returning the entire image
|
||||
|
||||
### `/<camera_name>/latest.jpg[?h=300]`
|
||||
The most recent frame that frigate has finished processing. It is a full resolution image by default.
|
||||
|
||||
Example parameters:
|
||||
- `h=300`: resizes the image to 300 pixes tall
|
||||
|
||||
### `/debug/stats`
|
||||
Contains some granular debug info that can be used for sensors in HomeAssistant.
|
||||
|
||||
Sample response:
|
||||
```jsonc
|
||||
{
|
||||
/* Per Camera Stats */
|
||||
"back": {
|
||||
/***************
|
||||
* Frames per second being consumed from your camera. If this is higher
|
||||
* than it is supposed to be, you should set -r FPS in your input_args.
|
||||
* camera_fps = process_fps + skipped_fps
|
||||
***************/
|
||||
"camera_fps": 5.0,
|
||||
/***************
|
||||
* Number of times detection is run per second. This can be higher than
|
||||
* your camera FPS because frigate often looks at the same frame multiple times
|
||||
* or in multiple locations
|
||||
***************/
|
||||
"detection_fps": 1.5,
|
||||
/***************
|
||||
* PID for the ffmpeg process that consumes this camera
|
||||
***************/
|
||||
"ffmpeg_pid": 27,
|
||||
/***************
|
||||
* Timestamps of frames in various parts of processing
|
||||
***************/
|
||||
"frame_info": {
|
||||
/***************
|
||||
* Timestamp of the frame frigate is running object detection on.
|
||||
***************/
|
||||
"detect": 1596994991.91426,
|
||||
/***************
|
||||
* Timestamp of the frame frigate is processing detected objects on.
|
||||
* This is where MQTT messages are sent, zones are checked, etc.
|
||||
***************/
|
||||
"process": 1596994991.91426,
|
||||
/***************
|
||||
* Timestamp of the frame frigate last read from ffmpeg.
|
||||
***************/
|
||||
"read": 1596994991.91426
|
||||
},
|
||||
/***************
|
||||
* PID for the process that runs detection for this camera
|
||||
***************/
|
||||
"pid": 34,
|
||||
/***************
|
||||
* Frames per second being processed by frigate.
|
||||
***************/
|
||||
"process_fps": 5.1,
|
||||
/***************
|
||||
* Timestamp when the detection process started looking for a frame. If this value stays constant
|
||||
* for a long time, that means there aren't any frames in the frame queue.
|
||||
***************/
|
||||
"read_start": 1596994991.943814,
|
||||
/***************
|
||||
* Frames per second skip for processing by frigate.
|
||||
***************/
|
||||
"skipped_fps": 0.0
|
||||
},
|
||||
/***************
|
||||
* Sum of detection_fps across all cameras and detectors.
|
||||
* This should be the sum of all detection_fps values from cameras.
|
||||
***************/
|
||||
"detection_fps": 5.0,
|
||||
/* Detectors Stats */
|
||||
"detectors": {
|
||||
"coral": {
|
||||
/***************
|
||||
* Timestamp when object detection started. If this value stays non-zero and constant
|
||||
* for a long time, that means the detection process is stuck.
|
||||
***************/
|
||||
"detection_start": 0.0,
|
||||
/***************
|
||||
* Time spent running object detection in milliseconds.
|
||||
***************/
|
||||
"inference_speed": 10.48,
|
||||
/***************
|
||||
* PID for the shared process that runs object detection on the Coral.
|
||||
***************/
|
||||
"pid": 25321
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
[Back to top](#documentation)
|
||||
|
||||
## MQTT Topics
|
||||
These are the MQTT messages generated by Frigate. The default topic_prefix is `frigate`, but can be changed in the config file.
|
||||
|
||||
### `frigate/available`
|
||||
Designed to be used as an availability topic with HomeAssistant. Possible message are:
|
||||
"online": published when frigate is running (on startup)
|
||||
"offline": published right before frigate stops
|
||||
|
||||
### `frigate/<camera_name>/<object_name>`
|
||||
Publishes `ON` or `OFF` and is designed to be used a as a binary sensor in HomeAssistant for whether or not that object type is detected.
|
||||
|
||||
### `frigate/<camera_name>/<object_name>/snapshot`
|
||||
Publishes a jpeg encoded frame of the detected object type. When the object is no longer detected, the highest confidence image is published or the original image
|
||||
is published again.
|
||||
|
||||
The height and crop of snapshots can be configured in the config.
|
||||
|
||||
### `frigate/<camera_name>/events/start`
|
||||
Message published at the start of any tracked object. JSON looks as follows:
|
||||
```json
|
||||
{
|
||||
"label": "person",
|
||||
"score": 0.87890625,
|
||||
"box": [
|
||||
95,
|
||||
155,
|
||||
581,
|
||||
1182
|
||||
],
|
||||
"area": 499122,
|
||||
"region": [
|
||||
0,
|
||||
132,
|
||||
1080,
|
||||
1212
|
||||
],
|
||||
"frame_time": 1600208805.60284,
|
||||
"centroid": [
|
||||
338,
|
||||
668
|
||||
],
|
||||
"id": "1600208805.60284-k1l43p",
|
||||
"start_time": 1600208805.60284,
|
||||
"top_score": 0.87890625,
|
||||
"zones": [],
|
||||
"score_history": [
|
||||
0.87890625
|
||||
],
|
||||
"computed_score": 0.0,
|
||||
"false_positive": true
|
||||
}
|
||||
```
|
||||
|
||||
### `frigate/<camera_name>/events/end`
|
||||
Same as `frigate/<camera_name>/events/start`, but with an `end_time` property as well.
|
||||
|
||||
### `frigate/<zone_name>/<object_name>`
|
||||
Publishes `ON` when the object enters the zone and `OFF` when the object disappears or exits the zone. Designed to be used a as a binary sensor in HomeAssistant for whether or not that object type is detected in the zone.
|
||||
|
||||
[Back to top](#documentation)
|
||||
|
||||
## Custom Models
|
||||
Models for both CPU and EdgeTPU (Coral) are bundled in the image. You can use your own models with volume mounts:
|
||||
- CPU Model: `/cpu_model.tflite`
|
||||
- EdgeTPU Model: `/edgetpu_model.tflite`
|
||||
- Labels: `/labelmap.txt`
|
||||
|
||||
### Customizing the Labelmap
|
||||
The labelmap can be customized to your needs. A common reason to do this is to combine multiple object types that are easily confused when you don't need to be as granular such as car/truck. You must retain the same number of labels, but you can change the names. To change:
|
||||
|
||||
- Download the [COCO labelmap](https://dl.google.com/coral/canned_models/coco_labels.txt)
|
||||
- Modify the label names as desired. For example, change `7 truck` to `7 car`
|
||||
- Mount the new file at `/labelmap.txt` in the container with an additional volume
|
||||
```
|
||||
-v ./config/labelmap.txt:/labelmap.txt
|
||||
```
|
||||
|
||||
[Back to top](#documentation)
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### "ffmpeg didnt return a frame. something is wrong"
|
||||
Turn on logging for the camera by overriding the global_args and setting the log level to `info`:
|
||||
```yaml
|
||||
ffmpeg:
|
||||
global_args:
|
||||
- -hide_banner
|
||||
- -loglevel
|
||||
- info
|
||||
```
|
||||
|
||||
### "On connect called"
|
||||
If you see repeated "On connect called" messages in your config, check for another instance of frigate. This happens when multiple frigate containers are trying to connect to mqtt with the same client_id.
|
||||
|
||||
[Back to top](#documentation)
|
||||
|
||||
View the documentation at https://blakeblackshear.github.io/frigate
|
||||
|
@@ -1,441 +0,0 @@
|
||||
import faulthandler; faulthandler.enable()
|
||||
import os
|
||||
import signal
|
||||
import sys
|
||||
import traceback
|
||||
import signal
|
||||
import cv2
|
||||
import time
|
||||
import datetime
|
||||
import queue
|
||||
import yaml
|
||||
import json
|
||||
import threading
|
||||
import multiprocessing as mp
|
||||
import subprocess as sp
|
||||
import numpy as np
|
||||
import logging
|
||||
from flask import Flask, Response, make_response, jsonify, request
|
||||
import paho.mqtt.client as mqtt
|
||||
|
||||
from frigate.video import capture_camera, track_camera, get_ffmpeg_input, get_frame_shape, CameraCapture, start_or_restart_ffmpeg
|
||||
from frigate.object_processing import TrackedObjectProcessor
|
||||
from frigate.events import EventProcessor
|
||||
from frigate.util import EventsPerSecond
|
||||
from frigate.edgetpu import EdgeTPUProcess
|
||||
|
||||
FRIGATE_VARS = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')}
|
||||
|
||||
CONFIG_FILE = os.environ.get('CONFIG_FILE', '/config/config.yml')
|
||||
|
||||
if CONFIG_FILE.endswith(".yml"):
|
||||
with open(CONFIG_FILE) as f:
|
||||
CONFIG = yaml.safe_load(f)
|
||||
elif CONFIG_FILE.endswith(".json"):
|
||||
with open(CONFIG_FILE) as f:
|
||||
CONFIG = json.load(f)
|
||||
|
||||
CACHE_DIR = CONFIG.get('save_clips', {}).get('cache_dir', '/cache')
|
||||
CLIPS_DIR = CONFIG.get('save_clips', {}).get('clips_dir', '/clips')
|
||||
|
||||
if not os.path.exists(CACHE_DIR) and not os.path.islink(CACHE_DIR):
|
||||
os.makedirs(CACHE_DIR)
|
||||
if not os.path.exists(CLIPS_DIR) and not os.path.islink(CLIPS_DIR):
|
||||
os.makedirs(CLIPS_DIR)
|
||||
|
||||
MQTT_HOST = CONFIG['mqtt']['host']
|
||||
MQTT_PORT = CONFIG.get('mqtt', {}).get('port', 1883)
|
||||
MQTT_TOPIC_PREFIX = CONFIG.get('mqtt', {}).get('topic_prefix', 'frigate')
|
||||
MQTT_USER = CONFIG.get('mqtt', {}).get('user')
|
||||
MQTT_PASS = CONFIG.get('mqtt', {}).get('password')
|
||||
if not MQTT_PASS is None:
|
||||
MQTT_PASS = MQTT_PASS.format(**FRIGATE_VARS)
|
||||
MQTT_CLIENT_ID = CONFIG.get('mqtt', {}).get('client_id', 'frigate')
|
||||
|
||||
# Set the default FFmpeg config
|
||||
FFMPEG_CONFIG = CONFIG.get('ffmpeg', {})
|
||||
FFMPEG_DEFAULT_CONFIG = {
|
||||
'global_args': FFMPEG_CONFIG.get('global_args',
|
||||
['-hide_banner','-loglevel','panic']),
|
||||
'hwaccel_args': FFMPEG_CONFIG.get('hwaccel_args',
|
||||
[]),
|
||||
'input_args': FFMPEG_CONFIG.get('input_args',
|
||||
['-avoid_negative_ts', 'make_zero',
|
||||
'-fflags', 'nobuffer',
|
||||
'-flags', 'low_delay',
|
||||
'-strict', 'experimental',
|
||||
'-fflags', '+genpts+discardcorrupt',
|
||||
'-rtsp_transport', 'tcp',
|
||||
'-stimeout', '5000000',
|
||||
'-use_wallclock_as_timestamps', '1']),
|
||||
'output_args': FFMPEG_CONFIG.get('output_args',
|
||||
['-f', 'rawvideo',
|
||||
'-pix_fmt', 'yuv420p'])
|
||||
}
|
||||
|
||||
GLOBAL_OBJECT_CONFIG = CONFIG.get('objects', {})
|
||||
|
||||
WEB_PORT = CONFIG.get('web_port', 5000)
|
||||
DETECTORS = CONFIG.get('detectors', {'coral': {'type': 'edgetpu', 'device': 'usb'}})
|
||||
|
||||
class FrigateWatchdog(threading.Thread):
|
||||
def __init__(self, camera_processes, config, detectors, detection_queue, out_events, tracked_objects_queue, stop_event):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera_processes = camera_processes
|
||||
self.config = config
|
||||
self.detectors = detectors
|
||||
self.detection_queue = detection_queue
|
||||
self.out_events = out_events
|
||||
self.tracked_objects_queue = tracked_objects_queue
|
||||
self.stop_event = stop_event
|
||||
|
||||
def run(self):
|
||||
time.sleep(10)
|
||||
while True:
|
||||
# wait a bit before checking
|
||||
time.sleep(10)
|
||||
|
||||
if self.stop_event.is_set():
|
||||
print(f"Exiting watchdog...")
|
||||
break
|
||||
|
||||
now = datetime.datetime.now().timestamp()
|
||||
|
||||
# check the detection processes
|
||||
for detector in self.detectors.values():
|
||||
detection_start = detector.detection_start.value
|
||||
if (detection_start > 0.0 and
|
||||
now - detection_start > 10):
|
||||
print("Detection appears to be stuck. Restarting detection process")
|
||||
detector.start_or_restart()
|
||||
elif not detector.detect_process.is_alive():
|
||||
print("Detection appears to have stopped. Restarting detection process")
|
||||
detector.start_or_restart()
|
||||
|
||||
# check the camera processes
|
||||
for name, camera_process in self.camera_processes.items():
|
||||
process = camera_process['process']
|
||||
if not process.is_alive():
|
||||
print(f"Track process for {name} is not alive. Starting again...")
|
||||
camera_process['camera_fps'].value = 0.0
|
||||
camera_process['process_fps'].value = 0.0
|
||||
camera_process['detection_fps'].value = 0.0
|
||||
camera_process['read_start'].value = 0.0
|
||||
process = mp.Process(target=track_camera, args=(name, self.config,
|
||||
self.detection_queue, self.out_events[name], self.tracked_objects_queue, camera_process, self.stop_event))
|
||||
process.daemon = True
|
||||
camera_process['process'] = process
|
||||
process.start()
|
||||
print(f"Track process started for {name}: {process.pid}")
|
||||
|
||||
def main():
|
||||
stop_event = threading.Event()
|
||||
# connect to mqtt and setup last will
|
||||
def on_connect(client, userdata, flags, rc):
|
||||
print("On connect called")
|
||||
if rc != 0:
|
||||
if rc == 3:
|
||||
print ("MQTT Server unavailable")
|
||||
elif rc == 4:
|
||||
print ("MQTT Bad username or password")
|
||||
elif rc == 5:
|
||||
print ("MQTT Not authorized")
|
||||
else:
|
||||
print ("Unable to connect to MQTT: Connection refused. Error code: " + str(rc))
|
||||
# publish a message to signal that the service is running
|
||||
client.publish(MQTT_TOPIC_PREFIX+'/available', 'online', retain=True)
|
||||
client = mqtt.Client(client_id=MQTT_CLIENT_ID)
|
||||
client.on_connect = on_connect
|
||||
client.will_set(MQTT_TOPIC_PREFIX+'/available', payload='offline', qos=1, retain=True)
|
||||
if not MQTT_USER is None:
|
||||
client.username_pw_set(MQTT_USER, password=MQTT_PASS)
|
||||
client.connect(MQTT_HOST, MQTT_PORT, 60)
|
||||
client.loop_start()
|
||||
|
||||
##
|
||||
# Setup config defaults for cameras
|
||||
##
|
||||
for name, config in CONFIG['cameras'].items():
|
||||
config['snapshots'] = {
|
||||
'show_timestamp': config.get('snapshots', {}).get('show_timestamp', True),
|
||||
'draw_zones': config.get('snapshots', {}).get('draw_zones', False),
|
||||
'draw_bounding_boxes': config.get('snapshots', {}).get('draw_bounding_boxes', True)
|
||||
}
|
||||
config['zones'] = config.get('zones', {})
|
||||
|
||||
# Queue for cameras to push tracked objects to
|
||||
tracked_objects_queue = mp.Queue(maxsize=len(CONFIG['cameras'].keys())*2)
|
||||
|
||||
# Queue for clip processing
|
||||
event_queue = mp.Queue()
|
||||
|
||||
# create the detection pipes and shms
|
||||
out_events = {}
|
||||
camera_shms = []
|
||||
for name in CONFIG['cameras'].keys():
|
||||
out_events[name] = mp.Event()
|
||||
shm_in = mp.shared_memory.SharedMemory(name=name, create=True, size=300*300*3)
|
||||
shm_out = mp.shared_memory.SharedMemory(name=f"out-{name}", create=True, size=20*6*4)
|
||||
camera_shms.append(shm_in)
|
||||
camera_shms.append(shm_out)
|
||||
|
||||
detection_queue = mp.Queue()
|
||||
|
||||
detectors = {}
|
||||
for name, detector in DETECTORS.items():
|
||||
if detector['type'] == 'cpu':
|
||||
detectors[name] = EdgeTPUProcess(detection_queue, out_events=out_events, tf_device='cpu')
|
||||
if detector['type'] == 'edgetpu':
|
||||
detectors[name] = EdgeTPUProcess(detection_queue, out_events=out_events, tf_device=detector['device'])
|
||||
|
||||
# create the camera processes
|
||||
camera_process_info = {}
|
||||
for name, config in CONFIG['cameras'].items():
|
||||
# Merge the ffmpeg config with the global config
|
||||
ffmpeg = config.get('ffmpeg', {})
|
||||
ffmpeg_input = get_ffmpeg_input(ffmpeg['input'])
|
||||
ffmpeg_global_args = ffmpeg.get('global_args', FFMPEG_DEFAULT_CONFIG['global_args'])
|
||||
ffmpeg_hwaccel_args = ffmpeg.get('hwaccel_args', FFMPEG_DEFAULT_CONFIG['hwaccel_args'])
|
||||
ffmpeg_input_args = ffmpeg.get('input_args', FFMPEG_DEFAULT_CONFIG['input_args'])
|
||||
ffmpeg_output_args = ffmpeg.get('output_args', FFMPEG_DEFAULT_CONFIG['output_args'])
|
||||
if not config.get('fps') is None:
|
||||
ffmpeg_output_args = ["-r", str(config.get('fps'))] + ffmpeg_output_args
|
||||
if config.get('save_clips', {}).get('enabled', False):
|
||||
ffmpeg_output_args = [
|
||||
"-f",
|
||||
"segment",
|
||||
"-segment_time",
|
||||
"10",
|
||||
"-segment_format",
|
||||
"mp4",
|
||||
"-reset_timestamps",
|
||||
"1",
|
||||
"-strftime",
|
||||
"1",
|
||||
"-c",
|
||||
"copy",
|
||||
"-an",
|
||||
"-map",
|
||||
"0",
|
||||
f"{os.path.join(CACHE_DIR, name)}-%Y%m%d%H%M%S.mp4"
|
||||
] + ffmpeg_output_args
|
||||
ffmpeg_cmd = (['ffmpeg'] +
|
||||
ffmpeg_global_args +
|
||||
ffmpeg_hwaccel_args +
|
||||
ffmpeg_input_args +
|
||||
['-i', ffmpeg_input] +
|
||||
ffmpeg_output_args +
|
||||
['pipe:'])
|
||||
|
||||
config['ffmpeg_cmd'] = ffmpeg_cmd
|
||||
|
||||
if 'width' in config and 'height' in config:
|
||||
frame_shape = (config['height'], config['width'], 3)
|
||||
else:
|
||||
frame_shape = get_frame_shape(ffmpeg_input)
|
||||
|
||||
config['frame_shape'] = frame_shape
|
||||
config['take_frame'] = config.get('take_frame', 1)
|
||||
|
||||
camera_process_info[name] = {
|
||||
'camera_fps': mp.Value('d', 0.0),
|
||||
'skipped_fps': mp.Value('d', 0.0),
|
||||
'process_fps': mp.Value('d', 0.0),
|
||||
'detection_fps': mp.Value('d', 0.0),
|
||||
'detection_frame': mp.Value('d', 0.0),
|
||||
'read_start': mp.Value('d', 0.0),
|
||||
'ffmpeg_pid': mp.Value('i', 0),
|
||||
'frame_queue': mp.Queue(maxsize=2)
|
||||
}
|
||||
|
||||
# merge global object config into camera object config
|
||||
camera_objects_config = config.get('objects', {})
|
||||
# get objects to track for camera
|
||||
objects_to_track = camera_objects_config.get('track', GLOBAL_OBJECT_CONFIG.get('track', ['person']))
|
||||
# get object filters
|
||||
object_filters = camera_objects_config.get('filters', GLOBAL_OBJECT_CONFIG.get('filters', {}))
|
||||
config['objects'] = {
|
||||
'track': objects_to_track,
|
||||
'filters': object_filters
|
||||
}
|
||||
|
||||
capture_process = mp.Process(target=capture_camera, args=(name, config,
|
||||
camera_process_info[name], stop_event))
|
||||
capture_process.daemon = True
|
||||
camera_process_info[name]['capture_process'] = capture_process
|
||||
|
||||
camera_process = mp.Process(target=track_camera, args=(name, config,
|
||||
detection_queue, out_events[name], tracked_objects_queue, camera_process_info[name], stop_event))
|
||||
camera_process.daemon = True
|
||||
camera_process_info[name]['process'] = camera_process
|
||||
|
||||
# start the camera_processes
|
||||
for name, camera_process in camera_process_info.items():
|
||||
camera_process['capture_process'].start()
|
||||
print(f"Camera capture process started for {name}: {camera_process['capture_process'].pid}")
|
||||
camera_process['process'].start()
|
||||
print(f"Camera process started for {name}: {camera_process['process'].pid}")
|
||||
|
||||
event_processor = EventProcessor(CONFIG, camera_process_info, CACHE_DIR, CLIPS_DIR, event_queue, stop_event)
|
||||
event_processor.start()
|
||||
|
||||
object_processor = TrackedObjectProcessor(CONFIG['cameras'], client, MQTT_TOPIC_PREFIX, tracked_objects_queue, event_queue, stop_event)
|
||||
object_processor.start()
|
||||
|
||||
frigate_watchdog = FrigateWatchdog(camera_process_info, CONFIG['cameras'], detectors, detection_queue, out_events, tracked_objects_queue, stop_event)
|
||||
frigate_watchdog.start()
|
||||
|
||||
def receiveSignal(signalNumber, frame):
|
||||
print('Received:', signalNumber)
|
||||
stop_event.set()
|
||||
event_processor.join()
|
||||
object_processor.join()
|
||||
frigate_watchdog.join()
|
||||
|
||||
for detector in detectors.values():
|
||||
detector.stop()
|
||||
for shm in camera_shms:
|
||||
shm.close()
|
||||
shm.unlink()
|
||||
sys.exit()
|
||||
|
||||
signal.signal(signal.SIGTERM, receiveSignal)
|
||||
signal.signal(signal.SIGINT, receiveSignal)
|
||||
|
||||
# create a flask app that encodes frames a mjpeg on demand
|
||||
app = Flask(__name__)
|
||||
log = logging.getLogger('werkzeug')
|
||||
log.setLevel(logging.ERROR)
|
||||
|
||||
@app.route('/')
|
||||
def ishealthy():
|
||||
# return a healh
|
||||
return "Frigate is running. Alive and healthy!"
|
||||
|
||||
@app.route('/debug/stack')
|
||||
def processor_stack():
|
||||
frame = sys._current_frames().get(object_processor.ident, None)
|
||||
if frame:
|
||||
return "<br>".join(traceback.format_stack(frame)), 200
|
||||
else:
|
||||
return "no frame found", 200
|
||||
|
||||
@app.route('/debug/print_stack')
|
||||
def print_stack():
|
||||
pid = int(request.args.get('pid', 0))
|
||||
if pid == 0:
|
||||
return "missing pid", 200
|
||||
else:
|
||||
os.kill(pid, signal.SIGUSR1)
|
||||
return "check logs", 200
|
||||
|
||||
@app.route('/debug/stats')
|
||||
def stats():
|
||||
stats = {}
|
||||
|
||||
total_detection_fps = 0
|
||||
|
||||
for name, camera_stats in camera_process_info.items():
|
||||
total_detection_fps += camera_stats['detection_fps'].value
|
||||
stats[name] = {
|
||||
'camera_fps': round(camera_stats['camera_fps'].value, 2),
|
||||
'process_fps': round(camera_stats['process_fps'].value, 2),
|
||||
'skipped_fps': round(camera_stats['skipped_fps'].value, 2),
|
||||
'detection_fps': round(camera_stats['detection_fps'].value, 2),
|
||||
'pid': camera_stats['process'].pid,
|
||||
'capture_pid': camera_stats['capture_process'].pid,
|
||||
'frame_info': {
|
||||
'detect': camera_stats['detection_frame'].value,
|
||||
'process': object_processor.camera_data[name]['current_frame_time']
|
||||
}
|
||||
}
|
||||
|
||||
stats['detectors'] = {}
|
||||
for name, detector in detectors.items():
|
||||
stats['detectors'][name] = {
|
||||
'inference_speed': round(detector.avg_inference_speed.value*1000, 2),
|
||||
'detection_start': detector.detection_start.value,
|
||||
'pid': detector.detect_process.pid
|
||||
}
|
||||
stats['detection_fps'] = round(total_detection_fps, 2)
|
||||
|
||||
return jsonify(stats)
|
||||
|
||||
@app.route('/<camera_name>/<label>/best.jpg')
|
||||
def best(camera_name, label):
|
||||
if camera_name in CONFIG['cameras']:
|
||||
best_object = object_processor.get_best(camera_name, label)
|
||||
best_frame = best_object.get('frame')
|
||||
if best_frame is None:
|
||||
best_frame = np.zeros((720,1280,3), np.uint8)
|
||||
else:
|
||||
best_frame = cv2.cvtColor(best_frame, cv2.COLOR_YUV2BGR_I420)
|
||||
|
||||
crop = bool(request.args.get('crop', 0, type=int))
|
||||
if crop:
|
||||
region = best_object.get('region', [0,0,300,300])
|
||||
best_frame = best_frame[region[1]:region[3], region[0]:region[2]]
|
||||
|
||||
height = int(request.args.get('h', str(best_frame.shape[0])))
|
||||
width = int(height*best_frame.shape[1]/best_frame.shape[0])
|
||||
|
||||
best_frame = cv2.resize(best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
|
||||
ret, jpg = cv2.imencode('.jpg', best_frame)
|
||||
response = make_response(jpg.tobytes())
|
||||
response.headers['Content-Type'] = 'image/jpg'
|
||||
return response
|
||||
else:
|
||||
return "Camera named {} not found".format(camera_name), 404
|
||||
|
||||
@app.route('/<camera_name>')
|
||||
def mjpeg_feed(camera_name):
|
||||
fps = int(request.args.get('fps', '3'))
|
||||
height = int(request.args.get('h', '360'))
|
||||
if camera_name in CONFIG['cameras']:
|
||||
# return a multipart response
|
||||
return Response(imagestream(camera_name, fps, height),
|
||||
mimetype='multipart/x-mixed-replace; boundary=frame')
|
||||
else:
|
||||
return "Camera named {} not found".format(camera_name), 404
|
||||
|
||||
@app.route('/<camera_name>/latest.jpg')
|
||||
def latest_frame(camera_name):
|
||||
if camera_name in CONFIG['cameras']:
|
||||
# max out at specified FPS
|
||||
frame = object_processor.get_current_frame(camera_name)
|
||||
if frame is None:
|
||||
frame = np.zeros((720,1280,3), np.uint8)
|
||||
|
||||
height = int(request.args.get('h', str(frame.shape[0])))
|
||||
width = int(height*frame.shape[1]/frame.shape[0])
|
||||
|
||||
frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
|
||||
|
||||
ret, jpg = cv2.imencode('.jpg', frame)
|
||||
response = make_response(jpg.tobytes())
|
||||
response.headers['Content-Type'] = 'image/jpg'
|
||||
return response
|
||||
else:
|
||||
return "Camera named {} not found".format(camera_name), 404
|
||||
|
||||
def imagestream(camera_name, fps, height):
|
||||
while True:
|
||||
# max out at specified FPS
|
||||
time.sleep(1/fps)
|
||||
frame = object_processor.get_current_frame(camera_name, draw=True)
|
||||
if frame is None:
|
||||
frame = np.zeros((height,int(height*16/9),3), np.uint8)
|
||||
|
||||
width = int(height*frame.shape[1]/frame.shape[0])
|
||||
frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_LINEAR)
|
||||
|
||||
ret, jpg = cv2.imencode('.jpg', frame)
|
||||
yield (b'--frame\r\n'
|
||||
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
|
||||
|
||||
app.run(host='0.0.0.0', port=WEB_PORT, debug=False)
|
||||
|
||||
object_processor.join()
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
@@ -9,7 +9,7 @@ RUN apt-get -qq update \
|
||||
# ffmpeg dependencies
|
||||
libgomp1 \
|
||||
# VAAPI drivers for Intel hardware accel
|
||||
libva-drm2 libva2 i965-va-driver vainfo intel-media-va-driver \
|
||||
libva-drm2 libva2 libmfx1 i965-va-driver vainfo intel-media-va-driver mesa-va-drivers \
|
||||
## Tensorflow lite
|
||||
&& wget -q https://github.com/google-coral/pycoral/releases/download/release-frogfish/tflite_runtime-2.5.0-cp38-cp38-linux_x86_64.whl \
|
||||
&& python3.8 -m pip install tflite_runtime-2.5.0-cp38-cp38-linux_x86_64.whl \
|
||||
|
@@ -1,6 +1,9 @@
|
||||
ARG ARCH=amd64
|
||||
FROM blakeblackshear/frigate-wheels:${ARCH} as wheels
|
||||
FROM blakeblackshear/frigate-ffmpeg:${ARCH} as ffmpeg
|
||||
ARG WHEELS_VERSION
|
||||
ARG FFMPEG_VERSION
|
||||
FROM blakeblackshear/frigate-wheels:${WHEELS_VERSION}-${ARCH} as wheels
|
||||
FROM blakeblackshear/frigate-ffmpeg:${FFMPEG_VERSION}-${ARCH} as ffmpeg
|
||||
FROM frigate-web as web
|
||||
|
||||
FROM ubuntu:20.04
|
||||
LABEL maintainer "blakeb@blakeshome.com"
|
||||
@@ -10,12 +13,13 @@ COPY --from=ffmpeg /usr/local /usr/local/
|
||||
COPY --from=wheels /wheels/. /wheels/
|
||||
|
||||
ENV FLASK_ENV=development
|
||||
# ENV FONTCONFIG_PATH=/etc/fonts
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
# Install packages for apt repo
|
||||
RUN apt-get -qq update \
|
||||
&& apt-get upgrade -y \
|
||||
&& apt-get -qq install --no-install-recommends -y \
|
||||
gnupg wget unzip tzdata \
|
||||
gnupg wget unzip tzdata nginx libnginx-mod-rtmp \
|
||||
&& apt-get -qq install --no-install-recommends -y \
|
||||
python3-pip \
|
||||
&& pip3 install -U /wheels/*.whl \
|
||||
@@ -27,18 +31,28 @@ RUN apt-get -qq update \
|
||||
&& rm -rf /var/lib/apt/lists/* /wheels \
|
||||
&& (apt-get autoremove -y; apt-get autoclean -y)
|
||||
|
||||
# get model and labels
|
||||
ARG MODEL_REFS=7064b94dd5b996189242320359dbab8b52c94a84
|
||||
COPY labelmap.txt /labelmap.txt
|
||||
RUN wget -q https://github.com/google-coral/edgetpu/raw/$MODEL_REFS/test_data/ssd_mobilenet_v2_coco_quant_postprocess_edgetpu.tflite -O /edgetpu_model.tflite
|
||||
RUN wget -q https://github.com/google-coral/edgetpu/raw/$MODEL_REFS/test_data/ssd_mobilenet_v2_coco_quant_postprocess.tflite -O /cpu_model.tflite
|
||||
RUN pip3 install \
|
||||
peewee_migrate \
|
||||
zeroconf \
|
||||
voluptuous
|
||||
|
||||
RUN mkdir /cache /clips
|
||||
COPY nginx/nginx.conf /etc/nginx/nginx.conf
|
||||
|
||||
# get model and labels
|
||||
COPY labelmap.txt /labelmap.txt
|
||||
RUN wget -q https://github.com/google-coral/test_data/raw/master/ssdlite_mobiledet_coco_qat_postprocess_edgetpu.tflite -O /edgetpu_model.tflite
|
||||
RUN wget -q https://github.com/google-coral/test_data/raw/master/ssdlite_mobiledet_coco_qat_postprocess.tflite -O /cpu_model.tflite
|
||||
|
||||
WORKDIR /opt/frigate/
|
||||
ADD frigate frigate/
|
||||
COPY detect_objects.py .
|
||||
COPY benchmark.py .
|
||||
COPY process_clip.py .
|
||||
ADD migrations migrations/
|
||||
|
||||
CMD ["python3", "-u", "detect_objects.py"]
|
||||
COPY --from=web /opt/frigate/build web/
|
||||
|
||||
COPY run.sh /run.sh
|
||||
RUN chmod +x /run.sh
|
||||
|
||||
EXPOSE 5000
|
||||
EXPOSE 1935
|
||||
|
||||
CMD ["/run.sh"]
|
||||
|
@@ -18,12 +18,10 @@ FROM base as build
|
||||
ENV FFMPEG_VERSION=4.3.1 \
|
||||
AOM_VERSION=v1.0.0 \
|
||||
FDKAAC_VERSION=0.1.5 \
|
||||
FONTCONFIG_VERSION=2.12.4 \
|
||||
FREETYPE_VERSION=2.5.5 \
|
||||
FRIBIDI_VERSION=0.19.7 \
|
||||
KVAZAAR_VERSION=1.2.0 \
|
||||
LAME_VERSION=3.100 \
|
||||
LIBASS_VERSION=0.13.7 \
|
||||
LIBPTHREAD_STUBS_VERSION=0.4 \
|
||||
LIBVIDSTAB_VERSION=1.1.0 \
|
||||
LIBXCB_VERSION=1.13.1 \
|
||||
@@ -42,22 +40,17 @@ ENV FFMPEG_VERSION=4.3.1 \
|
||||
XORG_MACROS_VERSION=1.19.2 \
|
||||
XPROTO_VERSION=7.0.31 \
|
||||
XVID_VERSION=1.3.4 \
|
||||
LIBXML2_VERSION=2.9.10 \
|
||||
LIBBLURAY_VERSION=1.1.2 \
|
||||
LIBZMQ_VERSION=4.3.2 \
|
||||
SRC=/usr/local
|
||||
|
||||
ARG FREETYPE_SHA256SUM="5d03dd76c2171a7601e9ce10551d52d4471cf92cd205948e60289251daddffa8 freetype-2.5.5.tar.gz"
|
||||
ARG FRIBIDI_SHA256SUM="3fc96fa9473bd31dcb5500bdf1aa78b337ba13eb8c301e7c28923fea982453a8 0.19.7.tar.gz"
|
||||
ARG LIBASS_SHA256SUM="8fadf294bf701300d4605e6f1d92929304187fca4b8d8a47889315526adbafd7 0.13.7.tar.gz"
|
||||
ARG LIBVIDSTAB_SHA256SUM="14d2a053e56edad4f397be0cb3ef8eb1ec3150404ce99a426c4eb641861dc0bb v1.1.0.tar.gz"
|
||||
ARG OGG_SHA256SUM="e19ee34711d7af328cb26287f4137e70630e7261b17cbe3cd41011d73a654692 libogg-1.3.2.tar.gz"
|
||||
ARG OPUS_SHA256SUM="77db45a87b51578fbc49555ef1b10926179861d854eb2613207dc79d9ec0a9a9 opus-1.2.tar.gz"
|
||||
ARG THEORA_SHA256SUM="40952956c47811928d1e7922cda3bc1f427eb75680c3c37249c91e949054916b libtheora-1.1.1.tar.gz"
|
||||
ARG VORBIS_SHA256SUM="6efbcecdd3e5dfbf090341b485da9d176eb250d893e3eb378c428a2db38301ce libvorbis-1.3.5.tar.gz"
|
||||
ARG XVID_SHA256SUM="4e9fd62728885855bc5007fe1be58df42e5e274497591fec37249e1052ae316f xvidcore-1.3.4.tar.gz"
|
||||
ARG LIBXML2_SHA256SUM="f07dab13bf42d2b8db80620cce7419b3b87827cc937c8bb20fe13b8571ee9501 libxml2-v2.9.10.tar.gz"
|
||||
ARG LIBBLURAY_SHA256SUM="a3dd452239b100dc9da0d01b30e1692693e2a332a7d29917bf84bb10ea7c0b42 libbluray-1.1.2.tar.bz2"
|
||||
ARG LIBZMQ_SHA256SUM="02ecc88466ae38cf2c8d79f09cfd2675ba299a439680b64ade733e26a349edeb v4.3.2.tar.gz"
|
||||
|
||||
|
||||
@@ -287,30 +280,7 @@ RUN \
|
||||
make -j1 && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
## fontconfig https://www.freedesktop.org/wiki/Software/fontconfig/
|
||||
RUN \
|
||||
DIR=/tmp/fontconfig && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://www.freedesktop.org/software/fontconfig/release/fontconfig-${FONTCONFIG_VERSION}.tar.bz2 && \
|
||||
tar -jx --strip-components=1 -f fontconfig-${FONTCONFIG_VERSION}.tar.bz2 && \
|
||||
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
## libass https://github.com/libass/libass
|
||||
RUN \
|
||||
DIR=/tmp/libass && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://github.com/libass/libass/archive/${LIBASS_VERSION}.tar.gz && \
|
||||
echo ${LIBASS_SHA256SUM} | sha256sum --check && \
|
||||
tar -zx --strip-components=1 -f ${LIBASS_VERSION}.tar.gz && \
|
||||
./autogen.sh && \
|
||||
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
## kvazaar https://github.com/ultravideo/kvazaar
|
||||
RUN \
|
||||
DIR=/tmp/kvazaar && \
|
||||
@@ -407,32 +377,6 @@ RUN \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
## libxml2 - for libbluray
|
||||
RUN \
|
||||
DIR=/tmp/libxml2 && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://gitlab.gnome.org/GNOME/libxml2/-/archive/v${LIBXML2_VERSION}/libxml2-v${LIBXML2_VERSION}.tar.gz && \
|
||||
echo ${LIBXML2_SHA256SUM} | sha256sum --check && \
|
||||
tar -xz --strip-components=1 -f libxml2-v${LIBXML2_VERSION}.tar.gz && \
|
||||
./autogen.sh --prefix="${PREFIX}" --with-ftp=no --with-http=no --with-python=no && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
## libbluray - Requires libxml, freetype, and fontconfig
|
||||
RUN \
|
||||
DIR=/tmp/libbluray && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://download.videolan.org/pub/videolan/libbluray/${LIBBLURAY_VERSION}/libbluray-${LIBBLURAY_VERSION}.tar.bz2 && \
|
||||
echo ${LIBBLURAY_SHA256SUM} | sha256sum --check && \
|
||||
tar -jx --strip-components=1 -f libbluray-${LIBBLURAY_VERSION}.tar.bz2 && \
|
||||
./configure --prefix="${PREFIX}" --disable-examples --disable-bdjava-jar --disable-static --enable-shared && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
## libzmq https://github.com/zeromq/libzmq/
|
||||
RUN \
|
||||
DIR=/tmp/libzmq && \
|
||||
@@ -465,8 +409,6 @@ RUN \
|
||||
--enable-libopencore-amrnb \
|
||||
--enable-libopencore-amrwb \
|
||||
--enable-gpl \
|
||||
--enable-libass \
|
||||
--enable-fontconfig \
|
||||
--enable-libfreetype \
|
||||
--enable-libvidstab \
|
||||
--enable-libmp3lame \
|
||||
@@ -485,7 +427,6 @@ RUN \
|
||||
--enable-postproc \
|
||||
--enable-small \
|
||||
--enable-version3 \
|
||||
--enable-libbluray \
|
||||
--enable-libzmq \
|
||||
--extra-libs=-ldl \
|
||||
--prefix="${PREFIX}" \
|
||||
|
@@ -17,12 +17,10 @@ FROM base as build
|
||||
ENV FFMPEG_VERSION=4.3.1 \
|
||||
AOM_VERSION=v1.0.0 \
|
||||
FDKAAC_VERSION=0.1.5 \
|
||||
FONTCONFIG_VERSION=2.12.4 \
|
||||
FREETYPE_VERSION=2.5.5 \
|
||||
FRIBIDI_VERSION=0.19.7 \
|
||||
KVAZAAR_VERSION=1.2.0 \
|
||||
LAME_VERSION=3.100 \
|
||||
LIBASS_VERSION=0.13.7 \
|
||||
LIBPTHREAD_STUBS_VERSION=0.4 \
|
||||
LIBVIDSTAB_VERSION=1.1.0 \
|
||||
LIBXCB_VERSION=1.13.1 \
|
||||
@@ -41,22 +39,17 @@ ENV FFMPEG_VERSION=4.3.1 \
|
||||
XORG_MACROS_VERSION=1.19.2 \
|
||||
XPROTO_VERSION=7.0.31 \
|
||||
XVID_VERSION=1.3.4 \
|
||||
LIBXML2_VERSION=2.9.10 \
|
||||
LIBBLURAY_VERSION=1.1.2 \
|
||||
LIBZMQ_VERSION=4.3.2 \
|
||||
SRC=/usr/local
|
||||
|
||||
ARG FREETYPE_SHA256SUM="5d03dd76c2171a7601e9ce10551d52d4471cf92cd205948e60289251daddffa8 freetype-2.5.5.tar.gz"
|
||||
ARG FRIBIDI_SHA256SUM="3fc96fa9473bd31dcb5500bdf1aa78b337ba13eb8c301e7c28923fea982453a8 0.19.7.tar.gz"
|
||||
ARG LIBASS_SHA256SUM="8fadf294bf701300d4605e6f1d92929304187fca4b8d8a47889315526adbafd7 0.13.7.tar.gz"
|
||||
ARG LIBVIDSTAB_SHA256SUM="14d2a053e56edad4f397be0cb3ef8eb1ec3150404ce99a426c4eb641861dc0bb v1.1.0.tar.gz"
|
||||
ARG OGG_SHA256SUM="e19ee34711d7af328cb26287f4137e70630e7261b17cbe3cd41011d73a654692 libogg-1.3.2.tar.gz"
|
||||
ARG OPUS_SHA256SUM="77db45a87b51578fbc49555ef1b10926179861d854eb2613207dc79d9ec0a9a9 opus-1.2.tar.gz"
|
||||
ARG THEORA_SHA256SUM="40952956c47811928d1e7922cda3bc1f427eb75680c3c37249c91e949054916b libtheora-1.1.1.tar.gz"
|
||||
ARG VORBIS_SHA256SUM="6efbcecdd3e5dfbf090341b485da9d176eb250d893e3eb378c428a2db38301ce libvorbis-1.3.5.tar.gz"
|
||||
ARG XVID_SHA256SUM="4e9fd62728885855bc5007fe1be58df42e5e274497591fec37249e1052ae316f xvidcore-1.3.4.tar.gz"
|
||||
ARG LIBXML2_SHA256SUM="f07dab13bf42d2b8db80620cce7419b3b87827cc937c8bb20fe13b8571ee9501 libxml2-v2.9.10.tar.gz"
|
||||
ARG LIBBLURAY_SHA256SUM="a3dd452239b100dc9da0d01b30e1692693e2a332a7d29917bf84bb10ea7c0b42 libbluray-1.1.2.tar.bz2"
|
||||
ARG LIBZMQ_SHA256SUM="02ecc88466ae38cf2c8d79f09cfd2675ba299a439680b64ade733e26a349edeb v4.3.2.tar.gz"
|
||||
|
||||
|
||||
@@ -86,6 +79,7 @@ RUN buildDeps="autoconf \
|
||||
libssl-dev \
|
||||
yasm \
|
||||
libva-dev \
|
||||
libmfx-dev \
|
||||
zlib1g-dev" && \
|
||||
apt-get -yqq update && \
|
||||
apt-get install -yq --no-install-recommends ${buildDeps}
|
||||
@@ -281,30 +275,6 @@ RUN \
|
||||
make -j1 && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
## fontconfig https://www.freedesktop.org/wiki/Software/fontconfig/
|
||||
RUN \
|
||||
DIR=/tmp/fontconfig && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://www.freedesktop.org/software/fontconfig/release/fontconfig-${FONTCONFIG_VERSION}.tar.bz2 && \
|
||||
tar -jx --strip-components=1 -f fontconfig-${FONTCONFIG_VERSION}.tar.bz2 && \
|
||||
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
## libass https://github.com/libass/libass
|
||||
RUN \
|
||||
DIR=/tmp/libass && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://github.com/libass/libass/archive/${LIBASS_VERSION}.tar.gz && \
|
||||
echo ${LIBASS_SHA256SUM} | sha256sum --check && \
|
||||
tar -zx --strip-components=1 -f ${LIBASS_VERSION}.tar.gz && \
|
||||
./autogen.sh && \
|
||||
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
## kvazaar https://github.com/ultravideo/kvazaar
|
||||
RUN \
|
||||
DIR=/tmp/kvazaar && \
|
||||
@@ -399,32 +369,6 @@ RUN \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
## libxml2 - for libbluray
|
||||
RUN \
|
||||
DIR=/tmp/libxml2 && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://gitlab.gnome.org/GNOME/libxml2/-/archive/v${LIBXML2_VERSION}/libxml2-v${LIBXML2_VERSION}.tar.gz && \
|
||||
echo ${LIBXML2_SHA256SUM} | sha256sum --check && \
|
||||
tar -xz --strip-components=1 -f libxml2-v${LIBXML2_VERSION}.tar.gz && \
|
||||
./autogen.sh --prefix="${PREFIX}" --with-ftp=no --with-http=no --with-python=no && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
## libbluray - Requires libxml, freetype, and fontconfig
|
||||
RUN \
|
||||
DIR=/tmp/libbluray && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://download.videolan.org/pub/videolan/libbluray/${LIBBLURAY_VERSION}/libbluray-${LIBBLURAY_VERSION}.tar.bz2 && \
|
||||
echo ${LIBBLURAY_SHA256SUM} | sha256sum --check && \
|
||||
tar -jx --strip-components=1 -f libbluray-${LIBBLURAY_VERSION}.tar.bz2 && \
|
||||
./configure --prefix="${PREFIX}" --disable-examples --disable-bdjava-jar --disable-static --enable-shared && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
## libzmq https://github.com/zeromq/libzmq/
|
||||
RUN \
|
||||
DIR=/tmp/libzmq && \
|
||||
@@ -459,10 +403,9 @@ RUN \
|
||||
--enable-libopencore-amrnb \
|
||||
--enable-libopencore-amrwb \
|
||||
--enable-gpl \
|
||||
--enable-libass \
|
||||
--enable-fontconfig \
|
||||
--enable-libfreetype \
|
||||
--enable-libvidstab \
|
||||
--enable-libmfx \
|
||||
--enable-libmp3lame \
|
||||
--enable-libopus \
|
||||
--enable-libtheora \
|
||||
@@ -479,7 +422,6 @@ RUN \
|
||||
--enable-postproc \
|
||||
--enable-small \
|
||||
--enable-version3 \
|
||||
--enable-libbluray \
|
||||
--enable-libzmq \
|
||||
--extra-libs=-ldl \
|
||||
--prefix="${PREFIX}" \
|
||||
@@ -522,5 +464,5 @@ COPY --from=build /usr/local /usr/local/
|
||||
|
||||
RUN \
|
||||
apt-get update -y && \
|
||||
apt-get install -y --no-install-recommends libva-drm2 libva2 i965-va-driver && \
|
||||
apt-get install -y --no-install-recommends libva-drm2 libva2 i965-va-driver mesa-va-drivers && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
|
@@ -40,12 +40,10 @@ ENV NVIDIA_HEADERS_VERSION=9.1.23.1
|
||||
ENV FFMPEG_VERSION=4.3.1 \
|
||||
AOM_VERSION=v1.0.0 \
|
||||
FDKAAC_VERSION=0.1.5 \
|
||||
FONTCONFIG_VERSION=2.12.4 \
|
||||
FREETYPE_VERSION=2.5.5 \
|
||||
FRIBIDI_VERSION=0.19.7 \
|
||||
KVAZAAR_VERSION=1.2.0 \
|
||||
LAME_VERSION=3.100 \
|
||||
LIBASS_VERSION=0.13.7 \
|
||||
LIBPTHREAD_STUBS_VERSION=0.4 \
|
||||
LIBVIDSTAB_VERSION=1.1.0 \
|
||||
LIBXCB_VERSION=1.13.1 \
|
||||
@@ -64,8 +62,6 @@ ENV FFMPEG_VERSION=4.3.1 \
|
||||
XORG_MACROS_VERSION=1.19.2 \
|
||||
XPROTO_VERSION=7.0.31 \
|
||||
XVID_VERSION=1.3.4 \
|
||||
LIBXML2_VERSION=2.9.10 \
|
||||
LIBBLURAY_VERSION=1.1.2 \
|
||||
LIBZMQ_VERSION=4.3.2 \
|
||||
LIBSRT_VERSION=1.4.1 \
|
||||
LIBARIBB24_VERSION=1.0.3 \
|
||||
@@ -74,15 +70,12 @@ ENV FFMPEG_VERSION=4.3.1 \
|
||||
|
||||
ARG FREETYPE_SHA256SUM="5d03dd76c2171a7601e9ce10551d52d4471cf92cd205948e60289251daddffa8 freetype-2.5.5.tar.gz"
|
||||
ARG FRIBIDI_SHA256SUM="3fc96fa9473bd31dcb5500bdf1aa78b337ba13eb8c301e7c28923fea982453a8 0.19.7.tar.gz"
|
||||
ARG LIBASS_SHA256SUM="8fadf294bf701300d4605e6f1d92929304187fca4b8d8a47889315526adbafd7 0.13.7.tar.gz"
|
||||
ARG LIBVIDSTAB_SHA256SUM="14d2a053e56edad4f397be0cb3ef8eb1ec3150404ce99a426c4eb641861dc0bb v1.1.0.tar.gz"
|
||||
ARG OGG_SHA256SUM="e19ee34711d7af328cb26287f4137e70630e7261b17cbe3cd41011d73a654692 libogg-1.3.2.tar.gz"
|
||||
ARG OPUS_SHA256SUM="77db45a87b51578fbc49555ef1b10926179861d854eb2613207dc79d9ec0a9a9 opus-1.2.tar.gz"
|
||||
ARG THEORA_SHA256SUM="40952956c47811928d1e7922cda3bc1f427eb75680c3c37249c91e949054916b libtheora-1.1.1.tar.gz"
|
||||
ARG VORBIS_SHA256SUM="6efbcecdd3e5dfbf090341b485da9d176eb250d893e3eb378c428a2db38301ce libvorbis-1.3.5.tar.gz"
|
||||
ARG XVID_SHA256SUM="4e9fd62728885855bc5007fe1be58df42e5e274497591fec37249e1052ae316f xvidcore-1.3.4.tar.gz"
|
||||
ARG LIBXML2_SHA256SUM="f07dab13bf42d2b8db80620cce7419b3b87827cc937c8bb20fe13b8571ee9501 libxml2-v2.9.10.tar.gz"
|
||||
ARG LIBBLURAY_SHA256SUM="a3dd452239b100dc9da0d01b30e1692693e2a332a7d29917bf84bb10ea7c0b42 libbluray-1.1.2.tar.bz2"
|
||||
ARG LIBZMQ_SHA256SUM="02ecc88466ae38cf2c8d79f09cfd2675ba299a439680b64ade733e26a349edeb v4.3.2.tar.gz"
|
||||
ARG LIBARIBB24_SHA256SUM="f61560738926e57f9173510389634d8c06cabedfa857db4b28fb7704707ff128 v1.0.3.tar.gz"
|
||||
|
||||
@@ -317,30 +310,6 @@ RUN \
|
||||
make -j1 && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
## fontconfig https://www.freedesktop.org/wiki/Software/fontconfig/
|
||||
RUN \
|
||||
DIR=/tmp/fontconfig && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://www.freedesktop.org/software/fontconfig/release/fontconfig-${FONTCONFIG_VERSION}.tar.bz2 && \
|
||||
tar -jx --strip-components=1 -f fontconfig-${FONTCONFIG_VERSION}.tar.bz2 && \
|
||||
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
## libass https://github.com/libass/libass
|
||||
RUN \
|
||||
DIR=/tmp/libass && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://github.com/libass/libass/archive/${LIBASS_VERSION}.tar.gz && \
|
||||
echo ${LIBASS_SHA256SUM} | sha256sum --check && \
|
||||
tar -zx --strip-components=1 -f ${LIBASS_VERSION}.tar.gz && \
|
||||
./autogen.sh && \
|
||||
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
## kvazaar https://github.com/ultravideo/kvazaar
|
||||
RUN \
|
||||
DIR=/tmp/kvazaar && \
|
||||
@@ -435,32 +404,6 @@ RUN \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
## libxml2 - for libbluray
|
||||
RUN \
|
||||
DIR=/tmp/libxml2 && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://gitlab.gnome.org/GNOME/libxml2/-/archive/v${LIBXML2_VERSION}/libxml2-v${LIBXML2_VERSION}.tar.gz && \
|
||||
echo ${LIBXML2_SHA256SUM} | sha256sum --check && \
|
||||
tar -xz --strip-components=1 -f libxml2-v${LIBXML2_VERSION}.tar.gz && \
|
||||
./autogen.sh --prefix="${PREFIX}" --with-ftp=no --with-http=no --with-python=no && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
## libbluray - Requires libxml, freetype, and fontconfig
|
||||
RUN \
|
||||
DIR=/tmp/libbluray && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://download.videolan.org/pub/videolan/libbluray/${LIBBLURAY_VERSION}/libbluray-${LIBBLURAY_VERSION}.tar.bz2 && \
|
||||
echo ${LIBBLURAY_SHA256SUM} | sha256sum --check && \
|
||||
tar -jx --strip-components=1 -f libbluray-${LIBBLURAY_VERSION}.tar.bz2 && \
|
||||
./configure --prefix="${PREFIX}" --disable-examples --disable-bdjava-jar --disable-static --enable-shared && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
## libzmq https://github.com/zeromq/libzmq/
|
||||
RUN \
|
||||
DIR=/tmp/libzmq && \
|
||||
@@ -533,8 +476,6 @@ RUN \
|
||||
--enable-libopencore-amrnb \
|
||||
--enable-libopencore-amrwb \
|
||||
--enable-gpl \
|
||||
--enable-libass \
|
||||
--enable-fontconfig \
|
||||
--enable-libfreetype \
|
||||
--enable-libvidstab \
|
||||
--enable-libmp3lame \
|
||||
@@ -553,7 +494,6 @@ RUN \
|
||||
--enable-postproc \
|
||||
--enable-small \
|
||||
--enable-version3 \
|
||||
--enable-libbluray \
|
||||
--enable-libzmq \
|
||||
--extra-libs=-ldl \
|
||||
--prefix="${PREFIX}" \
|
||||
@@ -593,7 +533,6 @@ RUN \
|
||||
|
||||
|
||||
FROM runtime-base AS release
|
||||
MAINTAINER Julien Rottenberg <julien@rottenberg.info>
|
||||
|
||||
ENV LD_LIBRARY_PATH=/usr/local/lib:/usr/local/lib64
|
||||
|
||||
|
@@ -18,12 +18,10 @@ FROM base as build
|
||||
ENV FFMPEG_VERSION=4.3.1 \
|
||||
AOM_VERSION=v1.0.0 \
|
||||
FDKAAC_VERSION=0.1.5 \
|
||||
FONTCONFIG_VERSION=2.12.4 \
|
||||
FREETYPE_VERSION=2.5.5 \
|
||||
FRIBIDI_VERSION=0.19.7 \
|
||||
KVAZAAR_VERSION=1.2.0 \
|
||||
LAME_VERSION=3.100 \
|
||||
LIBASS_VERSION=0.13.7 \
|
||||
LIBPTHREAD_STUBS_VERSION=0.4 \
|
||||
LIBVIDSTAB_VERSION=1.1.0 \
|
||||
LIBXCB_VERSION=1.13.1 \
|
||||
@@ -42,22 +40,17 @@ ENV FFMPEG_VERSION=4.3.1 \
|
||||
XORG_MACROS_VERSION=1.19.2 \
|
||||
XPROTO_VERSION=7.0.31 \
|
||||
XVID_VERSION=1.3.4 \
|
||||
LIBXML2_VERSION=2.9.10 \
|
||||
LIBBLURAY_VERSION=1.1.2 \
|
||||
LIBZMQ_VERSION=4.3.3 \
|
||||
SRC=/usr/local
|
||||
|
||||
ARG FREETYPE_SHA256SUM="5d03dd76c2171a7601e9ce10551d52d4471cf92cd205948e60289251daddffa8 freetype-2.5.5.tar.gz"
|
||||
ARG FRIBIDI_SHA256SUM="3fc96fa9473bd31dcb5500bdf1aa78b337ba13eb8c301e7c28923fea982453a8 0.19.7.tar.gz"
|
||||
ARG LIBASS_SHA256SUM="8fadf294bf701300d4605e6f1d92929304187fca4b8d8a47889315526adbafd7 0.13.7.tar.gz"
|
||||
ARG LIBVIDSTAB_SHA256SUM="14d2a053e56edad4f397be0cb3ef8eb1ec3150404ce99a426c4eb641861dc0bb v1.1.0.tar.gz"
|
||||
ARG OGG_SHA256SUM="e19ee34711d7af328cb26287f4137e70630e7261b17cbe3cd41011d73a654692 libogg-1.3.2.tar.gz"
|
||||
ARG OPUS_SHA256SUM="77db45a87b51578fbc49555ef1b10926179861d854eb2613207dc79d9ec0a9a9 opus-1.2.tar.gz"
|
||||
ARG THEORA_SHA256SUM="40952956c47811928d1e7922cda3bc1f427eb75680c3c37249c91e949054916b libtheora-1.1.1.tar.gz"
|
||||
ARG VORBIS_SHA256SUM="6efbcecdd3e5dfbf090341b485da9d176eb250d893e3eb378c428a2db38301ce libvorbis-1.3.5.tar.gz"
|
||||
ARG XVID_SHA256SUM="4e9fd62728885855bc5007fe1be58df42e5e274497591fec37249e1052ae316f xvidcore-1.3.4.tar.gz"
|
||||
ARG LIBXML2_SHA256SUM="f07dab13bf42d2b8db80620cce7419b3b87827cc937c8bb20fe13b8571ee9501 libxml2-v2.9.10.tar.gz"
|
||||
ARG LIBBLURAY_SHA256SUM="a3dd452239b100dc9da0d01b30e1692693e2a332a7d29917bf84bb10ea7c0b42 libbluray-1.1.2.tar.bz2"
|
||||
|
||||
|
||||
ARG LD_LIBRARY_PATH=/opt/ffmpeg/lib
|
||||
@@ -289,30 +282,7 @@ RUN \
|
||||
make -j1 && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
## fontconfig https://www.freedesktop.org/wiki/Software/fontconfig/
|
||||
RUN \
|
||||
DIR=/tmp/fontconfig && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://www.freedesktop.org/software/fontconfig/release/fontconfig-${FONTCONFIG_VERSION}.tar.bz2 && \
|
||||
tar -jx --strip-components=1 -f fontconfig-${FONTCONFIG_VERSION}.tar.bz2 && \
|
||||
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
## libass https://github.com/libass/libass
|
||||
RUN \
|
||||
DIR=/tmp/libass && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://github.com/libass/libass/archive/${LIBASS_VERSION}.tar.gz && \
|
||||
echo ${LIBASS_SHA256SUM} | sha256sum --check && \
|
||||
tar -zx --strip-components=1 -f ${LIBASS_VERSION}.tar.gz && \
|
||||
./autogen.sh && \
|
||||
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
## kvazaar https://github.com/ultravideo/kvazaar
|
||||
RUN \
|
||||
DIR=/tmp/kvazaar && \
|
||||
@@ -409,32 +379,6 @@ RUN \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
## libxml2 - for libbluray
|
||||
RUN \
|
||||
DIR=/tmp/libxml2 && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://gitlab.gnome.org/GNOME/libxml2/-/archive/v${LIBXML2_VERSION}/libxml2-v${LIBXML2_VERSION}.tar.gz && \
|
||||
echo ${LIBXML2_SHA256SUM} | sha256sum --check && \
|
||||
tar -xz --strip-components=1 -f libxml2-v${LIBXML2_VERSION}.tar.gz && \
|
||||
./autogen.sh --prefix="${PREFIX}" --with-ftp=no --with-http=no --with-python=no && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
## libbluray - Requires libxml, freetype, and fontconfig
|
||||
RUN \
|
||||
DIR=/tmp/libbluray && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://download.videolan.org/pub/videolan/libbluray/${LIBBLURAY_VERSION}/libbluray-${LIBBLURAY_VERSION}.tar.bz2 && \
|
||||
echo ${LIBBLURAY_SHA256SUM} | sha256sum --check && \
|
||||
tar -jx --strip-components=1 -f libbluray-${LIBBLURAY_VERSION}.tar.bz2 && \
|
||||
./configure --prefix="${PREFIX}" --disable-examples --disable-bdjava-jar --disable-static --enable-shared && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
## libzmq https://github.com/zeromq/libzmq/
|
||||
RUN \
|
||||
DIR=/tmp/libzmq && \
|
||||
@@ -475,8 +419,6 @@ RUN \
|
||||
--enable-libopencore-amrnb \
|
||||
--enable-libopencore-amrwb \
|
||||
--enable-gpl \
|
||||
--enable-libass \
|
||||
--enable-fontconfig \
|
||||
--enable-libfreetype \
|
||||
--enable-libvidstab \
|
||||
--enable-libmp3lame \
|
||||
@@ -495,7 +437,6 @@ RUN \
|
||||
--enable-postproc \
|
||||
--enable-small \
|
||||
--enable-version3 \
|
||||
--enable-libbluray \
|
||||
--enable-libzmq \
|
||||
--extra-libs=-ldl \
|
||||
--prefix="${PREFIX}" \
|
||||
|
9
docker/Dockerfile.web
Normal file
@@ -0,0 +1,9 @@
|
||||
ARG NODE_VERSION=14.0
|
||||
|
||||
FROM node:${NODE_VERSION}
|
||||
|
||||
WORKDIR /opt/frigate
|
||||
|
||||
COPY . .
|
||||
|
||||
RUN npm install && npm run build
|
@@ -18,13 +18,14 @@ RUN apt-get -qq update \
|
||||
gcc gfortran libopenblas-dev liblapack-dev cython
|
||||
|
||||
RUN wget -q https://bootstrap.pypa.io/get-pip.py -O get-pip.py \
|
||||
&& python3 get-pip.py
|
||||
&& python3 get-pip.py "pip==20.2.4"
|
||||
|
||||
RUN pip3 install scikit-build
|
||||
|
||||
RUN pip3 wheel --wheel-dir=/wheels \
|
||||
opencv-python-headless \
|
||||
numpy \
|
||||
# pinning due to issue in 1.19.5 https://github.com/numpy/numpy/issues/18131
|
||||
numpy==1.19.4 \
|
||||
imutils \
|
||||
scipy \
|
||||
psutil \
|
||||
@@ -32,7 +33,9 @@ RUN pip3 wheel --wheel-dir=/wheels \
|
||||
paho-mqtt \
|
||||
PyYAML \
|
||||
matplotlib \
|
||||
click
|
||||
click \
|
||||
setproctitle \
|
||||
peewee
|
||||
|
||||
FROM scratch
|
||||
|
||||
|
@@ -1,49 +0,0 @@
|
||||
FROM ubuntu:20.04 as build
|
||||
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
RUN apt-get -qq update \
|
||||
&& apt-get -qq install -y \
|
||||
python3 \
|
||||
python3-dev \
|
||||
wget \
|
||||
# opencv dependencies
|
||||
build-essential cmake git pkg-config libgtk-3-dev \
|
||||
libavcodec-dev libavformat-dev libswscale-dev libv4l-dev \
|
||||
libxvidcore-dev libx264-dev libjpeg-dev libpng-dev libtiff-dev \
|
||||
gfortran openexr libatlas-base-dev libssl-dev\
|
||||
libtbb2 libtbb-dev libdc1394-22-dev libopenexr-dev \
|
||||
libgstreamer-plugins-base1.0-dev libgstreamer1.0-dev \
|
||||
# scipy dependencies
|
||||
gcc gfortran libopenblas-dev liblapack-dev cython
|
||||
|
||||
RUN wget -q https://bootstrap.pypa.io/get-pip.py -O get-pip.py \
|
||||
&& python3 get-pip.py
|
||||
|
||||
# need to build cmake from source because binary distribution is broken for arm64
|
||||
# https://github.com/scikit-build/cmake-python-distributions/issues/115
|
||||
# https://github.com/skvark/opencv-python/issues/366
|
||||
# https://github.com/scikit-build/cmake-python-distributions/issues/96#issuecomment-663062358
|
||||
RUN pip3 install scikit-build
|
||||
|
||||
RUN git clone https://github.com/scikit-build/cmake-python-distributions.git \
|
||||
&& cd cmake-python-distributions/ \
|
||||
&& python3 setup.py bdist_wheel
|
||||
|
||||
RUN pip3 install cmake-python-distributions/dist/*.whl
|
||||
|
||||
RUN pip3 wheel --wheel-dir=/wheels \
|
||||
opencv-python-headless \
|
||||
numpy \
|
||||
imutils \
|
||||
scipy \
|
||||
psutil \
|
||||
Flask \
|
||||
paho-mqtt \
|
||||
PyYAML \
|
||||
matplotlib \
|
||||
click
|
||||
|
||||
FROM scratch
|
||||
|
||||
COPY --from=build /wheels /wheels
|
20
docs/.gitignore
vendored
Normal file
@@ -0,0 +1,20 @@
|
||||
# Dependencies
|
||||
/node_modules
|
||||
|
||||
# Production
|
||||
/build
|
||||
|
||||
# Generated files
|
||||
.docusaurus
|
||||
.cache-loader
|
||||
|
||||
# Misc
|
||||
.DS_Store
|
||||
.env.local
|
||||
.env.development.local
|
||||
.env.test.local
|
||||
.env.production.local
|
||||
|
||||
npm-debug.log*
|
||||
yarn-debug.log*
|
||||
yarn-error.log*
|
33
docs/README.md
Normal file
@@ -0,0 +1,33 @@
|
||||
# Website
|
||||
|
||||
This website is built using [Docusaurus 2](https://v2.docusaurus.io/), a modern static website generator.
|
||||
|
||||
## Installation
|
||||
|
||||
```console
|
||||
yarn install
|
||||
```
|
||||
|
||||
## Local Development
|
||||
|
||||
```console
|
||||
yarn start
|
||||
```
|
||||
|
||||
This command starts a local development server and open up a browser window. Most changes are reflected live without having to restart the server.
|
||||
|
||||
## Build
|
||||
|
||||
```console
|
||||
yarn build
|
||||
```
|
||||
|
||||
This command generates static content into the `build` directory and can be served using any static contents hosting service.
|
||||
|
||||
## Deployment
|
||||
|
||||
```console
|
||||
GIT_USER=<Your GitHub username> USE_SSH=true yarn deploy
|
||||
```
|
||||
|
||||
If you are using GitHub pages for hosting, this command is a convenient way to build the website and push to the `gh-pages` branch.
|
3
docs/babel.config.js
Normal file
@@ -0,0 +1,3 @@
|
||||
module.exports = {
|
||||
presets: [require.resolve('@docusaurus/core/lib/babel/preset')],
|
||||
};
|
@@ -1,21 +0,0 @@
|
||||
# Camera Specific Configuration
|
||||
Frigate should work with most RTSP cameras and h264 feeds such as Dahua.
|
||||
|
||||
## RTMP Cameras
|
||||
The input parameters need to be adjusted for RTMP cameras
|
||||
```yaml
|
||||
ffmpeg:
|
||||
input_args:
|
||||
- -avoid_negative_ts
|
||||
- make_zero
|
||||
- -fflags
|
||||
- nobuffer
|
||||
- -flags
|
||||
- low_delay
|
||||
- -strict
|
||||
- experimental
|
||||
- -fflags
|
||||
- +genpts+discardcorrupt
|
||||
- -use_wallclock_as_timestamps
|
||||
- '1'
|
||||
```
|
139
docs/docs/configuration/advanced.md
Normal file
@@ -0,0 +1,139 @@
|
||||
---
|
||||
id: advanced
|
||||
title: Advanced
|
||||
sidebar_label: Advanced
|
||||
---
|
||||
|
||||
## Advanced configuration
|
||||
|
||||
### `motion`
|
||||
|
||||
Global motion detection config. These may also be defined at the camera level.
|
||||
|
||||
```yaml
|
||||
motion:
|
||||
# Optional: The threshold passed to cv2.threshold to determine if a pixel is different enough to be counted as motion. (default: shown below)
|
||||
# Increasing this value will make motion detection less sensitive and decreasing it will make motion detection more sensitive.
|
||||
# The value should be between 1 and 255.
|
||||
threshold: 25
|
||||
# Optional: Minimum size in pixels in the resized motion image that counts as motion
|
||||
# Increasing this value will prevent smaller areas of motion from being detected. Decreasing will make motion detection more sensitive to smaller
|
||||
# moving objects.
|
||||
contour_area: 100
|
||||
# Optional: Alpha value passed to cv2.accumulateWeighted when averaging the motion delta across multiple frames (default: shown below)
|
||||
# Higher values mean the current frame impacts the delta a lot, and a single raindrop may register as motion.
|
||||
# Too low and a fast moving person wont be detected as motion.
|
||||
delta_alpha: 0.2
|
||||
# Optional: Alpha value passed to cv2.accumulateWeighted when averaging frames to determine the background (default: shown below)
|
||||
# Higher values mean the current frame impacts the average a lot, and a new object will be averaged into the background faster.
|
||||
# Low values will cause things like moving shadows to be detected as motion for longer.
|
||||
# https://www.geeksforgeeks.org/background-subtraction-in-an-image-using-concept-of-running-average/
|
||||
frame_alpha: 0.2
|
||||
# Optional: Height of the resized motion frame (default: 1/6th of the original frame height)
|
||||
# This operates as an efficient blur alternative. Higher values will result in more granular motion detection at the expense of higher CPU usage.
|
||||
# Lower values result in less CPU, but small changes may not register as motion.
|
||||
frame_height: 180
|
||||
```
|
||||
|
||||
### `detect`
|
||||
|
||||
Global object detection settings. These may also be defined at the camera level.
|
||||
|
||||
```yaml
|
||||
detect:
|
||||
# Optional: Number of frames without a detection before frigate considers an object to be gone. (default: double the frame rate)
|
||||
max_disappeared: 10
|
||||
```
|
||||
|
||||
### `logger`
|
||||
|
||||
Change the default log level for troubleshooting purposes.
|
||||
|
||||
```yaml
|
||||
logger:
|
||||
# Optional: default log level (default: shown below)
|
||||
default: info
|
||||
# Optional: module by module log level configuration
|
||||
logs:
|
||||
frigate.mqtt: error
|
||||
```
|
||||
|
||||
Available log levels are: `debug`, `info`, `warning`, `error`, `critical`
|
||||
|
||||
Examples of available modules are:
|
||||
|
||||
- `frigate.app`
|
||||
- `frigate.mqtt`
|
||||
- `frigate.edgetpu`
|
||||
- `frigate.zeroconf`
|
||||
- `detector.<detector_name>`
|
||||
- `watchdog.<camera_name>`
|
||||
- `ffmpeg.<camera_name>.<sorted_roles>` NOTE: All FFmpeg logs are sent as `error` level.
|
||||
|
||||
### `environment_vars`
|
||||
|
||||
This section can be used to set environment variables for those unable to modify the environment of the container (ie. within Hass.io)
|
||||
|
||||
```yaml
|
||||
environment_vars:
|
||||
EXAMPLE_VAR: value
|
||||
```
|
||||
|
||||
### `database`
|
||||
|
||||
Event and clip information is managed in a sqlite database at `/media/frigate/clips/frigate.db`. If that database is deleted, clips will be orphaned and will need to be cleaned up manually. They also won't show up in the Media Browser within HomeAssistant.
|
||||
|
||||
If you are storing your clips on a network share (SMB, NFS, etc), you may get a `database is locked` error message on startup. You can customize the location of the database in the config if necessary.
|
||||
|
||||
This may need to be in a custom location if network storage is used for clips.
|
||||
|
||||
```yaml
|
||||
database:
|
||||
path: /media/frigate/clips/frigate.db
|
||||
```
|
||||
|
||||
### `detectors`
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
# Required: name of the detector
|
||||
coral:
|
||||
# Required: type of the detector
|
||||
# Valid values are 'edgetpu' (requires device property below) and 'cpu'. type: edgetpu
|
||||
# Optional: device name as defined here: https://coral.ai/docs/edgetpu/multiple-edgetpu/#using-the-tensorflow-lite-python-api
|
||||
device: usb
|
||||
# Optional: num_threads value passed to the tflite.Interpreter (default: shown below)
|
||||
# This value is only used for CPU types
|
||||
num_threads: 3
|
||||
```
|
||||
|
||||
### `model`
|
||||
|
||||
```yaml
|
||||
model:
|
||||
# Required: height of the trained model
|
||||
height: 320
|
||||
# Required: width of the trained model
|
||||
width: 320
|
||||
```
|
||||
|
||||
## Custom Models
|
||||
|
||||
Models for both CPU and EdgeTPU (Coral) are bundled in the image. You can use your own models with volume mounts:
|
||||
|
||||
- CPU Model: `/cpu_model.tflite`
|
||||
- EdgeTPU Model: `/edgetpu_model.tflite`
|
||||
- Labels: `/labelmap.txt`
|
||||
|
||||
You also need to update the model width/height in the config if they differ from the defaults.
|
||||
|
||||
### Customizing the Labelmap
|
||||
|
||||
The labelmap can be customized to your needs. A common reason to do this is to combine multiple object types that are easily confused when you don't need to be as granular such as car/truck. You must retain the same number of labels, but you can change the names. To change:
|
||||
|
||||
- Download the [COCO labelmap](https://dl.google.com/coral/canned_models/coco_labels.txt)
|
||||
- Modify the label names as desired. For example, change `7 truck` to `7 car`
|
||||
- Mount the new file at `/labelmap.txt` in the container with an additional volume
|
||||
```
|
||||
-v ./config/labelmap.txt:/labelmap.txt
|
||||
```
|
410
docs/docs/configuration/cameras.md
Normal file
@@ -0,0 +1,410 @@
|
||||
---
|
||||
id: cameras
|
||||
title: Cameras
|
||||
---
|
||||
|
||||
## Setting Up Camera Inputs
|
||||
|
||||
Up to 4 inputs can be configured for each camera and the role of each input can be mixed and matched based on your needs. This allows you to use a lower resolution stream for object detection, but create clips from a higher resolution stream, or vice versa.
|
||||
|
||||
Each role can only be assigned to one input per camera. The options for roles are as follows:
|
||||
|
||||
| Role | Description |
|
||||
| -------- | ------------------------------------------------------------------------------------ |
|
||||
| `detect` | Main feed for object detection |
|
||||
| `clips` | Clips of events from objects detected in the `detect` feed. [docs](#recording-clips) |
|
||||
| `record` | Saves 60 second segments of the video feed. [docs](#247-recordings) |
|
||||
| `rtmp` | Broadcast as an RTMP feed for other services to consume. [docs](#rtmp-streams) |
|
||||
|
||||
### Example
|
||||
|
||||
```yaml
|
||||
mqtt:
|
||||
host: mqtt.server.com
|
||||
cameras:
|
||||
back:
|
||||
ffmpeg:
|
||||
inputs:
|
||||
- path: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/cam/realmonitor?channel=1&subtype=2
|
||||
roles:
|
||||
- detect
|
||||
- rtmp
|
||||
- path: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/live
|
||||
roles:
|
||||
- clips
|
||||
- record
|
||||
width: 1280
|
||||
height: 720
|
||||
fps: 5
|
||||
```
|
||||
|
||||
## Masks & Zones
|
||||
|
||||
### Masks
|
||||
Masks are used to ignore initial detection in areas of your camera's field of view.
|
||||
|
||||
There are two types of masks available:
|
||||
- **Motion masks**: Motion masks are used to prevent unwanted types of motion from triggering detection. Try watching the video feed with `Motion Boxes` enabled to see what may be regularly detected as motion. For example, you want to mask out your timestamp, the sky, rooftops, etc. Keep in mind that this mask only prevents motion from being detected and does not prevent objects from being detected if object detection was started due to motion in unmasked areas. Motion is also used during object tracking to refine the object detection area in the next frame. Over masking will make it more difficult for objects to be tracked. To see this effect, create a mask, and then watch the video feed with `Motion Boxes` enabled again.
|
||||
- **Object filter masks**: Object filter masks are used to filter out false positives for a given object type. These should be used to filter any areas where it is not possible for an object of that type to be. The bottom center of the detected object's bounding box is evaluated against the mask. If it is in a masked area, it is assumed to be a false positive. For example, you may want to mask out rooftops, walls, the sky, treetops for people. For cars, masking locations other than the street or your driveway will tell frigate that anything in your yard is a false positive.
|
||||
|
||||
To create a poly mask:
|
||||
|
||||
1. Visit the [web UI](/usage/web)
|
||||
1. Click the camera you wish to create a mask for
|
||||
1. Click "Mask & Zone creator"
|
||||
1. Click "Add" on the type of mask or zone you would like to create
|
||||
1. Click on the camera's latest image to create a masked area. The yaml representation will be updated in real-time
|
||||
1. When you've finished creating your mask, click "Copy" and paste the contents into your `config.yaml` file and restart Frigate
|
||||
|
||||
Example of a finished row corresponding to the below example image:
|
||||
|
||||
```yaml
|
||||
motion:
|
||||
mask: '0,461,3,0,1919,0,1919,843,1699,492,1344,458,1346,336,973,317,869,375,866,432'
|
||||
```
|
||||
|
||||

|
||||
|
||||
```yaml
|
||||
# Optional: camera level motion config
|
||||
motion:
|
||||
# Optional: motion mask
|
||||
# NOTE: see docs for more detailed info on creating masks
|
||||
mask: 0,900,1080,900,1080,1920,0,1920
|
||||
```
|
||||
|
||||
### Zones
|
||||
|
||||
Zones allow you to define a specific area of the frame and apply additional filters for object types so you can determine whether or not an object is within a particular area. Zones cannot have the same name as a camera. If desired, a single zone can include multiple cameras if you have multiple cameras covering the same area by configuring zones with the same name for each camera.
|
||||
|
||||
During testing, `draw_zones` should be set in the config to draw the zone on the frames so you can adjust as needed. The zone line will increase in thickness when any object enters the zone.
|
||||
|
||||
To create a zone, follow the same steps above for a "Motion mask", but use the section of the web UI for creating a zone instead.
|
||||
|
||||
```yaml
|
||||
# Optional: zones for this camera
|
||||
zones:
|
||||
# Required: name of the zone
|
||||
# NOTE: This must be different than any camera names, but can match with another zone on another
|
||||
# camera.
|
||||
front_steps:
|
||||
# Required: List of x,y coordinates to define the polygon of the zone.
|
||||
# NOTE: Coordinates can be generated at https://www.image-map.net/
|
||||
coordinates: 545,1077,747,939,788,805
|
||||
# Optional: Zone level object filters.
|
||||
# NOTE: The global and camera filters are applied upstream.
|
||||
filters:
|
||||
person:
|
||||
min_area: 5000
|
||||
max_area: 100000
|
||||
threshold: 0.7
|
||||
```
|
||||
|
||||
## Objects
|
||||
|
||||
```yaml
|
||||
# Optional: Camera level object filters config.
|
||||
objects:
|
||||
track:
|
||||
- person
|
||||
- car
|
||||
filters:
|
||||
person:
|
||||
min_area: 5000
|
||||
max_area: 100000
|
||||
min_score: 0.5
|
||||
threshold: 0.7
|
||||
# Optional: mask to prevent this object type from being detected in certain areas (default: no mask)
|
||||
# Checks based on the bottom center of the bounding box of the object
|
||||
mask: 0,0,1000,0,1000,200,0,200
|
||||
```
|
||||
|
||||
## Clips
|
||||
|
||||
Frigate can save video clips without any CPU overhead for encoding by simply copying the stream directly with FFmpeg. It leverages FFmpeg's segment functionality to maintain a cache of video for each camera. The cache files are written to disk at `/tmp/cache` and do not introduce memory overhead. When an object is being tracked, it will extend the cache to ensure it can assemble a clip when the event ends. Once the event ends, it again uses FFmpeg to assemble a clip by combining the video clips without any encoding by the CPU. Assembled clips are are saved to `/media/frigate/clips`. Clips are retained according to the retention settings defined on the config for each object type.
|
||||
|
||||
:::caution
|
||||
Previous versions of frigate included `-vsync drop` in input parameters. This is not compatible with FFmpeg's segment feature and must be removed from your input parameters if you have overrides set.
|
||||
:::
|
||||
|
||||
```yaml
|
||||
clips:
|
||||
# Required: enables clips for the camera (default: shown below)
|
||||
# This value can be set via MQTT and will be updated in startup based on retained value
|
||||
enabled: False
|
||||
# Optional: Number of seconds before the event to include in the clips (default: shown below)
|
||||
pre_capture: 5
|
||||
# Optional: Number of seconds after the event to include in the clips (default: shown below)
|
||||
post_capture: 5
|
||||
# Optional: Objects to save clips for. (default: all tracked objects)
|
||||
objects:
|
||||
- person
|
||||
# Optional: Camera override for retention settings (default: global values)
|
||||
retain:
|
||||
# Required: Default retention days (default: shown below)
|
||||
default: 10
|
||||
# Optional: Per object retention days
|
||||
objects:
|
||||
person: 15
|
||||
```
|
||||
|
||||
## Snapshots
|
||||
|
||||
Frigate can save a snapshot image to `/media/frigate/clips` for each event named as `<camera>-<id>.jpg`.
|
||||
|
||||
```yaml
|
||||
# Optional: Configuration for the jpg snapshots written to the clips directory for each event
|
||||
snapshots:
|
||||
# Optional: Enable writing jpg snapshot to /media/frigate/clips (default: shown below)
|
||||
# This value can be set via MQTT and will be updated in startup based on retained value
|
||||
enabled: False
|
||||
# Optional: print a timestamp on the snapshots (default: shown below)
|
||||
timestamp: False
|
||||
# Optional: draw bounding box on the snapshots (default: shown below)
|
||||
bounding_box: False
|
||||
# Optional: crop the snapshot (default: shown below)
|
||||
crop: False
|
||||
# Optional: height to resize the snapshot to (default: original size)
|
||||
height: 175
|
||||
# Optional: Camera override for retention settings (default: global values)
|
||||
retain:
|
||||
# Required: Default retention days (default: shown below)
|
||||
default: 10
|
||||
# Optional: Per object retention days
|
||||
objects:
|
||||
person: 15
|
||||
```
|
||||
|
||||
## 24/7 Recordings
|
||||
|
||||
24/7 recordings can be enabled and are stored at `/media/frigate/recordings`. The folder structure for the recordings is `YYYY-MM/DD/HH/<camera_name>/MM.SS.mp4`. These recordings are written directly from your camera stream without re-encoding and are available in HomeAssistant's media browser. Each camera supports a configurable retention policy in the config.
|
||||
|
||||
:::caution
|
||||
Previous versions of frigate included `-vsync drop` in input parameters. This is not compatible with FFmpeg's segment feature and must be removed from your input parameters if you have overrides set.
|
||||
:::
|
||||
|
||||
```yaml
|
||||
# Optional: 24/7 recording configuration
|
||||
record:
|
||||
# Optional: Enable recording (default: global setting)
|
||||
enabled: False
|
||||
# Optional: Number of days to retain (default: global setting)
|
||||
retain_days: 30
|
||||
```
|
||||
|
||||
## RTMP streams
|
||||
|
||||
Frigate can re-stream your video feed as a RTMP feed for other applications such as HomeAssistant to utilize it at `rtmp://<frigate_host>/live/<camera_name>`. Port 1935 must be open. This allows you to use a video feed for detection in frigate and HomeAssistant live view at the same time without having to make two separate connections to the camera. The video feed is copied from the original video feed directly to avoid re-encoding. This feed does not include any annotation by Frigate.
|
||||
|
||||
Some video feeds are not compatible with RTMP. If you are experiencing issues, check to make sure your camera feed is h264 with AAC audio. If your camera doesn't support a compatible format for RTMP, you can use the ffmpeg args to re-encode it on the fly at the expense of increased CPU utilization.
|
||||
|
||||
## Full example
|
||||
|
||||
The following is a full example of all of the options together for a camera configuration
|
||||
|
||||
```yaml
|
||||
cameras:
|
||||
# Required: name of the camera
|
||||
back:
|
||||
# Required: ffmpeg settings for the camera
|
||||
ffmpeg:
|
||||
# Required: A list of input streams for the camera. See documentation for more information.
|
||||
inputs:
|
||||
# Required: the path to the stream
|
||||
# NOTE: Environment variables that begin with 'FRIGATE_' may be referenced in {}
|
||||
- path: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/cam/realmonitor?channel=1&subtype=2
|
||||
# Required: list of roles for this stream. valid values are: detect,record,clips,rtmp
|
||||
# NOTICE: In addition to assigning the record, clips, and rtmp roles,
|
||||
# they must also be enabled in the camera config.
|
||||
roles:
|
||||
- detect
|
||||
- rtmp
|
||||
# Optional: stream specific global args (default: inherit)
|
||||
global_args:
|
||||
# Optional: stream specific hwaccel args (default: inherit)
|
||||
hwaccel_args:
|
||||
# Optional: stream specific input args (default: inherit)
|
||||
input_args:
|
||||
|
||||
# Optional: camera specific global args (default: inherit)
|
||||
global_args:
|
||||
# Optional: camera specific hwaccel args (default: inherit)
|
||||
hwaccel_args:
|
||||
# Optional: camera specific input args (default: inherit)
|
||||
input_args:
|
||||
# Optional: camera specific output args (default: inherit)
|
||||
output_args:
|
||||
|
||||
# Required: width of the frame for the input with the detect role
|
||||
width: 1280
|
||||
# Required: height of the frame for the input with the detect role
|
||||
height: 720
|
||||
# Optional: desired fps for your camera for the input with the detect role
|
||||
# NOTE: Recommended value of 5. Ideally, try and reduce your FPS on the camera.
|
||||
# Frigate will attempt to autodetect if not specified.
|
||||
fps: 5
|
||||
|
||||
# Optional: camera level motion config
|
||||
motion:
|
||||
# Optional: motion mask
|
||||
# NOTE: see docs for more detailed info on creating masks
|
||||
mask: 0,900,1080,900,1080,1920,0,1920
|
||||
|
||||
# Optional: timeout for highest scoring image before allowing it
|
||||
# to be replaced by a newer image. (default: shown below)
|
||||
best_image_timeout: 60
|
||||
|
||||
# Optional: zones for this camera
|
||||
zones:
|
||||
# Required: name of the zone
|
||||
# NOTE: This must be different than any camera names, but can match with another zone on another
|
||||
# camera.
|
||||
front_steps:
|
||||
# Required: List of x,y coordinates to define the polygon of the zone.
|
||||
# NOTE: Coordinates can be generated at https://www.image-map.net/
|
||||
coordinates: 545,1077,747,939,788,805
|
||||
# Optional: Zone level object filters.
|
||||
# NOTE: The global and camera filters are applied upstream.
|
||||
filters:
|
||||
person:
|
||||
min_area: 5000
|
||||
max_area: 100000
|
||||
threshold: 0.7
|
||||
|
||||
# Optional: Camera level detect settings
|
||||
detect:
|
||||
# Optional: enables detection for the camera (default: True)
|
||||
# This value can be set via MQTT and will be updated in startup based on retained value
|
||||
enabled: True
|
||||
# Optional: Number of frames without a detection before frigate considers an object to be gone. (default: double the frame rate)
|
||||
max_disappeared: 10
|
||||
|
||||
# Optional: save clips configuration
|
||||
clips:
|
||||
# Required: enables clips for the camera (default: shown below)
|
||||
# This value can be set via MQTT and will be updated in startup based on retained value
|
||||
enabled: False
|
||||
# Optional: Number of seconds before the event to include in the clips (default: shown below)
|
||||
pre_capture: 5
|
||||
# Optional: Number of seconds after the event to include in the clips (default: shown below)
|
||||
post_capture: 5
|
||||
# Optional: Objects to save clips for. (default: all tracked objects)
|
||||
objects:
|
||||
- person
|
||||
# Optional: Camera override for retention settings (default: global values)
|
||||
retain:
|
||||
# Required: Default retention days (default: shown below)
|
||||
default: 10
|
||||
# Optional: Per object retention days
|
||||
objects:
|
||||
person: 15
|
||||
|
||||
# Optional: 24/7 recording configuration
|
||||
record:
|
||||
# Optional: Enable recording (default: global setting)
|
||||
enabled: False
|
||||
# Optional: Number of days to retain (default: global setting)
|
||||
retain_days: 30
|
||||
|
||||
# Optional: RTMP re-stream configuration
|
||||
rtmp:
|
||||
# Required: Enable the live stream (default: True)
|
||||
enabled: True
|
||||
|
||||
# Optional: Configuration for the jpg snapshots written to the clips directory for each event
|
||||
snapshots:
|
||||
# Optional: Enable writing jpg snapshot to /media/frigate/clips (default: shown below)
|
||||
# This value can be set via MQTT and will be updated in startup based on retained value
|
||||
enabled: False
|
||||
# Optional: print a timestamp on the snapshots (default: shown below)
|
||||
timestamp: False
|
||||
# Optional: draw bounding box on the snapshots (default: shown below)
|
||||
bounding_box: False
|
||||
# Optional: crop the snapshot (default: shown below)
|
||||
crop: False
|
||||
# Optional: height to resize the snapshot to (default: original size)
|
||||
height: 175
|
||||
# Optional: Camera override for retention settings (default: global values)
|
||||
retain:
|
||||
# Required: Default retention days (default: shown below)
|
||||
default: 10
|
||||
# Optional: Per object retention days
|
||||
objects:
|
||||
person: 15
|
||||
|
||||
# Optional: Configuration for the jpg snapshots published via MQTT
|
||||
mqtt:
|
||||
# Optional: Enable publishing snapshot via mqtt for camera (default: shown below)
|
||||
# NOTE: Only applies to publishing image data to MQTT via 'frigate/<camera_name>/<object_name>/snapshot'.
|
||||
# All other messages will still be published.
|
||||
enabled: True
|
||||
# Optional: print a timestamp on the snapshots (default: shown below)
|
||||
timestamp: True
|
||||
# Optional: draw bounding box on the snapshots (default: shown below)
|
||||
bounding_box: True
|
||||
# Optional: crop the snapshot (default: shown below)
|
||||
crop: True
|
||||
# Optional: height to resize the snapshot to (default: shown below)
|
||||
height: 270
|
||||
|
||||
# Optional: Camera level object filters config.
|
||||
objects:
|
||||
track:
|
||||
- person
|
||||
- car
|
||||
filters:
|
||||
person:
|
||||
min_area: 5000
|
||||
max_area: 100000
|
||||
min_score: 0.5
|
||||
threshold: 0.7
|
||||
# Optional: mask to prevent this object type from being detected in certain areas (default: no mask)
|
||||
# Checks based on the bottom center of the bounding box of the object
|
||||
mask: 0,0,1000,0,1000,200,0,200
|
||||
```
|
||||
|
||||
## Camera specific configuration
|
||||
|
||||
### RTMP Cameras
|
||||
|
||||
The input parameters need to be adjusted for RTMP cameras
|
||||
|
||||
```yaml
|
||||
ffmpeg:
|
||||
input_args:
|
||||
- -avoid_negative_ts
|
||||
- make_zero
|
||||
- -fflags
|
||||
- nobuffer
|
||||
- -flags
|
||||
- low_delay
|
||||
- -strict
|
||||
- experimental
|
||||
- -fflags
|
||||
- +genpts+discardcorrupt
|
||||
- -use_wallclock_as_timestamps
|
||||
- '1'
|
||||
```
|
||||
|
||||
### Blue Iris RTSP Cameras
|
||||
|
||||
You will need to remove `nobuffer` flag for Blue Iris RTSP cameras
|
||||
|
||||
```yaml
|
||||
ffmpeg:
|
||||
input_args:
|
||||
- -avoid_negative_ts
|
||||
- make_zero
|
||||
- -flags
|
||||
- low_delay
|
||||
- -strict
|
||||
- experimental
|
||||
- -fflags
|
||||
- +genpts+discardcorrupt
|
||||
- -rtsp_transport
|
||||
- tcp
|
||||
- -stimeout
|
||||
- '5000000'
|
||||
- -use_wallclock_as_timestamps
|
||||
- '1'
|
||||
```
|
53
docs/docs/configuration/detectors.md
Normal file
@@ -0,0 +1,53 @@
|
||||
---
|
||||
id: detectors
|
||||
title: Detectors
|
||||
---
|
||||
|
||||
The default config will look for a USB Coral device. If you do not have a Coral, you will need to configure a CPU detector. If you have PCI or multiple Coral devices, you need to configure your detector devices in the config file. When using multiple detectors, they run in dedicated processes, but pull from a common queue of requested detections across all cameras.
|
||||
|
||||
Frigate supports `edgetpu` and `cpu` as detector types. The device value should be specified according to the [Documentation for the TensorFlow Lite Python API](https://coral.ai/docs/edgetpu/multiple-edgetpu/#using-the-tensorflow-lite-python-api).
|
||||
|
||||
**Note**: There is no support for Nvidia GPUs to perform object detection with tensorflow. It can be used for ffmpeg decoding, but not object detection.
|
||||
|
||||
Single USB Coral:
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
coral:
|
||||
type: edgetpu
|
||||
device: usb
|
||||
```
|
||||
|
||||
Multiple USB Corals:
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
coral1:
|
||||
type: edgetpu
|
||||
device: usb:0
|
||||
coral2:
|
||||
type: edgetpu
|
||||
device: usb:1
|
||||
```
|
||||
|
||||
Mixing Corals:
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
coral_usb:
|
||||
type: edgetpu
|
||||
device: usb
|
||||
coral_pci:
|
||||
type: edgetpu
|
||||
device: pci
|
||||
```
|
||||
|
||||
CPU Detectors (not recommended):
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
cpu1:
|
||||
type: cpu
|
||||
cpu2:
|
||||
type: cpu
|
||||
```
|
19
docs/docs/configuration/false_positives.md
Normal file
@@ -0,0 +1,19 @@
|
||||
---
|
||||
id: false_positives
|
||||
title: Reducing false positives
|
||||
---
|
||||
|
||||
Tune your object filters to adjust false positives: `min_area`, `max_area`, `min_score`, `threshold`.
|
||||
|
||||
For object filters in your configuration, any single detection below `min_score` will be ignored as a false positive. `threshold` is based on the median of the history of scores (padded to 3 values) for a tracked object. Consider the following frames when `min_score` is set to 0.6 and threshold is set to 0.85:
|
||||
|
||||
| Frame | Current Score | Score History | Computed Score | Detected Object |
|
||||
| ----- | ------------- | --------------------------------- | -------------- | --------------- |
|
||||
| 1 | 0.7 | 0.0, 0, 0.7 | 0.0 | No |
|
||||
| 2 | 0.55 | 0.0, 0.7, 0.0 | 0.0 | No |
|
||||
| 3 | 0.85 | 0.7, 0.0, 0.85 | 0.7 | No |
|
||||
| 4 | 0.90 | 0.7, 0.85, 0.95, 0.90 | 0.875 | Yes |
|
||||
| 5 | 0.88 | 0.7, 0.85, 0.95, 0.90, 0.88 | 0.88 | Yes |
|
||||
| 6 | 0.95 | 0.7, 0.85, 0.95, 0.90, 0.88, 0.95 | 0.89 | Yes |
|
||||
|
||||
In frame 2, the score is below the `min_score` value, so frigate ignores it and it becomes a 0.0. The computed score is the median of the score history (padding to at least 3 values), and only when that computed score crosses the `threshold` is the object marked as a true positive. That happens in frame 4 in the example.
|
137
docs/docs/configuration/index.md
Normal file
@@ -0,0 +1,137 @@
|
||||
---
|
||||
id: index
|
||||
title: Configuration
|
||||
---
|
||||
|
||||
HassOS users can manage their configuration directly in the addon Configuration tab. For other installations, the default location for the config file is `/config/config.yml`. This can be overridden with the `CONFIG_FILE` environment variable. Camera specific ffmpeg parameters are documented [here](/configuration/cameras.md).
|
||||
|
||||
It is recommended to start with a minimal configuration and add to it:
|
||||
|
||||
```yaml
|
||||
mqtt:
|
||||
host: mqtt.server.com
|
||||
cameras:
|
||||
back:
|
||||
ffmpeg:
|
||||
inputs:
|
||||
- path: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/cam/realmonitor?channel=1&subtype=2
|
||||
roles:
|
||||
- detect
|
||||
- rtmp
|
||||
width: 1280
|
||||
height: 720
|
||||
fps: 5
|
||||
```
|
||||
|
||||
## Required
|
||||
|
||||
## `mqtt`
|
||||
|
||||
```yaml
|
||||
mqtt:
|
||||
# Required: host name
|
||||
host: mqtt.server.com
|
||||
# Optional: port (default: shown below)
|
||||
port: 1883
|
||||
# Optional: topic prefix (default: shown below)
|
||||
# WARNING: must be unique if you are running multiple instances
|
||||
topic_prefix: frigate
|
||||
# Optional: client id (default: shown below)
|
||||
# WARNING: must be unique if you are running multiple instances
|
||||
client_id: frigate
|
||||
# Optional: user
|
||||
user: mqtt_user
|
||||
# Optional: password
|
||||
# NOTE: Environment variables that begin with 'FRIGATE_' may be referenced in {}.
|
||||
# eg. password: '{FRIGATE_MQTT_PASSWORD}'
|
||||
password: password
|
||||
# Optional: interval in seconds for publishing stats (default: shown below)
|
||||
stats_interval: 60
|
||||
```
|
||||
|
||||
## `cameras`
|
||||
|
||||
Each of your cameras must be configured. The following is the minimum required to register a camera in Frigate. Check the [camera configuration page](cameras) for a complete list of options.
|
||||
|
||||
```yaml
|
||||
cameras:
|
||||
# Name of your camera
|
||||
front_door:
|
||||
ffmpeg:
|
||||
inputs:
|
||||
- path: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/cam/realmonitor?channel=1&subtype=2
|
||||
roles:
|
||||
- detect
|
||||
- rtmp
|
||||
width: 1280
|
||||
height: 720
|
||||
fps: 5
|
||||
```
|
||||
|
||||
## Optional
|
||||
|
||||
### `clips`
|
||||
|
||||
```yaml
|
||||
clips:
|
||||
# Optional: Maximum length of time to retain video during long events. (default: shown below)
|
||||
# NOTE: If an object is being tracked for longer than this amount of time, the cache
|
||||
# will begin to expire and the resulting clip will be the last x seconds of the event.
|
||||
max_seconds: 300
|
||||
# Optional: size of tmpfs mount to create for cache files (default: not set)
|
||||
# mount -t tmpfs -o size={tmpfs_cache_size} tmpfs /tmp/cache
|
||||
# Notice: If you have mounted a tmpfs volume through docker, this value should not be set in your config
|
||||
tmpfs_cache_size: 256m
|
||||
# Optional: Retention settings for clips (default: shown below)
|
||||
retain:
|
||||
# Required: Default retention days (default: shown below)
|
||||
default: 10
|
||||
# Optional: Per object retention days
|
||||
objects:
|
||||
person: 15
|
||||
```
|
||||
|
||||
### `ffmpeg`
|
||||
|
||||
```yaml
|
||||
ffmpeg:
|
||||
# Optional: global ffmpeg args (default: shown below)
|
||||
global_args: -hide_banner -loglevel fatal
|
||||
# Optional: global hwaccel args (default: shown below)
|
||||
# NOTE: See hardware acceleration docs for your specific device
|
||||
hwaccel_args: []
|
||||
# Optional: global input args (default: shown below)
|
||||
input_args: -avoid_negative_ts make_zero -fflags +genpts+discardcorrupt -rtsp_transport tcp -stimeout 5000000 -use_wallclock_as_timestamps 1
|
||||
# Optional: global output args
|
||||
output_args:
|
||||
# Optional: output args for detect streams (default: shown below)
|
||||
detect: -f rawvideo -pix_fmt yuv420p
|
||||
# Optional: output args for record streams (default: shown below)
|
||||
record: -f segment -segment_time 60 -segment_format mp4 -reset_timestamps 1 -strftime 1 -c copy -an
|
||||
# Optional: output args for clips streams (default: shown below)
|
||||
clips: -f segment -segment_time 10 -segment_format mp4 -reset_timestamps 1 -strftime 1 -c copy -an
|
||||
# Optional: output args for rtmp streams (default: shown below)
|
||||
rtmp: -c copy -f flv
|
||||
```
|
||||
|
||||
### `objects`
|
||||
|
||||
Can be overridden at the camera level
|
||||
|
||||
```yaml
|
||||
objects:
|
||||
# Optional: list of objects to track from labelmap.txt (default: shown below)
|
||||
track:
|
||||
- person
|
||||
# Optional: filters to reduce false positives for specific object types
|
||||
filters:
|
||||
person:
|
||||
# Optional: minimum width*height of the bounding box for the detected object (default: 0)
|
||||
min_area: 5000
|
||||
# Optional: maximum width*height of the bounding box for the detected object (default: 24000000)
|
||||
max_area: 100000
|
||||
# Optional: minimum score for the object to initiate tracking (default: shown below)
|
||||
min_score: 0.5
|
||||
# Optional: minimum decimal percentage for tracked object's computed score to be considered a true positive (default: shown below)
|
||||
threshold: 0.7
|
||||
```
|
@@ -1,14 +1,18 @@
|
||||
# nVidia hardware decoder (NVDEC)
|
||||
---
|
||||
id: nvdec
|
||||
title: nVidia hardware decoder
|
||||
---
|
||||
|
||||
Certain nvidia cards include a hardware decoder, which can greatly improve the
|
||||
performance of video decoding. In order to use NVDEC, a special build of
|
||||
performance of video decoding. In order to use NVDEC, a special build of
|
||||
ffmpeg with NVDEC support is required. The special docker architecture 'amd64nvidia'
|
||||
includes this support for amd64 platforms. An aarch64 for the Jetson, which
|
||||
includes this support for amd64 platforms. An aarch64 for the Jetson, which
|
||||
also includes NVDEC may be added in the future.
|
||||
|
||||
## Docker setup
|
||||
|
||||
### Requirements
|
||||
|
||||
[nVidia closed source driver](https://www.nvidia.com/en-us/drivers/unix/) required to access NVDEC.
|
||||
[nvidia-docker](https://github.com/NVIDIA/nvidia-docker) required to pass NVDEC to docker.
|
||||
|
||||
@@ -18,6 +22,7 @@ In order to pass NVDEC, the docker engine must be set to `nvidia` and the enviro
|
||||
`NVIDIA_VISIBLE_DEVICES=all` and `NVIDIA_DRIVER_CAPABILITIES=compute,utility,video` must be set.
|
||||
|
||||
In a docker compose file, these lines need to be set:
|
||||
|
||||
```
|
||||
services:
|
||||
frigate:
|
||||
@@ -26,15 +31,16 @@ services:
|
||||
runtime: nvidia
|
||||
environment:
|
||||
- NVIDIA_VISIBLE_DEVICES=all
|
||||
- NVIDIA_DRIVER_CAPABILITIES=compute,utility,video
|
||||
- NVIDIA_DRIVER_CAPABILITIES=compute,utility,video
|
||||
```
|
||||
|
||||
### Setting up the configuration file
|
||||
|
||||
In your frigate config.yml, you'll need to set ffmpeg to use the hardware decoder.
|
||||
The decoder you choose will depend on the input video.
|
||||
In your frigate config.yml, you'll need to set ffmpeg to use the hardware decoder.
|
||||
The decoder you choose will depend on the input video.
|
||||
|
||||
A list of supported codecs (you can use `ffmpeg -decoders | grep cuvid` in the container to get a list)
|
||||
|
||||
```
|
||||
V..... h263_cuvid Nvidia CUVID H263 decoder (codec h263)
|
||||
V..... h264_cuvid Nvidia CUVID H264 decoder (codec h264)
|
||||
@@ -46,7 +52,7 @@ A list of supported codecs (you can use `ffmpeg -decoders | grep cuvid` in the c
|
||||
V..... vc1_cuvid Nvidia CUVID VC1 decoder (codec vc1)
|
||||
V..... vp8_cuvid Nvidia CUVID VP8 decoder (codec vp8)
|
||||
V..... vp9_cuvid Nvidia CUVID VP9 decoder (codec vp9)
|
||||
```
|
||||
```
|
||||
|
||||
For example, for H265 video (hevc), you'll select `hevc_cuvid`. Add
|
||||
`-c:v hevc_covid` to your ffmpeg input arguments:
|
||||
@@ -55,7 +61,7 @@ For example, for H265 video (hevc), you'll select `hevc_cuvid`. Add
|
||||
ffmpeg:
|
||||
input_args:
|
||||
...
|
||||
- -c:v
|
||||
- -c:v
|
||||
- hevc_cuvid
|
||||
```
|
||||
|
||||
@@ -75,7 +81,7 @@ processes:
|
||||
| 38% 41C P2 36W / 125W | 2082MiB / 5942MiB | 5% Default |
|
||||
| | | N/A |
|
||||
+-------------------------------+----------------------+----------------------+
|
||||
|
||||
|
||||
+-----------------------------------------------------------------------------+
|
||||
| Processes: |
|
||||
| GPU GI CI PID Type Process name GPU Memory |
|
||||
@@ -96,10 +102,9 @@ using the fps filter:
|
||||
|
||||
```
|
||||
output_args:
|
||||
- -filter:v
|
||||
- -filter:v
|
||||
- fps=fps=5
|
||||
```
|
||||
|
||||
This setting, for example, allows Frigate to consume my 10-15fps camera streams on
|
||||
my relatively low powered Haswell machine with relatively low cpu usage.
|
||||
|
72
docs/docs/configuration/optimizing.md
Normal file
@@ -0,0 +1,72 @@
|
||||
---
|
||||
id: optimizing
|
||||
title: Optimizing performance
|
||||
---
|
||||
|
||||
- **Google Coral**: It is strongly recommended to use a Google Coral, but Frigate will fall back to CPU in the event one is not found. Offloading TensorFlow to the Google Coral is an order of magnitude faster and will reduce your CPU load dramatically. A $60 device will outperform $2000 CPU. Frigate should work with any supported Coral device from https://coral.ai
|
||||
- **Resolution**: For the `detect` input, choose a camera resolution where the smallest object you want to detect barely fits inside a 300x300px square. The model used by Frigate is trained on 300x300px images, so you will get worse performance and no improvement in accuracy by using a larger resolution since Frigate resizes the area where it is looking for objects to 300x300 anyway.
|
||||
- **FPS**: 5 frames per second should be adequate. Higher frame rates will require more CPU usage without improving detections or accuracy. Reducing the frame rate on your camera will have the greatest improvement on system resources.
|
||||
- **Hardware Acceleration**: Make sure you configure the `hwaccel_args` for your hardware. They provide a significant reduction in CPU usage if they are available.
|
||||
- **Masks**: Masks can be used to ignore motion and reduce your idle CPU load. If you have areas with regular motion such as timestamps or trees blowing in the wind, frigate will constantly try to determine if that motion is from a person or other object you are tracking. Those detections not only increase your average CPU usage, but also clog the pipeline for detecting objects elsewhere. If you are experiencing high values for `detection_fps` when no objects of interest are in the cameras, you should use masks to tell frigate to ignore movement from trees, bushes, timestamps, or any part of the image where detections should not be wasted looking for objects.
|
||||
|
||||
### FFmpeg Hardware Acceleration
|
||||
|
||||
Frigate works on Raspberry Pi 3b/4 and x86 machines. It is recommended to update your configuration to enable hardware accelerated decoding in ffmpeg. Depending on your system, these parameters may not be compatible.
|
||||
|
||||
Raspberry Pi 3/4 (32-bit OS)
|
||||
**NOTICE**: If you are using the addon, ensure you turn off `Protection mode` for hardware acceleration.
|
||||
|
||||
```yaml
|
||||
ffmpeg:
|
||||
hwaccel_args:
|
||||
- -c:v
|
||||
- h264_mmal
|
||||
```
|
||||
|
||||
Raspberry Pi 3/4 (64-bit OS)
|
||||
**NOTICE**: If you are using the addon, ensure you turn off `Protection mode` for hardware acceleration.
|
||||
|
||||
```yaml
|
||||
ffmpeg:
|
||||
hwaccel_args:
|
||||
- -c:v
|
||||
- h264_v4l2m2m
|
||||
```
|
||||
|
||||
Intel-based CPUs (<10th Generation) via Quicksync (https://trac.ffmpeg.org/wiki/Hardware/QuickSync)
|
||||
|
||||
```yaml
|
||||
ffmpeg:
|
||||
hwaccel_args:
|
||||
- -hwaccel
|
||||
- vaapi
|
||||
- -hwaccel_device
|
||||
- /dev/dri/renderD128
|
||||
- -hwaccel_output_format
|
||||
- yuv420p
|
||||
```
|
||||
|
||||
Intel-based CPUs (>=10th Generation) via Quicksync (https://trac.ffmpeg.org/wiki/Hardware/QuickSync)
|
||||
|
||||
```yaml
|
||||
ffmpeg:
|
||||
hwaccel_args:
|
||||
- -hwaccel
|
||||
- qsv
|
||||
- -qsv_device
|
||||
- /dev/dri/renderD128
|
||||
```
|
||||
|
||||
AMD/ATI GPUs (Radeon HD 2000 and newer GPUs) via libva-mesa-driver (https://trac.ffmpeg.org/wiki/Hardware/QuickSync)
|
||||
**Note:** You also need to set `LIBVA_DRIVER_NAME=radeonsi` as an environment variable on the container.
|
||||
|
||||
```yaml
|
||||
ffmpeg:
|
||||
hwaccel_args:
|
||||
- -hwaccel
|
||||
- vaapi
|
||||
- -hwaccel_device
|
||||
- /dev/dri/renderD128
|
||||
```
|
||||
|
||||
Nvidia GPU based decoding via NVDEC is supported, but requires special configuration. See the [nvidia NVDEC documentation](/configuration/nvdec) for more details.
|
20
docs/docs/hardware.md
Normal file
@@ -0,0 +1,20 @@
|
||||
---
|
||||
id: hardware
|
||||
title: Recommended hardware
|
||||
---
|
||||
|
||||
## Cameras
|
||||
|
||||
Cameras that output H.264 video and AAC audio will offer the most compatibility with all features of Frigate and HomeAssistant. It is also helpful if your camera supports multiple substreams to allow different resolutions to be used for detection, streaming, clips, and recordings without re-encoding.
|
||||
|
||||
## Computer
|
||||
|
||||
| Name | Inference Speed | Notes |
|
||||
| ----------------------- | --------------- | ----------------------------------------------------------------------------------------------------------------------------- |
|
||||
| Atomic Pi | 16ms | Good option for a dedicated low power board with a small number of cameras. Can leverage Intel QuickSync for stream decoding. |
|
||||
| Intel NUC NUC7i3BNK | 8-10ms | Great performance. Can handle many cameras at 5fps depending on typical amounts of motion. |
|
||||
| BMAX B2 Plus | 10-12ms | Good balance of performance and cost. Also capable of running many other services at the same time as frigate. |
|
||||
| Minisforum GK41 | 9-10ms | Great alternative to a NUC with dual Gigabit NICs. Easily handles several 1080p cameras. |
|
||||
| Raspberry Pi 3B (32bit) | 60ms | Can handle a small number of cameras, but the detection speeds are slow due to USB 2.0. |
|
||||
| Raspberry Pi 4 (32bit) | 15-20ms | Can handle a small number of cameras. The 2GB version runs fine. |
|
||||
| Raspberry Pi 4 (64bit) | 10-15ms | Can handle a small number of cameras. The 2GB version runs fine. |
|
13
docs/docs/how-it-works.md
Normal file
@@ -0,0 +1,13 @@
|
||||
---
|
||||
id: how-it-works
|
||||
title: How Frigate Works
|
||||
sidebar_label: How it works
|
||||
---
|
||||
|
||||
Frigate is designed to minimize resource and maximize performance by only looking for objects when and where it is necessary
|
||||
|
||||

|
||||
|
||||
1. Look for Motion
|
||||
2. Calculate Detection Regions
|
||||
3. Run Object Detection
|
25
docs/docs/index.md
Normal file
@@ -0,0 +1,25 @@
|
||||
---
|
||||
id: index
|
||||
title: Frigate
|
||||
sidebar_label: Features
|
||||
slug: /
|
||||
---
|
||||
|
||||
A complete and local NVR designed for HomeAssistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras.
|
||||
|
||||
Use of a [Google Coral Accelerator](https://coral.ai/products/) is optional, but highly recommended. The Coral will outperform even the best CPUs and can process 100+ FPS with very little overhead.
|
||||
|
||||
- Tight integration with HomeAssistant via a [custom component](https://github.com/blakeblackshear/frigate-hass-integration)
|
||||
- Designed to minimize resource use and maximize performance by only looking for objects when and where it is necessary
|
||||
- Leverages multiprocessing heavily with an emphasis on realtime over processing every frame
|
||||
- Uses a very low overhead motion detection to determine where to run object detection
|
||||
- Object detection with TensorFlow runs in separate processes for maximum FPS
|
||||
- Communicates over MQTT for easy integration into other systems
|
||||
- 24/7 recording
|
||||
- Re-streaming via RTMP to reduce the number of connections to your camera
|
||||
|
||||
## Screenshots
|
||||
|
||||

|
||||
|
||||

|
114
docs/docs/installation.md
Normal file
@@ -0,0 +1,114 @@
|
||||
---
|
||||
id: installation
|
||||
title: Installation
|
||||
---
|
||||
|
||||
Frigate is a Docker container that can be run on any Docker host including as a [HassOS Addon](https://www.home-assistant.io/addons/). See instructions below for installing the HassOS addon.
|
||||
|
||||
For HomeAssistant users, there is also a [custom component (aka integration)](https://github.com/blakeblackshear/frigate-hass-integration). This custom component adds tighter integration with HomeAssistant by automatically setting up camera entities, sensors, media browser for clips and recordings, and a public API to simplify notifications.
|
||||
|
||||
Note that HassOS Addons and custom components are different things. If you are already running Frigate with Docker directly, you do not need the Addon since the Addon would run another instance of Frigate.
|
||||
|
||||
## HassOS Addon
|
||||
|
||||
HassOS users can install via the addon repository. Frigate requires an MQTT server.
|
||||
|
||||
1. Navigate to Supervisor > Add-on Store > Repositories
|
||||
1. Add https://github.com/blakeblackshear/frigate-hass-addons
|
||||
1. Setup your configuration in the `Configuration` tab
|
||||
1. Start the addon container
|
||||
|
||||
## Docker
|
||||
|
||||
Make sure you choose the right image for your architecture:
|
||||
|Arch|Image Name|
|
||||
|-|-|
|
||||
|amd64|blakeblackshear/frigate:stable-amd64|
|
||||
|amd64nvidia|blakeblackshear/frigate:stable-amd64nvidia|
|
||||
|armv7|blakeblackshear/frigate:stable-armv7|
|
||||
|aarch64|blakeblackshear/frigate:stable-aarch64|
|
||||
|
||||
It is recommended to run with docker-compose:
|
||||
|
||||
```yaml
|
||||
version: '3.6'
|
||||
services:
|
||||
frigate:
|
||||
container_name: frigate
|
||||
restart: unless-stopped
|
||||
privileged: true
|
||||
image: blakeblackshear/frigate:0.8.0-beta2-amd64
|
||||
volumes:
|
||||
- /dev/bus/usb:/dev/bus/usb
|
||||
- /etc/localtime:/etc/localtime:ro
|
||||
- <path_to_config>:/config
|
||||
- <path_to_directory_for_clips>:/media/frigate/clips
|
||||
- <path_to_directory_for_recordings>:/media/frigate/recordings
|
||||
- type: tmpfs # Optional: 1GB of memory, reduces SSD/SD Card wear
|
||||
target: /tmp/cache
|
||||
tmpfs:
|
||||
size: 1000000000
|
||||
ports:
|
||||
- '5000:5000'
|
||||
- '1935:1935' # RTMP feeds
|
||||
environment:
|
||||
FRIGATE_RTSP_PASSWORD: 'password'
|
||||
```
|
||||
|
||||
If you can't use docker compose, you can run the container with something similar to this:
|
||||
|
||||
```bash
|
||||
docker run --rm \
|
||||
--name frigate \
|
||||
--privileged \
|
||||
--mount type=tmpfs,target=/tmp/cache,tmpfs-size=1000000000 \
|
||||
-v /dev/bus/usb:/dev/bus/usb \
|
||||
-v <path_to_directory_for_clips>:/media/frigate/clips \
|
||||
-v <path_to_directory_for_recordings>:/media/frigate/recordings \
|
||||
-v <path_to_config>:/config:ro \
|
||||
-v /etc/localtime:/etc/localtime:ro \
|
||||
-e FRIGATE_RTSP_PASSWORD='password' \
|
||||
-p 5000:5000 \
|
||||
-p 1935:1935 \
|
||||
blakeblackshear/frigate:0.8.0-beta2-amd64
|
||||
```
|
||||
|
||||
## Kubernetes
|
||||
|
||||
Use the [helm chart](https://github.com/k8s-at-home/charts/tree/master/charts/frigate).
|
||||
|
||||
## Virtualization
|
||||
|
||||
For ideal performance, Frigate needs access to underlying hardware for the Coral and GPU devices for ffmpeg decoding. Running Frigate in a VM on top of Proxmox, ESXi, Virtualbox, etc. is not recommended. The virtualization layer typically introduces a sizable amount of overhead for communication with Coral devices.
|
||||
|
||||
## Proxmox
|
||||
|
||||
Some people have had success running Frigate in LXC directly with the following config:
|
||||
|
||||
```
|
||||
arch: amd64
|
||||
cores: 2
|
||||
features: nesting=1
|
||||
hostname: FrigateLXC
|
||||
memory: 4096
|
||||
net0: name=eth0,bridge=vmbr0,firewall=1,hwaddr=2E:76:AE:5A:58:48,ip=dhcp,ip6=auto,type=veth
|
||||
ostype: debian
|
||||
rootfs: local-lvm:vm-115-disk-0,size=12G
|
||||
swap: 512
|
||||
lxc.cgroup.devices.allow: c 189:385 rwm
|
||||
lxc.mount.entry: /dev/dri/renderD128 dev/dri/renderD128 none bind,optional,create=file
|
||||
lxc.mount.entry: /dev/bus/usb/004/002 dev/bus/usb/004/002 none bind,optional,create=file
|
||||
lxc.apparmor.profile: unconfined
|
||||
lxc.cgroup.devices.allow: a
|
||||
lxc.cap.drop:
|
||||
```
|
||||
|
||||
### Calculating shm-size
|
||||
|
||||
The default shm-size of 64m is fine for setups with 3 or less 1080p cameras. If frigate is exiting with "Bus error" messages, it could be because you have too many high resolution cameras and you need to specify a higher shm size.
|
||||
|
||||
You can calculate the necessary shm-size for each camera with the following formula:
|
||||
|
||||
```
|
||||
(width * height * 1.5 * 7 + 270480)/1048576 = <shm size in mb>
|
||||
```
|
17
docs/docs/mdx.md
Normal file
@@ -0,0 +1,17 @@
|
||||
---
|
||||
id: mdx
|
||||
title: Powered by MDX
|
||||
---
|
||||
|
||||
You can write JSX and use React components within your Markdown thanks to [MDX](https://mdxjs.com/).
|
||||
|
||||
export const Highlight = ({children, color}) => ( <span style={{
|
||||
backgroundColor: color,
|
||||
borderRadius: '2px',
|
||||
color: '#fff',
|
||||
padding: '0.2rem',
|
||||
}}>{children}</span> );
|
||||
|
||||
<Highlight color="#25c2a0">Docusaurus green</Highlight> and <Highlight color="#1877F2">Facebook blue</Highlight> are my favorite colors.
|
||||
|
||||
I can write **Markdown** alongside my _JSX_!
|
27
docs/docs/troubleshooting.md
Normal file
@@ -0,0 +1,27 @@
|
||||
---
|
||||
id: troubleshooting
|
||||
title: Troubleshooting
|
||||
---
|
||||
|
||||
### My mjpeg stream or snapshots look green and crazy
|
||||
This almost always means that the width/height defined for your camera are not correct. Double check the resolution with vlc or another player. Also make sure you don't have the width and height values backwards.
|
||||
|
||||
Example:
|
||||

|
||||
|
||||
## "[mov,mp4,m4a,3gp,3g2,mj2 @ 0x5639eeb6e140] moov atom not found"
|
||||
|
||||
These messages in the logs are expected in certain situations. Frigate checks the integrity of the video cache before assembling clips. Occasionally these cached files will be invalid and cleaned up automatically.
|
||||
|
||||
## "ffmpeg didnt return a frame. something is wrong"
|
||||
|
||||
Turn on logging for the ffmpeg process by overriding the global_args and setting the log level to `info` (the default is `fatal`). Note that all ffmpeg logs show up in the Frigate logs as `ERROR` level. This does not mean they are actually errors.
|
||||
|
||||
```yaml
|
||||
ffmpeg:
|
||||
global_args: -hide_banner -loglevel info
|
||||
```
|
||||
|
||||
## "On connect called"
|
||||
|
||||
If you see repeated "On connect called" messages in your config, check for another instance of frigate. This happens when multiple frigate containers are trying to connect to mqtt with the same client_id.
|
179
docs/docs/usage/api.md
Normal file
@@ -0,0 +1,179 @@
|
||||
---
|
||||
id: api
|
||||
title: HTTP API
|
||||
---
|
||||
|
||||
A web server is available on port 5000 with the following endpoints.
|
||||
|
||||
### `/api/<camera_name>`
|
||||
|
||||
An mjpeg stream for debugging. Keep in mind the mjpeg endpoint is for debugging only and will put additional load on the system when in use.
|
||||
|
||||
Accepts the following query string parameters:
|
||||
|
||||
| param | Type | Description |
|
||||
| ----------- | ---- | ------------------------------------------------------------------ |
|
||||
| `fps` | int | Frame rate |
|
||||
| `h` | int | Height in pixels |
|
||||
| `bbox` | int | Show bounding boxes for detected objects (0 or 1) |
|
||||
| `timestamp` | int | Print the timestamp in the upper left (0 or 1) |
|
||||
| `zones` | int | Draw the zones on the image (0 or 1) |
|
||||
| `mask` | int | Overlay the mask on the image (0 or 1) |
|
||||
| `motion` | int | Draw blue boxes for areas with detected motion (0 or 1) |
|
||||
| `regions` | int | Draw green boxes for areas where object detection was run (0 or 1) |
|
||||
|
||||
You can access a higher resolution mjpeg stream by appending `h=height-in-pixels` to the endpoint. For example `http://localhost:5000/back?h=1080`. You can also increase the FPS by appending `fps=frame-rate` to the URL such as `http://localhost:5000/back?fps=10` or both with `?fps=10&h=1000`.
|
||||
|
||||
### `/api/<camera_name>/<object_name>/best.jpg[?h=300&crop=1]`
|
||||
|
||||
The best snapshot for any object type. It is a full resolution image by default.
|
||||
|
||||
Example parameters:
|
||||
|
||||
- `h=300`: resizes the image to 300 pixes tall
|
||||
- `crop=1`: crops the image to the region of the detection rather than returning the entire image
|
||||
|
||||
### `/api/<camera_name>/latest.jpg[?h=300]`
|
||||
|
||||
The most recent frame that frigate has finished processing. It is a full resolution image by default.
|
||||
|
||||
Accepts the following query string parameters:
|
||||
|
||||
| param | Type | Description |
|
||||
| ----------- | ---- | ------------------------------------------------------------------ |
|
||||
| `h` | int | Height in pixels |
|
||||
| `bbox` | int | Show bounding boxes for detected objects (0 or 1) |
|
||||
| `timestamp` | int | Print the timestamp in the upper left (0 or 1) |
|
||||
| `zones` | int | Draw the zones on the image (0 or 1) |
|
||||
| `mask` | int | Overlay the mask on the image (0 or 1) |
|
||||
| `motion` | int | Draw blue boxes for areas with detected motion (0 or 1) |
|
||||
| `regions` | int | Draw green boxes for areas where object detection was run (0 or 1) |
|
||||
|
||||
Example parameters:
|
||||
|
||||
- `h=300`: resizes the image to 300 pixes tall
|
||||
|
||||
### `/api/stats`
|
||||
|
||||
Contains some granular debug info that can be used for sensors in HomeAssistant.
|
||||
|
||||
Sample response:
|
||||
|
||||
```json
|
||||
{
|
||||
/* Per Camera Stats */
|
||||
"back": {
|
||||
/***************
|
||||
* Frames per second being consumed from your camera. If this is higher
|
||||
* than it is supposed to be, you should set -r FPS in your input_args.
|
||||
* camera_fps = process_fps + skipped_fps
|
||||
***************/
|
||||
"camera_fps": 5.0,
|
||||
/***************
|
||||
* Number of times detection is run per second. This can be higher than
|
||||
* your camera FPS because frigate often looks at the same frame multiple times
|
||||
* or in multiple locations
|
||||
***************/
|
||||
"detection_fps": 1.5,
|
||||
/***************
|
||||
* PID for the ffmpeg process that consumes this camera
|
||||
***************/
|
||||
"capture_pid": 27,
|
||||
/***************
|
||||
* PID for the process that runs detection for this camera
|
||||
***************/
|
||||
"pid": 34,
|
||||
/***************
|
||||
* Frames per second being processed by frigate.
|
||||
***************/
|
||||
"process_fps": 5.1,
|
||||
/***************
|
||||
* Frames per second skip for processing by frigate.
|
||||
***************/
|
||||
"skipped_fps": 0.0
|
||||
},
|
||||
/***************
|
||||
* Sum of detection_fps across all cameras and detectors.
|
||||
* This should be the sum of all detection_fps values from cameras.
|
||||
***************/
|
||||
"detection_fps": 5.0,
|
||||
/* Detectors Stats */
|
||||
"detectors": {
|
||||
"coral": {
|
||||
/***************
|
||||
* Timestamp when object detection started. If this value stays non-zero and constant
|
||||
* for a long time, that means the detection process is stuck.
|
||||
***************/
|
||||
"detection_start": 0.0,
|
||||
/***************
|
||||
* Time spent running object detection in milliseconds.
|
||||
***************/
|
||||
"inference_speed": 10.48,
|
||||
/***************
|
||||
* PID for the shared process that runs object detection on the Coral.
|
||||
***************/
|
||||
"pid": 25321
|
||||
}
|
||||
},
|
||||
"service": {
|
||||
/* Uptime in seconds */
|
||||
"uptime": 10,
|
||||
"version": "0.8.0-8883709"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### `/api/config`
|
||||
|
||||
A json representation of your configuration
|
||||
|
||||
### `/api/version`
|
||||
|
||||
Version info
|
||||
|
||||
### `/api/events`
|
||||
|
||||
Events from the database. Accepts the following query string parameters:
|
||||
|
||||
| param | Type | Description |
|
||||
| -------------- | ---- | --------------------------------------------- |
|
||||
| `before` | int | Epoch time |
|
||||
| `after` | int | Epoch time |
|
||||
| `camera` | str | Camera name |
|
||||
| `label` | str | Label name |
|
||||
| `zone` | str | Zone name |
|
||||
| `limit` | int | Limit the number of events returned |
|
||||
| `has_snapshot` | int | Filter to events that have snapshots (0 or 1) |
|
||||
| `has_clip` | int | Filter to events that have clips (0 or 1) |
|
||||
|
||||
### `/api/events/summary`
|
||||
|
||||
Returns summary data for events in the database. Used by the HomeAssistant integration.
|
||||
|
||||
### `/api/events/<id>`
|
||||
|
||||
Returns data for a single event.
|
||||
|
||||
### `/api/events/<id>/thumbnail.jpg`
|
||||
|
||||
Returns a thumbnail for the event id optimized for notifications. Works while the event is in progress and after completion. Passing `?format=android` will convert the thumbnail to 2:1 aspect ratio.
|
||||
|
||||
### `/api/events/<id>/snapshot.jpg`
|
||||
Returns the snapshot image for the event id. Works while the event is in progress and after completion.
|
||||
|
||||
Accepts the following query string parameters, but they are only applied when an event is in progress. After the event is completed, the saved snapshot is returned from disk without modification:
|
||||
|
||||
|param|Type|Description|
|
||||
|----|-----|--|
|
||||
|`h`|int|Height in pixels|
|
||||
|`bbox`|int|Show bounding boxes for detected objects (0 or 1)|
|
||||
|`timestamp`|int|Print the timestamp in the upper left (0 or 1)|
|
||||
|`crop`|int|Crop the snapshot to the (0 or 1)|
|
||||
|
||||
### `/clips/<camera>-<id>.mp4`
|
||||
|
||||
Video clip for the given camera and event id.
|
||||
|
||||
### `/clips/<camera>-<id>.jpg`
|
||||
|
||||
JPG snapshot for the given camera and event id.
|
120
docs/docs/usage/home-assistant.md
Normal file
@@ -0,0 +1,120 @@
|
||||
---
|
||||
id: home-assistant
|
||||
title: Integration with Home Assistant
|
||||
sidebar_label: Home Assistant
|
||||
---
|
||||
|
||||
The best way to integrate with HomeAssistant is to use the [official integration](https://github.com/blakeblackshear/frigate-hass-integration). When configuring the integration, you will be asked for the `Host` of your frigate instance. This value should be the url you use to access Frigate in the browser and will look like `http://<host>:5000/`. If you are using HassOS with the addon, the host should be `http://ccab4aaf-frigate:5000` (or `http://ccab4aaf-frigate-beta:5000` if your are using the beta version of the addon). HomeAssistant needs access to port 5000 (api) and 1935 (rtmp) for all features. The integration will setup the following entities within HomeAssistant:
|
||||
|
||||
## Sensors:
|
||||
|
||||
- Stats to monitor frigate performance
|
||||
- Object counts for all zones and cameras
|
||||
|
||||
## Cameras:
|
||||
|
||||
- Cameras for image of the last detected object for each camera
|
||||
- Camera entities with stream support (requires RTMP)
|
||||
|
||||
## Media Browser:
|
||||
|
||||
- Rich UI with thumbnails for browsing event clips
|
||||
- Rich UI for browsing 24/7 recordings by month, day, camera, time
|
||||
|
||||
## API:
|
||||
|
||||
- Notification API with public facing endpoints for images in notifications
|
||||
|
||||
### Notifications
|
||||
|
||||
Frigate publishes event information in the form of a change feed via MQTT. This allows lots of customization for notifications to meet your needs. Event changes are published with `before` and `after` information as shown [here](#frigateevents).
|
||||
|
||||
Here is a simple example of a notification automation of events which will update the existing notification for each change. This means the image you see in the notification will update as frigate finds a "better" image.
|
||||
|
||||
```yaml
|
||||
automation:
|
||||
- alias: Notify of events
|
||||
trigger:
|
||||
platform: mqtt
|
||||
topic: frigate/events
|
||||
action:
|
||||
- service: notify.mobile_app_pixel_3
|
||||
data_template:
|
||||
message: 'A {{trigger.payload_json["after"]["label"]}} was detected.'
|
||||
data:
|
||||
image: 'https://your.public.hass.address.com/api/frigate/notifications/{{trigger.payload_json["after"]["id"]}}/thumbnail.jpg?format=android'
|
||||
tag: '{{trigger.payload_json["after"]["id"]}}'
|
||||
```
|
||||
|
||||
```yaml
|
||||
automation:
|
||||
- alias: When a person enters a zone named yard
|
||||
trigger:
|
||||
platform: mqtt
|
||||
topic: frigate/events
|
||||
conditions:
|
||||
- "{{ trigger.payload_json['after']['label'] == 'person' }}"
|
||||
- "{{ 'yard' in trigger.payload_json['after']['entered_zones'] }}"
|
||||
action:
|
||||
- service: notify.mobile_app_pixel_3
|
||||
data_template:
|
||||
message: "A {{trigger.payload_json['after']['label']}} has entered the yard."
|
||||
data:
|
||||
image: "https://url.com/api/frigate/notifications/{{trigger.payload_json['after']['id']}}/thumbnail.jpg"
|
||||
tag: "{{trigger.payload_json['after']['id']}}"
|
||||
```
|
||||
|
||||
```yaml
|
||||
- alias: When a person leaves a zone named yard
|
||||
trigger:
|
||||
platform: mqtt
|
||||
topic: frigate/events
|
||||
conditions:
|
||||
- "{{ trigger.payload_json['after']['label'] == 'person' }}"
|
||||
- "{{ 'yard' in trigger.payload_json['before']['current_zones'] }}"
|
||||
- "{{ not 'yard' in trigger.payload_json['after']['current_zones'] }}"
|
||||
action:
|
||||
- service: notify.mobile_app_pixel_3
|
||||
data_template:
|
||||
message: "A {{trigger.payload_json['after']['label']}} has left the yard."
|
||||
data:
|
||||
image: "https://url.com/api/frigate/notifications/{{trigger.payload_json['after']['id']}}/thumbnail.jpg"
|
||||
tag: "{{trigger.payload_json['after']['id']}}"
|
||||
```
|
||||
|
||||
```yaml
|
||||
- alias: Notify for dogs in the front with a high top score
|
||||
trigger:
|
||||
platform: mqtt
|
||||
topic: frigate/events
|
||||
conditions:
|
||||
- "{{ trigger.payload_json['after']['label'] == 'dog' }}"
|
||||
- "{{ trigger.payload_json['after']['camera'] == 'front' }}"
|
||||
- "{{ trigger.payload_json['after']['top_score'] > 0.98 }}"
|
||||
action:
|
||||
- service: notify.mobile_app_pixel_3
|
||||
data_template:
|
||||
message: 'High confidence dog detection.'
|
||||
data:
|
||||
image: "https://url.com/api/frigate/notifications/{{trigger.payload_json['after']['id']}}/thumbnail.jpg"
|
||||
tag: "{{trigger.payload_json['after']['id']}}"
|
||||
```
|
||||
|
||||
If you are using telegram, you can fetch the image directly from Frigate:
|
||||
|
||||
```yaml
|
||||
automation:
|
||||
- alias: Notify of events
|
||||
trigger:
|
||||
platform: mqtt
|
||||
topic: frigate/events
|
||||
action:
|
||||
- service: notify.telegram_full
|
||||
data_template:
|
||||
message: 'A {{trigger.payload_json["after"]["label"]}} was detected.'
|
||||
data:
|
||||
photo:
|
||||
# this url should work for addon users
|
||||
- url: 'http://ccab4aaf-frigate:5000/api/events/{{trigger.payload_json["after"]["id"]}}/thumbnail.jpg'
|
||||
caption: 'A {{trigger.payload_json["after"]["label"]}} was detected on {{ trigger.payload_json["after"]["camera"] }} camera'
|
||||
```
|
99
docs/docs/usage/mqtt.md
Normal file
@@ -0,0 +1,99 @@
|
||||
---
|
||||
id: mqtt
|
||||
title: MQTT
|
||||
---
|
||||
|
||||
These are the MQTT messages generated by Frigate. The default topic_prefix is `frigate`, but can be changed in the config file.
|
||||
|
||||
### `frigate/available`
|
||||
|
||||
Designed to be used as an availability topic with HomeAssistant. Possible message are:
|
||||
"online": published when frigate is running (on startup)
|
||||
"offline": published right before frigate stops
|
||||
|
||||
### `frigate/<camera_name>/<object_name>`
|
||||
|
||||
Publishes the count of objects for the camera for use as a sensor in HomeAssistant.
|
||||
|
||||
### `frigate/<zone_name>/<object_name>`
|
||||
|
||||
Publishes the count of objects for the zone for use as a sensor in HomeAssistant.
|
||||
|
||||
### `frigate/<camera_name>/<object_name>/snapshot`
|
||||
|
||||
Publishes a jpeg encoded frame of the detected object type. When the object is no longer detected, the highest confidence image is published or the original image
|
||||
is published again.
|
||||
|
||||
The height and crop of snapshots can be configured in the config.
|
||||
|
||||
### `frigate/events`
|
||||
|
||||
Message published for each changed event. The first message is published when the tracked object is no longer marked as a false_positive. When frigate finds a better snapshot of the tracked object or when a zone change occurs, it will publish a message with the same id. When the event ends, a final message is published with `end_time` set.
|
||||
|
||||
```json
|
||||
{
|
||||
"type": "update", // new, update, or end
|
||||
"before": {
|
||||
"id": "1607123955.475377-mxklsc",
|
||||
"camera": "front_door",
|
||||
"frame_time": 1607123961.837752,
|
||||
"label": "person",
|
||||
"top_score": 0.958984375,
|
||||
"false_positive": false,
|
||||
"start_time": 1607123955.475377,
|
||||
"end_time": null,
|
||||
"score": 0.7890625,
|
||||
"box": [424, 500, 536, 712],
|
||||
"area": 23744,
|
||||
"region": [264, 450, 667, 853],
|
||||
"current_zones": ["driveway"],
|
||||
"entered_zones": ["yard", "driveway"],
|
||||
"thumbnail": null
|
||||
},
|
||||
"after": {
|
||||
"id": "1607123955.475377-mxklsc",
|
||||
"camera": "front_door",
|
||||
"frame_time": 1607123962.082975,
|
||||
"label": "person",
|
||||
"top_score": 0.958984375,
|
||||
"false_positive": false,
|
||||
"start_time": 1607123955.475377,
|
||||
"end_time": null,
|
||||
"score": 0.87890625,
|
||||
"box": [432, 496, 544, 854],
|
||||
"area": 40096,
|
||||
"region": [218, 440, 693, 915],
|
||||
"current_zones": ["yard", "driveway"],
|
||||
"entered_zones": ["yard", "driveway"],
|
||||
"thumbnail": null
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### `frigate/stats`
|
||||
|
||||
Same data available at `/api/stats` published at a configurable interval.
|
||||
|
||||
### `frigate/<camera_name>/detect/set`
|
||||
|
||||
Topic to turn detection for a camera on and off. Expected values are `ON` and `OFF`.
|
||||
|
||||
### `frigate/<camera_name>/detect/state`
|
||||
|
||||
Topic with current state of detection for a camera. Published values are `ON` and `OFF`.
|
||||
|
||||
### `frigate/<camera_name>/clips/set`
|
||||
|
||||
Topic to turn clips for a camera on and off. Expected values are `ON` and `OFF`.
|
||||
|
||||
### `frigate/<camera_name>/clips/state`
|
||||
|
||||
Topic with current state of clips for a camera. Published values are `ON` and `OFF`.
|
||||
|
||||
### `frigate/<camera_name>/snapshots/set`
|
||||
|
||||
Topic to turn snapshots for a camera on and off. Expected values are `ON` and `OFF`.
|
||||
|
||||
### `frigate/<camera_name>/snapshots/state`
|
||||
|
||||
Topic with current state of snapshots for a camera. Published values are `ON` and `OFF`.
|
10
docs/docs/usage/web.md
Normal file
@@ -0,0 +1,10 @@
|
||||
---
|
||||
id: web
|
||||
title: Web Interface
|
||||
---
|
||||
|
||||
Frigate comes bundled with a simple web ui that supports the following:
|
||||
|
||||
- Show cameras
|
||||
- Browse events
|
||||
- Mask helper
|
72
docs/docusaurus.config.js
Normal file
@@ -0,0 +1,72 @@
|
||||
module.exports = {
|
||||
title: 'Frigate',
|
||||
tagline: 'NVR With Realtime Object Detection for IP Cameras',
|
||||
url: 'https://blakeblackshear.github.io',
|
||||
baseUrl: '/frigate/',
|
||||
onBrokenLinks: 'throw',
|
||||
onBrokenMarkdownLinks: 'warn',
|
||||
favicon: 'img/favicon.ico',
|
||||
organizationName: 'blakeblackshear',
|
||||
projectName: 'frigate',
|
||||
themeConfig: {
|
||||
navbar: {
|
||||
title: 'Frigate',
|
||||
logo: {
|
||||
alt: 'Frigate',
|
||||
src: 'img/logo.svg',
|
||||
srcDark: 'img/logo-dark.svg',
|
||||
},
|
||||
items: [
|
||||
{
|
||||
to: '/',
|
||||
activeBasePath: 'docs',
|
||||
label: 'Docs',
|
||||
position: 'left',
|
||||
},
|
||||
{
|
||||
href: 'https://github.com/blakeblackshear/frigate',
|
||||
label: 'GitHub',
|
||||
position: 'right',
|
||||
},
|
||||
],
|
||||
},
|
||||
sidebarCollapsible: false,
|
||||
hideableSidebar: true,
|
||||
footer: {
|
||||
style: 'dark',
|
||||
links: [
|
||||
{
|
||||
title: 'Community',
|
||||
items: [
|
||||
{
|
||||
label: 'GitHub',
|
||||
href: 'https://github.com/blakeblackshear/frigate',
|
||||
},
|
||||
{
|
||||
label: 'Discussions',
|
||||
href: 'https://github.com/blakeblackshear/frigate/discussions',
|
||||
},
|
||||
],
|
||||
},
|
||||
],
|
||||
copyright: `Copyright © ${new Date().getFullYear()} Blake Blackshear`,
|
||||
},
|
||||
},
|
||||
presets: [
|
||||
[
|
||||
'@docusaurus/preset-classic',
|
||||
{
|
||||
docs: {
|
||||
routeBasePath: '/',
|
||||
sidebarPath: require.resolve('./sidebars.js'),
|
||||
// Please change this to your repo.
|
||||
editUrl: 'https://github.com/blakeblackshear/frigate/edit/master/docs/',
|
||||
},
|
||||
|
||||
theme: {
|
||||
customCss: require.resolve('./src/css/custom.css'),
|
||||
},
|
||||
},
|
||||
],
|
||||
],
|
||||
};
|
Before Width: | Height: | Size: 2.2 MiB |
Before Width: | Height: | Size: 2.1 MiB |
Before Width: | Height: | Size: 2.1 MiB |
Before Width: | Height: | Size: 6.0 MiB |
@@ -1,10 +0,0 @@
|
||||
# How Frigate Works
|
||||
Frigate is designed to minimize resource and maximize performance by only looking for objects when and where it is necessary
|
||||
|
||||

|
||||
|
||||
## 1. Look for Motion
|
||||
|
||||
## 2. Calculate Detection Regions
|
||||
|
||||
## 3. Run Object Detection
|
14035
docs/package-lock.json
generated
Normal file
34
docs/package.json
Normal file
@@ -0,0 +1,34 @@
|
||||
{
|
||||
"name": "docs",
|
||||
"version": "0.0.0",
|
||||
"private": true,
|
||||
"scripts": {
|
||||
"docusaurus": "docusaurus",
|
||||
"start": "docusaurus start",
|
||||
"build": "docusaurus build",
|
||||
"swizzle": "docusaurus swizzle",
|
||||
"deploy": "docusaurus deploy",
|
||||
"serve": "docusaurus serve",
|
||||
"clear": "docusaurus clear"
|
||||
},
|
||||
"dependencies": {
|
||||
"@docusaurus/core": "2.0.0-alpha.70",
|
||||
"@docusaurus/preset-classic": "2.0.0-alpha.70",
|
||||
"@mdx-js/react": "^1.6.21",
|
||||
"clsx": "^1.1.1",
|
||||
"react": "^16.8.4",
|
||||
"react-dom": "^16.8.4"
|
||||
},
|
||||
"browserslist": {
|
||||
"production": [
|
||||
">0.5%",
|
||||
"not dead",
|
||||
"not op_mini all"
|
||||
],
|
||||
"development": [
|
||||
"last 1 chrome version",
|
||||
"last 1 firefox version",
|
||||
"last 1 safari version"
|
||||
]
|
||||
}
|
||||
}
|
14
docs/sidebars.js
Normal file
@@ -0,0 +1,14 @@
|
||||
module.exports = {
|
||||
docs: {
|
||||
Frigate: ['index', 'how-it-works', 'hardware', 'installation', 'troubleshooting'],
|
||||
Configuration: [
|
||||
'configuration/index',
|
||||
'configuration/cameras',
|
||||
'configuration/optimizing',
|
||||
'configuration/detectors',
|
||||
'configuration/false_positives',
|
||||
'configuration/advanced',
|
||||
],
|
||||
Usage: ['usage/home-assistant', 'usage/web', 'usage/api', 'usage/mqtt'],
|
||||
},
|
||||
};
|
25
docs/src/css/custom.css
Normal file
@@ -0,0 +1,25 @@
|
||||
/* stylelint-disable docusaurus/copyright-header */
|
||||
/**
|
||||
* Any CSS included here will be global. The classic template
|
||||
* bundles Infima by default. Infima is a CSS framework designed to
|
||||
* work well for content-centric websites.
|
||||
*/
|
||||
|
||||
/* You can override the default Infima variables here. */
|
||||
:root {
|
||||
--ifm-color-primary: #3b82f7;
|
||||
--ifm-color-primary-dark: #1d4ed8;
|
||||
--ifm-color-primary-darker: #1e40af;
|
||||
--ifm-color-primary-darkest: #1e3a8a;
|
||||
--ifm-color-primary-light: #60a5fa;
|
||||
--ifm-color-primary-lighter: #93c5fd;
|
||||
--ifm-color-primary-lightest: #dbeafe;
|
||||
--ifm-code-font-size: 95%;
|
||||
}
|
||||
|
||||
.docusaurus-highlight-code-line {
|
||||
background-color: rgb(72, 77, 91);
|
||||
display: block;
|
||||
margin: 0 calc(-1 * var(--ifm-pre-padding));
|
||||
padding: 0 var(--ifm-pre-padding);
|
||||
}
|
0
docs/static/.nojekyll
vendored
Normal file
Before Width: | Height: | Size: 132 KiB After Width: | Height: | Size: 132 KiB |
BIN
docs/static/img/example-mask-poly.png
vendored
Normal file
After Width: | Height: | Size: 1.1 MiB |
BIN
docs/static/img/favicon.ico
vendored
Normal file
After Width: | Height: | Size: 15 KiB |
Before Width: | Height: | Size: 12 KiB After Width: | Height: | Size: 12 KiB |
3
docs/static/img/logo-dark.svg
vendored
Normal file
@@ -0,0 +1,3 @@
|
||||
<svg width="512" height="512" viewBox="0 0 512 512" fill="none" xmlns="http://www.w3.org/2000/svg">
|
||||
<path d="M130 446.5C131.6 459.3 145 468 137 470C129 472 94 406.5 86 378.5C78 350.5 73.5 319 75.4999 301C77.4999 283 181 255 181 247.5C181 240 147.5 247 146 241C144.5 235 171.3 238.6 178.5 229C189.75 214 204 216.5 213 208.5C222 200.5 233 170 235 157C237 144 215 129 209 119C203 109 222 102 268 83C314 64 460 22 462 27C464 32 414 53 379 66C344 79 287 104 287 111C287 118 290 123.5 288 139.5C286 155.5 285.76 162.971 282 173.5C279.5 180.5 277 197 282 212C286 224 299 233 305 235C310 235.333 323.8 235.8 339 235C358 234 385 236 385 241C385 246 344 243 344 250C344 257 386 249 385 256C384 263 350 260 332 260C317.6 260 296.333 259.333 287 256L285 263C281.667 263 274.7 265 267.5 265C258.5 265 258 268 241.5 268C225 268 230 267 215 266C200 265 144 308 134 322C124 336 130 370 130 385.5C130 399.428 128 430.5 130 446.5Z" fill="white"/>
|
||||
</svg>
|
After Width: | Height: | Size: 936 B |
3
docs/static/img/logo.svg
vendored
Normal file
@@ -0,0 +1,3 @@
|
||||
<svg width="512" height="512" viewBox="0 0 512 512" fill="none" xmlns="http://www.w3.org/2000/svg">
|
||||
<path d="M130 446.5C131.6 459.3 145 468 137 470C129 472 94 406.5 86 378.5C78 350.5 73.5 319 75.5 301C77.4999 283 181 255 181 247.5C181 240 147.5 247 146 241C144.5 235 171.3 238.6 178.5 229C189.75 214 204 216.5 213 208.5C222 200.5 233 170 235 157C237 144 215 129 209 119C203 109 222 102 268 83C314 64 460 22 462 27C464 32 414 53 379 66C344 79 287 104 287 111C287 118 290 123.5 288 139.5C286 155.5 285.76 162.971 282 173.5C279.5 180.5 277 197 282 212C286 224 299 233 305 235C310 235.333 323.8 235.8 339 235C358 234 385 236 385 241C385 246 344 243 344 250C344 257 386 249 385 256C384 263 350 260 332 260C317.6 260 296.333 259.333 287 256L285 263C281.667 263 274.7 265 267.5 265C258.5 265 258 268 241.5 268C225 268 230 267 215 266C200 265 144 308 134 322C124 336 130 370 130 385.5C130 399.428 128 430.5 130 446.5Z" fill="black"/>
|
||||
</svg>
|
After Width: | Height: | Size: 933 B |
BIN
docs/static/img/media_browser.png
vendored
Normal file
After Width: | Height: | Size: 781 KiB |
BIN
docs/static/img/mismatched-resolution.jpg
vendored
Normal file
After Width: | Height: | Size: 64 KiB |
BIN
docs/static/img/notification.png
vendored
Normal file
After Width: | Height: | Size: 1.5 MiB |
Before Width: | Height: | Size: 73 KiB |
15
frigate/__main__.py
Normal file
@@ -0,0 +1,15 @@
|
||||
import faulthandler; faulthandler.enable()
|
||||
import sys
|
||||
import threading
|
||||
|
||||
threading.current_thread().name = "frigate"
|
||||
|
||||
from frigate.app import FrigateApp
|
||||
|
||||
cli = sys.modules['flask.cli']
|
||||
cli.show_server_banner = lambda *x: None
|
||||
|
||||
if __name__ == '__main__':
|
||||
frigate_app = FrigateApp()
|
||||
|
||||
frigate_app.start()
|
262
frigate/app.py
Normal file
@@ -0,0 +1,262 @@
|
||||
import json
|
||||
import logging
|
||||
import multiprocessing as mp
|
||||
import os
|
||||
from logging.handlers import QueueHandler
|
||||
from typing import Dict, List
|
||||
import sys
|
||||
import signal
|
||||
|
||||
import yaml
|
||||
from peewee_migrate import Router
|
||||
from playhouse.sqlite_ext import SqliteExtDatabase
|
||||
from playhouse.sqliteq import SqliteQueueDatabase
|
||||
|
||||
from frigate.config import FrigateConfig
|
||||
from frigate.const import RECORD_DIR, CLIPS_DIR, CACHE_DIR
|
||||
from frigate.edgetpu import EdgeTPUProcess
|
||||
from frigate.events import EventProcessor, EventCleanup
|
||||
from frigate.http import create_app
|
||||
from frigate.log import log_process, root_configurer
|
||||
from frigate.models import Event
|
||||
from frigate.mqtt import create_mqtt_client
|
||||
from frigate.object_processing import TrackedObjectProcessor
|
||||
from frigate.record import RecordingMaintainer
|
||||
from frigate.stats import StatsEmitter, stats_init
|
||||
from frigate.video import capture_camera, track_camera
|
||||
from frigate.watchdog import FrigateWatchdog
|
||||
from frigate.zeroconf import broadcast_zeroconf
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
class FrigateApp():
|
||||
def __init__(self):
|
||||
self.stop_event = mp.Event()
|
||||
self.config: FrigateConfig = None
|
||||
self.detection_queue = mp.Queue()
|
||||
self.detectors: Dict[str, EdgeTPUProcess] = {}
|
||||
self.detection_out_events: Dict[str, mp.Event] = {}
|
||||
self.detection_shms: List[mp.shared_memory.SharedMemory] = []
|
||||
self.log_queue = mp.Queue()
|
||||
self.camera_metrics = {}
|
||||
|
||||
def set_environment_vars(self):
|
||||
for key, value in self.config.environment_vars.items():
|
||||
os.environ[key] = value
|
||||
|
||||
def ensure_dirs(self):
|
||||
for d in [RECORD_DIR, CLIPS_DIR, CACHE_DIR]:
|
||||
if not os.path.exists(d) and not os.path.islink(d):
|
||||
logger.info(f"Creating directory: {d}")
|
||||
os.makedirs(d)
|
||||
else:
|
||||
logger.debug(f"Skipping directory: {d}")
|
||||
|
||||
tmpfs_size = self.config.clips.tmpfs_cache_size
|
||||
if tmpfs_size:
|
||||
logger.info(f"Creating tmpfs of size {tmpfs_size}")
|
||||
rc = os.system(f"mount -t tmpfs -o size={tmpfs_size} tmpfs {CACHE_DIR}")
|
||||
if rc != 0:
|
||||
logger.error(f"Failed to create tmpfs, error code: {rc}")
|
||||
|
||||
def init_logger(self):
|
||||
self.log_process = mp.Process(target=log_process, args=(self.log_queue,), name='log_process')
|
||||
self.log_process.daemon = True
|
||||
self.log_process.start()
|
||||
root_configurer(self.log_queue)
|
||||
|
||||
def init_config(self):
|
||||
config_file = os.environ.get('CONFIG_FILE', '/config/config.yml')
|
||||
self.config = FrigateConfig(config_file=config_file)
|
||||
|
||||
for camera_name in self.config.cameras.keys():
|
||||
# create camera_metrics
|
||||
self.camera_metrics[camera_name] = {
|
||||
'camera_fps': mp.Value('d', 0.0),
|
||||
'skipped_fps': mp.Value('d', 0.0),
|
||||
'process_fps': mp.Value('d', 0.0),
|
||||
'detection_enabled': mp.Value('i', self.config.cameras[camera_name].detect.enabled),
|
||||
'detection_fps': mp.Value('d', 0.0),
|
||||
'detection_frame': mp.Value('d', 0.0),
|
||||
'read_start': mp.Value('d', 0.0),
|
||||
'ffmpeg_pid': mp.Value('i', 0),
|
||||
'frame_queue': mp.Queue(maxsize=2),
|
||||
}
|
||||
|
||||
def check_config(self):
|
||||
for name, camera in self.config.cameras.items():
|
||||
assigned_roles = list(set([r for i in camera.ffmpeg.inputs for r in i.roles]))
|
||||
if not camera.clips.enabled and 'clips' in assigned_roles:
|
||||
logger.warning(f"Camera {name} has clips assigned to an input, but clips is not enabled.")
|
||||
elif camera.clips.enabled and not 'clips' in assigned_roles:
|
||||
logger.warning(f"Camera {name} has clips enabled, but clips is not assigned to an input.")
|
||||
|
||||
if not camera.record.enabled and 'record' in assigned_roles:
|
||||
logger.warning(f"Camera {name} has record assigned to an input, but record is not enabled.")
|
||||
elif camera.record.enabled and not 'record' in assigned_roles:
|
||||
logger.warning(f"Camera {name} has record enabled, but record is not assigned to an input.")
|
||||
|
||||
if not camera.rtmp.enabled and 'rtmp' in assigned_roles:
|
||||
logger.warning(f"Camera {name} has rtmp assigned to an input, but rtmp is not enabled.")
|
||||
elif camera.rtmp.enabled and not 'rtmp' in assigned_roles:
|
||||
logger.warning(f"Camera {name} has rtmp enabled, but rtmp is not assigned to an input.")
|
||||
|
||||
def set_log_levels(self):
|
||||
logging.getLogger().setLevel(self.config.logger.default)
|
||||
for log, level in self.config.logger.logs.items():
|
||||
logging.getLogger(log).setLevel(level)
|
||||
|
||||
if not 'werkzeug' in self.config.logger.logs:
|
||||
logging.getLogger('werkzeug').setLevel('ERROR')
|
||||
|
||||
def init_queues(self):
|
||||
# Queues for clip processing
|
||||
self.event_queue = mp.Queue()
|
||||
self.event_processed_queue = mp.Queue()
|
||||
|
||||
# Queue for cameras to push tracked objects to
|
||||
self.detected_frames_queue = mp.Queue(maxsize=len(self.config.cameras.keys())*2)
|
||||
|
||||
def init_database(self):
|
||||
migrate_db = SqliteExtDatabase(self.config.database.path)
|
||||
|
||||
# Run migrations
|
||||
del(logging.getLogger('peewee_migrate').handlers[:])
|
||||
router = Router(migrate_db)
|
||||
router.run()
|
||||
|
||||
migrate_db.close()
|
||||
|
||||
self.db = SqliteQueueDatabase(self.config.database.path)
|
||||
models = [Event]
|
||||
self.db.bind(models)
|
||||
|
||||
def init_stats(self):
|
||||
self.stats_tracking = stats_init(self.camera_metrics, self.detectors)
|
||||
|
||||
def init_web_server(self):
|
||||
self.flask_app = create_app(self.config, self.db, self.stats_tracking, self.detected_frames_processor)
|
||||
|
||||
def init_mqtt(self):
|
||||
self.mqtt_client = create_mqtt_client(self.config, self.camera_metrics)
|
||||
|
||||
def start_detectors(self):
|
||||
model_shape = (self.config.model.height, self.config.model.width)
|
||||
for name in self.config.cameras.keys():
|
||||
self.detection_out_events[name] = mp.Event()
|
||||
shm_in = mp.shared_memory.SharedMemory(name=name, create=True, size=self.config.model.height*self.config.model.width*3)
|
||||
shm_out = mp.shared_memory.SharedMemory(name=f"out-{name}", create=True, size=20*6*4)
|
||||
self.detection_shms.append(shm_in)
|
||||
self.detection_shms.append(shm_out)
|
||||
|
||||
for name, detector in self.config.detectors.items():
|
||||
if detector.type == 'cpu':
|
||||
self.detectors[name] = EdgeTPUProcess(name, self.detection_queue, self.detection_out_events, model_shape, 'cpu', detector.num_threads)
|
||||
if detector.type == 'edgetpu':
|
||||
self.detectors[name] = EdgeTPUProcess(name, self.detection_queue, self.detection_out_events, model_shape, detector.device, detector.num_threads)
|
||||
|
||||
def start_detected_frames_processor(self):
|
||||
self.detected_frames_processor = TrackedObjectProcessor(self.config, self.mqtt_client, self.config.mqtt.topic_prefix,
|
||||
self.detected_frames_queue, self.event_queue, self.event_processed_queue, self.stop_event)
|
||||
self.detected_frames_processor.start()
|
||||
|
||||
def start_camera_processors(self):
|
||||
model_shape = (self.config.model.height, self.config.model.width)
|
||||
for name, config in self.config.cameras.items():
|
||||
camera_process = mp.Process(target=track_camera, name=f"camera_processor:{name}", args=(name, config, model_shape,
|
||||
self.detection_queue, self.detection_out_events[name], self.detected_frames_queue,
|
||||
self.camera_metrics[name]))
|
||||
camera_process.daemon = True
|
||||
self.camera_metrics[name]['process'] = camera_process
|
||||
camera_process.start()
|
||||
logger.info(f"Camera processor started for {name}: {camera_process.pid}")
|
||||
|
||||
def start_camera_capture_processes(self):
|
||||
for name, config in self.config.cameras.items():
|
||||
capture_process = mp.Process(target=capture_camera, name=f"camera_capture:{name}", args=(name, config,
|
||||
self.camera_metrics[name]))
|
||||
capture_process.daemon = True
|
||||
self.camera_metrics[name]['capture_process'] = capture_process
|
||||
capture_process.start()
|
||||
logger.info(f"Capture process started for {name}: {capture_process.pid}")
|
||||
|
||||
def start_event_processor(self):
|
||||
self.event_processor = EventProcessor(self.config, self.camera_metrics, self.event_queue, self.event_processed_queue, self.stop_event)
|
||||
self.event_processor.start()
|
||||
|
||||
def start_event_cleanup(self):
|
||||
self.event_cleanup = EventCleanup(self.config, self.stop_event)
|
||||
self.event_cleanup.start()
|
||||
|
||||
def start_recording_maintainer(self):
|
||||
self.recording_maintainer = RecordingMaintainer(self.config, self.stop_event)
|
||||
self.recording_maintainer.start()
|
||||
|
||||
def start_stats_emitter(self):
|
||||
self.stats_emitter = StatsEmitter(self.config, self.stats_tracking, self.mqtt_client, self.config.mqtt.topic_prefix, self.stop_event)
|
||||
self.stats_emitter.start()
|
||||
|
||||
def start_watchdog(self):
|
||||
self.frigate_watchdog = FrigateWatchdog(self.detectors, self.stop_event)
|
||||
self.frigate_watchdog.start()
|
||||
|
||||
def start(self):
|
||||
self.init_logger()
|
||||
try:
|
||||
try:
|
||||
self.init_config()
|
||||
except Exception as e:
|
||||
print(f"Error parsing config: {e}")
|
||||
self.log_process.terminate()
|
||||
sys.exit(1)
|
||||
self.set_environment_vars()
|
||||
self.ensure_dirs()
|
||||
self.check_config()
|
||||
self.set_log_levels()
|
||||
self.init_queues()
|
||||
self.init_database()
|
||||
self.init_mqtt()
|
||||
except Exception as e:
|
||||
print(e)
|
||||
self.log_process.terminate()
|
||||
sys.exit(1)
|
||||
self.start_detectors()
|
||||
self.start_detected_frames_processor()
|
||||
self.start_camera_processors()
|
||||
self.start_camera_capture_processes()
|
||||
self.init_stats()
|
||||
self.init_web_server()
|
||||
self.start_event_processor()
|
||||
self.start_event_cleanup()
|
||||
self.start_recording_maintainer()
|
||||
self.start_stats_emitter()
|
||||
self.start_watchdog()
|
||||
# self.zeroconf = broadcast_zeroconf(self.config.mqtt.client_id)
|
||||
|
||||
def receiveSignal(signalNumber, frame):
|
||||
self.stop()
|
||||
sys.exit()
|
||||
|
||||
signal.signal(signal.SIGTERM, receiveSignal)
|
||||
|
||||
self.flask_app.run(host='127.0.0.1', port=5001, debug=False)
|
||||
self.stop()
|
||||
|
||||
def stop(self):
|
||||
logger.info(f"Stopping...")
|
||||
self.stop_event.set()
|
||||
|
||||
self.detected_frames_processor.join()
|
||||
self.event_processor.join()
|
||||
self.event_cleanup.join()
|
||||
self.recording_maintainer.join()
|
||||
self.stats_emitter.join()
|
||||
self.frigate_watchdog.join()
|
||||
|
||||
for detector in self.detectors.values():
|
||||
detector.stop()
|
||||
|
||||
while len(self.detection_shms) > 0:
|
||||
shm = self.detection_shms.pop()
|
||||
shm.close()
|
||||
shm.unlink()
|
1072
frigate/config.py
Normal file
3
frigate/const.py
Normal file
@@ -0,0 +1,3 @@
|
||||
CLIPS_DIR = '/media/frigate/clips'
|
||||
RECORD_DIR = '/media/frigate/recordings'
|
||||
CACHE_DIR = '/tmp/cache'
|
@@ -1,15 +1,23 @@
|
||||
import os
|
||||
import datetime
|
||||
import hashlib
|
||||
import logging
|
||||
import multiprocessing as mp
|
||||
import os
|
||||
import queue
|
||||
from multiprocessing.connection import Connection
|
||||
import threading
|
||||
import signal
|
||||
from abc import ABC, abstractmethod
|
||||
from multiprocessing.connection import Connection
|
||||
from setproctitle import setproctitle
|
||||
from typing import Dict
|
||||
|
||||
import numpy as np
|
||||
import tflite_runtime.interpreter as tflite
|
||||
from tflite_runtime.interpreter import load_delegate
|
||||
from frigate.util import EventsPerSecond, listen, SharedMemoryFrameManager
|
||||
|
||||
from frigate.util import EventsPerSecond, SharedMemoryFrameManager, listen
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
def load_labels(path, encoding='utf-8'):
|
||||
"""Loads labels from file (with or without index numbers).
|
||||
@@ -36,7 +44,7 @@ class ObjectDetector(ABC):
|
||||
pass
|
||||
|
||||
class LocalObjectDetector(ObjectDetector):
|
||||
def __init__(self, tf_device=None, labels=None):
|
||||
def __init__(self, tf_device=None, num_threads=3, labels=None):
|
||||
self.fps = EventsPerSecond()
|
||||
if labels is None:
|
||||
self.labels = {}
|
||||
@@ -51,19 +59,18 @@ class LocalObjectDetector(ObjectDetector):
|
||||
|
||||
if tf_device != 'cpu':
|
||||
try:
|
||||
print(f"Attempting to load TPU as {device_config['device']}")
|
||||
logger.info(f"Attempting to load TPU as {device_config['device']}")
|
||||
edge_tpu_delegate = load_delegate('libedgetpu.so.1.0', device_config)
|
||||
print("TPU found")
|
||||
logger.info("TPU found")
|
||||
self.interpreter = tflite.Interpreter(
|
||||
model_path='/edgetpu_model.tflite',
|
||||
experimental_delegates=[edge_tpu_delegate])
|
||||
except ValueError:
|
||||
print("No EdgeTPU detected. Falling back to CPU.")
|
||||
|
||||
if edge_tpu_delegate is None:
|
||||
self.interpreter = tflite.Interpreter(
|
||||
model_path='/cpu_model.tflite')
|
||||
logger.info("No EdgeTPU detected.")
|
||||
raise
|
||||
else:
|
||||
self.interpreter = tflite.Interpreter(
|
||||
model_path='/edgetpu_model.tflite',
|
||||
experimental_delegates=[edge_tpu_delegate])
|
||||
model_path='/cpu_model.tflite', num_threads=num_threads)
|
||||
|
||||
self.interpreter.allocate_tensors()
|
||||
|
||||
@@ -99,11 +106,22 @@ class LocalObjectDetector(ObjectDetector):
|
||||
|
||||
return detections
|
||||
|
||||
def run_detector(detection_queue, out_events: Dict[str, mp.Event], avg_speed, start, tf_device):
|
||||
print(f"Starting detection process: {os.getpid()}")
|
||||
def run_detector(name: str, detection_queue: mp.Queue, out_events: Dict[str, mp.Event], avg_speed, start, model_shape, tf_device, num_threads):
|
||||
threading.current_thread().name = f"detector:{name}"
|
||||
logger = logging.getLogger(f"detector.{name}")
|
||||
logger.info(f"Starting detection process: {os.getpid()}")
|
||||
setproctitle(f"frigate.detector.{name}")
|
||||
listen()
|
||||
|
||||
stop_event = mp.Event()
|
||||
def receiveSignal(signalNumber, frame):
|
||||
stop_event.set()
|
||||
|
||||
signal.signal(signal.SIGTERM, receiveSignal)
|
||||
signal.signal(signal.SIGINT, receiveSignal)
|
||||
|
||||
frame_manager = SharedMemoryFrameManager()
|
||||
object_detector = LocalObjectDetector(tf_device=tf_device)
|
||||
object_detector = LocalObjectDetector(tf_device=tf_device, num_threads=num_threads)
|
||||
|
||||
outputs = {}
|
||||
for name in out_events.keys():
|
||||
@@ -115,8 +133,14 @@ def run_detector(detection_queue, out_events: Dict[str, mp.Event], avg_speed, st
|
||||
}
|
||||
|
||||
while True:
|
||||
connection_id = detection_queue.get()
|
||||
input_frame = frame_manager.get(connection_id, (1,300,300,3))
|
||||
if stop_event.is_set():
|
||||
break
|
||||
|
||||
try:
|
||||
connection_id = detection_queue.get(timeout=5)
|
||||
except queue.Empty:
|
||||
continue
|
||||
input_frame = frame_manager.get(connection_id, (1,model_shape[0],model_shape[1],3))
|
||||
|
||||
if input_frame is None:
|
||||
continue
|
||||
@@ -132,21 +156,24 @@ def run_detector(detection_queue, out_events: Dict[str, mp.Event], avg_speed, st
|
||||
avg_speed.value = (avg_speed.value*9 + duration)/10
|
||||
|
||||
class EdgeTPUProcess():
|
||||
def __init__(self, detection_queue, out_events, tf_device=None):
|
||||
def __init__(self, name, detection_queue, out_events, model_shape, tf_device=None, num_threads=3):
|
||||
self.name = name
|
||||
self.out_events = out_events
|
||||
self.detection_queue = detection_queue
|
||||
self.avg_inference_speed = mp.Value('d', 0.01)
|
||||
self.detection_start = mp.Value('d', 0.0)
|
||||
self.detect_process = None
|
||||
self.model_shape = model_shape
|
||||
self.tf_device = tf_device
|
||||
self.num_threads = num_threads
|
||||
self.start_or_restart()
|
||||
|
||||
def stop(self):
|
||||
self.detect_process.terminate()
|
||||
print("Waiting for detection process to exit gracefully...")
|
||||
logging.info("Waiting for detection process to exit gracefully...")
|
||||
self.detect_process.join(timeout=30)
|
||||
if self.detect_process.exitcode is None:
|
||||
print("Detection process didnt exit. Force killing...")
|
||||
logging.info("Detection process didnt exit. Force killing...")
|
||||
self.detect_process.kill()
|
||||
self.detect_process.join()
|
||||
|
||||
@@ -154,19 +181,19 @@ class EdgeTPUProcess():
|
||||
self.detection_start.value = 0.0
|
||||
if (not self.detect_process is None) and self.detect_process.is_alive():
|
||||
self.stop()
|
||||
self.detect_process = mp.Process(target=run_detector, args=(self.detection_queue, self.out_events, self.avg_inference_speed, self.detection_start, self.tf_device))
|
||||
self.detect_process = mp.Process(target=run_detector, name=f"detector:{self.name}", args=(self.name, self.detection_queue, self.out_events, self.avg_inference_speed, self.detection_start, self.model_shape, self.tf_device, self.num_threads))
|
||||
self.detect_process.daemon = True
|
||||
self.detect_process.start()
|
||||
|
||||
class RemoteObjectDetector():
|
||||
def __init__(self, name, labels, detection_queue, event):
|
||||
def __init__(self, name, labels, detection_queue, event, model_shape):
|
||||
self.labels = load_labels(labels)
|
||||
self.name = name
|
||||
self.fps = EventsPerSecond()
|
||||
self.detection_queue = detection_queue
|
||||
self.event = event
|
||||
self.shm = mp.shared_memory.SharedMemory(name=self.name, create=False)
|
||||
self.np_shm = np.ndarray((1,300,300,3), dtype=np.uint8, buffer=self.shm.buf)
|
||||
self.np_shm = np.ndarray((1,model_shape[0],model_shape[1],3), dtype=np.uint8, buffer=self.shm.buf)
|
||||
self.out_shm = mp.shared_memory.SharedMemory(name=f"out-{self.name}", create=False)
|
||||
self.out_np_shm = np.ndarray((20,6), dtype=np.float32, buffer=self.out_shm.buf)
|
||||
|
||||
@@ -196,4 +223,4 @@ class RemoteObjectDetector():
|
||||
|
||||
def cleanup(self):
|
||||
self.shm.unlink()
|
||||
self.out_shm.unlink()
|
||||
self.out_shm.unlink()
|
||||
|
@@ -1,36 +1,49 @@
|
||||
import os
|
||||
import time
|
||||
import psutil
|
||||
import threading
|
||||
from collections import defaultdict
|
||||
import json
|
||||
import datetime
|
||||
import subprocess as sp
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import queue
|
||||
import subprocess as sp
|
||||
import threading
|
||||
import time
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
|
||||
import psutil
|
||||
|
||||
from frigate.config import FrigateConfig
|
||||
from frigate.const import RECORD_DIR, CLIPS_DIR, CACHE_DIR
|
||||
from frigate.models import Event
|
||||
|
||||
from peewee import fn
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
class EventProcessor(threading.Thread):
|
||||
def __init__(self, config, camera_processes, cache_dir, clip_dir, event_queue, stop_event):
|
||||
def __init__(self, config, camera_processes, event_queue, event_processed_queue, stop_event):
|
||||
threading.Thread.__init__(self)
|
||||
self.name = 'event_processor'
|
||||
self.config = config
|
||||
self.camera_processes = camera_processes
|
||||
self.cache_dir = cache_dir
|
||||
self.clip_dir = clip_dir
|
||||
self.cached_clips = {}
|
||||
self.event_queue = event_queue
|
||||
self.event_processed_queue = event_processed_queue
|
||||
self.events_in_process = {}
|
||||
self.stop_event = stop_event
|
||||
|
||||
def refresh_cache(self):
|
||||
cached_files = os.listdir(self.cache_dir)
|
||||
cached_files = os.listdir(CACHE_DIR)
|
||||
|
||||
files_in_use = []
|
||||
for process_data in self.camera_processes.values():
|
||||
for process in psutil.process_iter():
|
||||
try:
|
||||
ffmpeg_process = psutil.Process(pid=process_data['ffmpeg_pid'].value)
|
||||
flist = ffmpeg_process.open_files()
|
||||
if process.name() != 'ffmpeg':
|
||||
continue
|
||||
|
||||
flist = process.open_files()
|
||||
if flist:
|
||||
for nt in flist:
|
||||
if nt.path.startswith(self.cache_dir):
|
||||
if nt.path.startswith(CACHE_DIR):
|
||||
files_in_use.append(nt.path.split('/')[-1])
|
||||
except:
|
||||
continue
|
||||
@@ -50,7 +63,7 @@ class EventProcessor(threading.Thread):
|
||||
'format=duration',
|
||||
'-of',
|
||||
'default=noprint_wrappers=1:nokey=1',
|
||||
f"{os.path.join(self.cache_dir,f)}"
|
||||
f"{os.path.join(CACHE_DIR,f)}"
|
||||
])
|
||||
p = sp.Popen(ffprobe_cmd, stdout=sp.PIPE, shell=True)
|
||||
(output, err) = p.communicate()
|
||||
@@ -58,8 +71,8 @@ class EventProcessor(threading.Thread):
|
||||
if p_status == 0:
|
||||
duration = float(output.decode('utf-8').strip())
|
||||
else:
|
||||
print(f"bad file: {f}")
|
||||
os.remove(os.path.join(self.cache_dir,f))
|
||||
logger.info(f"bad file: {f}")
|
||||
os.remove(os.path.join(CACHE_DIR,f))
|
||||
continue
|
||||
|
||||
self.cached_clips[f] = {
|
||||
@@ -75,27 +88,35 @@ class EventProcessor(threading.Thread):
|
||||
earliest_event = datetime.datetime.now().timestamp()
|
||||
|
||||
# if the earliest event exceeds the max seconds, cap it
|
||||
max_seconds = self.config.get('save_clips', {}).get('max_seconds', 300)
|
||||
max_seconds = self.config.clips.max_seconds
|
||||
if datetime.datetime.now().timestamp()-earliest_event > max_seconds:
|
||||
earliest_event = datetime.datetime.now().timestamp()-max_seconds
|
||||
|
||||
for f, data in list(self.cached_clips.items()):
|
||||
if earliest_event-90 > data['start_time']+data['duration']:
|
||||
del self.cached_clips[f]
|
||||
os.remove(os.path.join(self.cache_dir,f))
|
||||
logger.debug(f"Cleaning up cached file {f}")
|
||||
os.remove(os.path.join(CACHE_DIR,f))
|
||||
|
||||
def create_clip(self, camera, event_data, pre_capture):
|
||||
def create_clip(self, camera, event_data, pre_capture, post_capture):
|
||||
# get all clips from the camera with the event sorted
|
||||
sorted_clips = sorted([c for c in self.cached_clips.values() if c['camera'] == camera], key = lambda i: i['start_time'])
|
||||
|
||||
while sorted_clips[-1]['start_time'] + sorted_clips[-1]['duration'] < event_data['end_time']:
|
||||
# if there are no clips in the cache or we are still waiting on a needed file check every 5 seconds
|
||||
wait_count = 0
|
||||
while len(sorted_clips) == 0 or sorted_clips[-1]['start_time'] + sorted_clips[-1]['duration'] < event_data['end_time']+post_capture:
|
||||
if wait_count > 4:
|
||||
logger.warning(f"Unable to create clip for {camera} and event {event_data['id']}. There were no cache files for this event.")
|
||||
return False
|
||||
logger.debug(f"No cache clips for {camera}. Waiting...")
|
||||
time.sleep(5)
|
||||
self.refresh_cache()
|
||||
# get all clips from the camera with the event sorted
|
||||
sorted_clips = sorted([c for c in self.cached_clips.values() if c['camera'] == camera], key = lambda i: i['start_time'])
|
||||
wait_count += 1
|
||||
|
||||
playlist_start = event_data['start_time']-pre_capture
|
||||
playlist_end = event_data['end_time']+5
|
||||
playlist_end = event_data['end_time']+post_capture
|
||||
playlist_lines = []
|
||||
for clip in sorted_clips:
|
||||
# clip ends before playlist start time, skip
|
||||
@@ -104,7 +125,7 @@ class EventProcessor(threading.Thread):
|
||||
# clip starts after playlist ends, finish
|
||||
if clip['start_time'] > playlist_end:
|
||||
break
|
||||
playlist_lines.append(f"file '{os.path.join(self.cache_dir,clip['path'])}'")
|
||||
playlist_lines.append(f"file '{os.path.join(CACHE_DIR,clip['path'])}'")
|
||||
# if this is the starting clip, add an inpoint
|
||||
if clip['start_time'] < playlist_start:
|
||||
playlist_lines.append(f"inpoint {int(playlist_start-clip['start_time'])}")
|
||||
@@ -126,21 +147,21 @@ class EventProcessor(threading.Thread):
|
||||
'-',
|
||||
'-c',
|
||||
'copy',
|
||||
f"{os.path.join(self.clip_dir, clip_name)}.mp4"
|
||||
'-movflags',
|
||||
'+faststart',
|
||||
f"{os.path.join(CLIPS_DIR, clip_name)}.mp4"
|
||||
]
|
||||
|
||||
p = sp.run(ffmpeg_cmd, input="\n".join(playlist_lines), encoding='ascii', capture_output=True)
|
||||
if p.returncode != 0:
|
||||
print(p.stderr)
|
||||
return
|
||||
|
||||
with open(f"{os.path.join(self.clip_dir, clip_name)}.json", 'w') as outfile:
|
||||
json.dump(event_data, outfile)
|
||||
logger.error(p.stderr)
|
||||
return False
|
||||
return True
|
||||
|
||||
def run(self):
|
||||
while True:
|
||||
if self.stop_event.is_set():
|
||||
print(f"Exiting event processor...")
|
||||
logger.info(f"Exiting event processor...")
|
||||
break
|
||||
|
||||
try:
|
||||
@@ -150,25 +171,143 @@ class EventProcessor(threading.Thread):
|
||||
self.refresh_cache()
|
||||
continue
|
||||
|
||||
logger.debug(f"Event received: {event_type} {camera} {event_data['id']}")
|
||||
self.refresh_cache()
|
||||
|
||||
save_clips_config = self.config['cameras'][camera].get('save_clips', {})
|
||||
|
||||
# if save clips is not enabled for this camera, just continue
|
||||
if not save_clips_config.get('enabled', False):
|
||||
continue
|
||||
|
||||
# if specific objects are listed for this camera, only save clips for them
|
||||
if 'objects' in save_clips_config:
|
||||
if not event_data['label'] in save_clips_config['objects']:
|
||||
continue
|
||||
|
||||
if event_type == 'start':
|
||||
self.events_in_process[event_data['id']] = event_data
|
||||
|
||||
if event_type == 'end':
|
||||
if len(self.cached_clips) > 0 and not event_data['false_positive']:
|
||||
self.create_clip(camera, event_data, save_clips_config.get('pre_capture', 30))
|
||||
del self.events_in_process[event_data['id']]
|
||||
clips_config = self.config.cameras[camera].clips
|
||||
|
||||
|
||||
if not event_data['false_positive']:
|
||||
clip_created = False
|
||||
if clips_config.enabled and (clips_config.objects is None or event_data['label'] in clips_config.objects):
|
||||
clip_created = self.create_clip(camera, event_data, clips_config.pre_capture, clips_config.post_capture)
|
||||
|
||||
Event.create(
|
||||
id=event_data['id'],
|
||||
label=event_data['label'],
|
||||
camera=camera,
|
||||
start_time=event_data['start_time'],
|
||||
end_time=event_data['end_time'],
|
||||
top_score=event_data['top_score'],
|
||||
false_positive=event_data['false_positive'],
|
||||
zones=list(event_data['entered_zones']),
|
||||
thumbnail=event_data['thumbnail'],
|
||||
has_clip=clip_created,
|
||||
has_snapshot=event_data['has_snapshot'],
|
||||
)
|
||||
del self.events_in_process[event_data['id']]
|
||||
self.event_processed_queue.put((event_data['id'], camera))
|
||||
|
||||
class EventCleanup(threading.Thread):
|
||||
def __init__(self, config: FrigateConfig, stop_event):
|
||||
threading.Thread.__init__(self)
|
||||
self.name = 'event_cleanup'
|
||||
self.config = config
|
||||
self.stop_event = stop_event
|
||||
self.camera_keys = list(self.config.cameras.keys())
|
||||
|
||||
def expire(self, media):
|
||||
## Expire events from unlisted cameras based on the global config
|
||||
if media == 'clips':
|
||||
retain_config = self.config.clips.retain
|
||||
file_extension = 'mp4'
|
||||
update_params = {'has_clip': False}
|
||||
else:
|
||||
retain_config = self.config.snapshots.retain
|
||||
file_extension = 'jpg'
|
||||
update_params = {'has_snapshot': False}
|
||||
|
||||
distinct_labels = (Event.select(Event.label)
|
||||
.where(Event.camera.not_in(self.camera_keys))
|
||||
.distinct())
|
||||
|
||||
# loop over object types in db
|
||||
for l in distinct_labels:
|
||||
# get expiration time for this label
|
||||
expire_days = retain_config.objects.get(l.label, retain_config.default)
|
||||
expire_after = (datetime.datetime.now() - datetime.timedelta(days=expire_days)).timestamp()
|
||||
# grab all events after specific time
|
||||
expired_events = (
|
||||
Event.select()
|
||||
.where(Event.camera.not_in(self.camera_keys),
|
||||
Event.start_time < expire_after,
|
||||
Event.label == l.label)
|
||||
)
|
||||
# delete the media from disk
|
||||
for event in expired_events:
|
||||
media_name = f"{event.camera}-{event.id}"
|
||||
media = Path(f"{os.path.join(CLIPS_DIR, media_name)}.{file_extension}")
|
||||
media.unlink(missing_ok=True)
|
||||
# update the clips attribute for the db entry
|
||||
update_query = (
|
||||
Event.update(update_params)
|
||||
.where(Event.camera.not_in(self.camera_keys),
|
||||
Event.start_time < expire_after,
|
||||
Event.label == l.label)
|
||||
)
|
||||
update_query.execute()
|
||||
|
||||
## Expire events from cameras based on the camera config
|
||||
for name, camera in self.config.cameras.items():
|
||||
if media == 'clips':
|
||||
retain_config = camera.clips.retain
|
||||
else:
|
||||
retain_config = camera.snapshots.retain
|
||||
# get distinct objects in database for this camera
|
||||
distinct_labels = (Event.select(Event.label)
|
||||
.where(Event.camera == name)
|
||||
.distinct())
|
||||
|
||||
# loop over object types in db
|
||||
for l in distinct_labels:
|
||||
# get expiration time for this label
|
||||
expire_days = retain_config.objects.get(l.label, retain_config.default)
|
||||
expire_after = (datetime.datetime.now() - datetime.timedelta(days=expire_days)).timestamp()
|
||||
# grab all events after specific time
|
||||
expired_events = (
|
||||
Event.select()
|
||||
.where(Event.camera == name,
|
||||
Event.start_time < expire_after,
|
||||
Event.label == l.label)
|
||||
)
|
||||
# delete the grabbed clips from disk
|
||||
for event in expired_events:
|
||||
media_name = f"{event.camera}-{event.id}"
|
||||
media = Path(f"{os.path.join(CLIPS_DIR, media_name)}.{file_extension}")
|
||||
media.unlink(missing_ok=True)
|
||||
# update the clips attribute for the db entry
|
||||
update_query = (
|
||||
Event.update(update_params)
|
||||
.where( Event.camera == name,
|
||||
Event.start_time < expire_after,
|
||||
Event.label == l.label)
|
||||
)
|
||||
update_query.execute()
|
||||
|
||||
def run(self):
|
||||
counter = 0
|
||||
while(True):
|
||||
if self.stop_event.is_set():
|
||||
logger.info(f"Exiting event cleanup...")
|
||||
break
|
||||
|
||||
# only expire events every 10 minutes, but check for stop events every 10 seconds
|
||||
time.sleep(10)
|
||||
counter = counter + 1
|
||||
if counter < 60:
|
||||
continue
|
||||
counter = 0
|
||||
|
||||
self.expire('clips')
|
||||
self.expire('snapshots')
|
||||
|
||||
# drop events from db where has_clip and has_snapshot are false
|
||||
delete_query = (
|
||||
Event.delete()
|
||||
.where( Event.has_clip == False,
|
||||
Event.has_snapshot == False)
|
||||
)
|
||||
delete_query.execute()
|
||||
|
301
frigate/http.py
Normal file
@@ -0,0 +1,301 @@
|
||||
import base64
|
||||
import datetime
|
||||
import logging
|
||||
import os
|
||||
import time
|
||||
from functools import reduce
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from flask import (Blueprint, Flask, Response, current_app, jsonify,
|
||||
make_response, request)
|
||||
from peewee import SqliteDatabase, operator, fn, DoesNotExist
|
||||
from playhouse.shortcuts import model_to_dict
|
||||
|
||||
from frigate.const import CLIPS_DIR
|
||||
from frigate.models import Event
|
||||
from frigate.stats import stats_snapshot
|
||||
from frigate.util import calculate_region
|
||||
from frigate.version import VERSION
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
bp = Blueprint('frigate', __name__)
|
||||
|
||||
def create_app(frigate_config, database: SqliteDatabase, stats_tracking, detected_frames_processor):
|
||||
app = Flask(__name__)
|
||||
|
||||
@app.before_request
|
||||
def _db_connect():
|
||||
database.connect()
|
||||
|
||||
@app.teardown_request
|
||||
def _db_close(exc):
|
||||
if not database.is_closed():
|
||||
database.close()
|
||||
|
||||
app.frigate_config = frigate_config
|
||||
app.stats_tracking = stats_tracking
|
||||
app.detected_frames_processor = detected_frames_processor
|
||||
|
||||
app.register_blueprint(bp)
|
||||
|
||||
return app
|
||||
|
||||
@bp.route('/')
|
||||
def is_healthy():
|
||||
return "Frigate is running. Alive and healthy!"
|
||||
|
||||
@bp.route('/events/summary')
|
||||
def events_summary():
|
||||
has_clip = request.args.get('has_clip', type=int)
|
||||
has_snapshot = request.args.get('has_snapshot', type=int)
|
||||
|
||||
clauses = []
|
||||
|
||||
if not has_clip is None:
|
||||
clauses.append((Event.has_clip == has_clip))
|
||||
|
||||
if not has_snapshot is None:
|
||||
clauses.append((Event.has_snapshot == has_snapshot))
|
||||
|
||||
if len(clauses) == 0:
|
||||
clauses.append((1 == 1))
|
||||
|
||||
groups = (
|
||||
Event
|
||||
.select(
|
||||
Event.camera,
|
||||
Event.label,
|
||||
fn.strftime('%Y-%m-%d', fn.datetime(Event.start_time, 'unixepoch', 'localtime')).alias('day'),
|
||||
Event.zones,
|
||||
fn.COUNT(Event.id).alias('count')
|
||||
)
|
||||
.where(reduce(operator.and_, clauses))
|
||||
.group_by(
|
||||
Event.camera,
|
||||
Event.label,
|
||||
fn.strftime('%Y-%m-%d', fn.datetime(Event.start_time, 'unixepoch', 'localtime')),
|
||||
Event.zones
|
||||
)
|
||||
)
|
||||
|
||||
return jsonify([e for e in groups.dicts()])
|
||||
|
||||
@bp.route('/events/<id>')
|
||||
def event(id):
|
||||
try:
|
||||
return model_to_dict(Event.get(Event.id == id))
|
||||
except DoesNotExist:
|
||||
return "Event not found", 404
|
||||
|
||||
@bp.route('/events/<id>/thumbnail.jpg')
|
||||
def event_thumbnail(id):
|
||||
format = request.args.get('format', 'ios')
|
||||
thumbnail_bytes = None
|
||||
try:
|
||||
event = Event.get(Event.id == id)
|
||||
thumbnail_bytes = base64.b64decode(event.thumbnail)
|
||||
except DoesNotExist:
|
||||
# see if the object is currently being tracked
|
||||
try:
|
||||
for camera_state in current_app.detected_frames_processor.camera_states.values():
|
||||
if id in camera_state.tracked_objects:
|
||||
tracked_obj = camera_state.tracked_objects.get(id)
|
||||
if not tracked_obj is None:
|
||||
thumbnail_bytes = tracked_obj.get_thumbnail()
|
||||
except:
|
||||
return "Event not found", 404
|
||||
|
||||
if thumbnail_bytes is None:
|
||||
return "Event not found", 404
|
||||
|
||||
# android notifications prefer a 2:1 ratio
|
||||
if format == 'android':
|
||||
jpg_as_np = np.frombuffer(thumbnail_bytes, dtype=np.uint8)
|
||||
img = cv2.imdecode(jpg_as_np, flags=1)
|
||||
thumbnail = cv2.copyMakeBorder(img, 0, 0, int(img.shape[1]*0.5), int(img.shape[1]*0.5), cv2.BORDER_CONSTANT, (0,0,0))
|
||||
ret, jpg = cv2.imencode('.jpg', thumbnail)
|
||||
thumbnail_bytes = jpg.tobytes()
|
||||
|
||||
response = make_response(thumbnail_bytes)
|
||||
response.headers['Content-Type'] = 'image/jpg'
|
||||
return response
|
||||
|
||||
@bp.route('/events/<id>/snapshot.jpg')
|
||||
def event_snapshot(id):
|
||||
jpg_bytes = None
|
||||
try:
|
||||
event = Event.get(Event.id == id)
|
||||
if not event.has_snapshot:
|
||||
return "Snapshot not available", 404
|
||||
# read snapshot from disk
|
||||
with open(os.path.join(CLIPS_DIR, f"{event.camera}-{id}.jpg"), 'rb') as image_file:
|
||||
jpg_bytes = image_file.read()
|
||||
except DoesNotExist:
|
||||
# see if the object is currently being tracked
|
||||
try:
|
||||
for camera_state in current_app.detected_frames_processor.camera_states.values():
|
||||
if id in camera_state.tracked_objects:
|
||||
tracked_obj = camera_state.tracked_objects.get(id)
|
||||
if not tracked_obj is None:
|
||||
jpg_bytes = tracked_obj.get_jpg_bytes(
|
||||
timestamp=request.args.get('timestamp', type=int),
|
||||
bounding_box=request.args.get('bbox', type=int),
|
||||
crop=request.args.get('crop', type=int),
|
||||
height=request.args.get('h', type=int)
|
||||
)
|
||||
except:
|
||||
return "Event not found", 404
|
||||
except:
|
||||
return "Event not found", 404
|
||||
|
||||
response = make_response(jpg_bytes)
|
||||
response.headers['Content-Type'] = 'image/jpg'
|
||||
return response
|
||||
|
||||
@bp.route('/events')
|
||||
def events():
|
||||
limit = request.args.get('limit', 100)
|
||||
camera = request.args.get('camera')
|
||||
label = request.args.get('label')
|
||||
zone = request.args.get('zone')
|
||||
after = request.args.get('after', type=int)
|
||||
before = request.args.get('before', type=int)
|
||||
has_clip = request.args.get('has_clip', type=int)
|
||||
has_snapshot = request.args.get('has_snapshot', type=int)
|
||||
|
||||
clauses = []
|
||||
|
||||
if camera:
|
||||
clauses.append((Event.camera == camera))
|
||||
|
||||
if label:
|
||||
clauses.append((Event.label == label))
|
||||
|
||||
if zone:
|
||||
clauses.append((Event.zones.cast('text') % f"*\"{zone}\"*"))
|
||||
|
||||
if after:
|
||||
clauses.append((Event.start_time >= after))
|
||||
|
||||
if before:
|
||||
clauses.append((Event.start_time <= before))
|
||||
|
||||
if not has_clip is None:
|
||||
clauses.append((Event.has_clip == has_clip))
|
||||
|
||||
if not has_snapshot is None:
|
||||
clauses.append((Event.has_snapshot == has_snapshot))
|
||||
|
||||
if len(clauses) == 0:
|
||||
clauses.append((1 == 1))
|
||||
|
||||
events = (Event.select()
|
||||
.where(reduce(operator.and_, clauses))
|
||||
.order_by(Event.start_time.desc())
|
||||
.limit(limit))
|
||||
|
||||
return jsonify([model_to_dict(e) for e in events])
|
||||
|
||||
@bp.route('/config')
|
||||
def config():
|
||||
return jsonify(current_app.frigate_config.to_dict())
|
||||
|
||||
@bp.route('/version')
|
||||
def version():
|
||||
return VERSION
|
||||
|
||||
@bp.route('/stats')
|
||||
def stats():
|
||||
stats = stats_snapshot(current_app.stats_tracking)
|
||||
return jsonify(stats)
|
||||
|
||||
@bp.route('/<camera_name>/<label>/best.jpg')
|
||||
def best(camera_name, label):
|
||||
if camera_name in current_app.frigate_config.cameras:
|
||||
best_object = current_app.detected_frames_processor.get_best(camera_name, label)
|
||||
best_frame = best_object.get('frame')
|
||||
if best_frame is None:
|
||||
best_frame = np.zeros((720,1280,3), np.uint8)
|
||||
else:
|
||||
best_frame = cv2.cvtColor(best_frame, cv2.COLOR_YUV2BGR_I420)
|
||||
|
||||
crop = bool(request.args.get('crop', 0, type=int))
|
||||
if crop:
|
||||
box = best_object.get('box', (0,0,300,300))
|
||||
region = calculate_region(best_frame.shape, box[0], box[1], box[2], box[3], 1.1)
|
||||
best_frame = best_frame[region[1]:region[3], region[0]:region[2]]
|
||||
|
||||
height = int(request.args.get('h', str(best_frame.shape[0])))
|
||||
width = int(height*best_frame.shape[1]/best_frame.shape[0])
|
||||
|
||||
best_frame = cv2.resize(best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
|
||||
ret, jpg = cv2.imencode('.jpg', best_frame)
|
||||
response = make_response(jpg.tobytes())
|
||||
response.headers['Content-Type'] = 'image/jpg'
|
||||
return response
|
||||
else:
|
||||
return "Camera named {} not found".format(camera_name), 404
|
||||
|
||||
@bp.route('/<camera_name>')
|
||||
def mjpeg_feed(camera_name):
|
||||
fps = int(request.args.get('fps', '3'))
|
||||
height = int(request.args.get('h', '360'))
|
||||
draw_options = {
|
||||
'bounding_boxes': request.args.get('bbox', type=int),
|
||||
'timestamp': request.args.get('timestamp', type=int),
|
||||
'zones': request.args.get('zones', type=int),
|
||||
'mask': request.args.get('mask', type=int),
|
||||
'motion_boxes': request.args.get('motion', type=int),
|
||||
'regions': request.args.get('regions', type=int),
|
||||
}
|
||||
if camera_name in current_app.frigate_config.cameras:
|
||||
# return a multipart response
|
||||
return Response(imagestream(current_app.detected_frames_processor, camera_name, fps, height, draw_options),
|
||||
mimetype='multipart/x-mixed-replace; boundary=frame')
|
||||
else:
|
||||
return "Camera named {} not found".format(camera_name), 404
|
||||
|
||||
@bp.route('/<camera_name>/latest.jpg')
|
||||
def latest_frame(camera_name):
|
||||
draw_options = {
|
||||
'bounding_boxes': request.args.get('bbox', type=int),
|
||||
'timestamp': request.args.get('timestamp', type=int),
|
||||
'zones': request.args.get('zones', type=int),
|
||||
'mask': request.args.get('mask', type=int),
|
||||
'motion_boxes': request.args.get('motion', type=int),
|
||||
'regions': request.args.get('regions', type=int),
|
||||
}
|
||||
if camera_name in current_app.frigate_config.cameras:
|
||||
# max out at specified FPS
|
||||
frame = current_app.detected_frames_processor.get_current_frame(camera_name, draw_options)
|
||||
if frame is None:
|
||||
frame = np.zeros((720,1280,3), np.uint8)
|
||||
|
||||
height = int(request.args.get('h', str(frame.shape[0])))
|
||||
width = int(height*frame.shape[1]/frame.shape[0])
|
||||
|
||||
frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
|
||||
|
||||
ret, jpg = cv2.imencode('.jpg', frame)
|
||||
response = make_response(jpg.tobytes())
|
||||
response.headers['Content-Type'] = 'image/jpg'
|
||||
return response
|
||||
else:
|
||||
return "Camera named {} not found".format(camera_name), 404
|
||||
|
||||
def imagestream(detected_frames_processor, camera_name, fps, height, draw_options):
|
||||
while True:
|
||||
# max out at specified FPS
|
||||
time.sleep(1/fps)
|
||||
frame = detected_frames_processor.get_current_frame(camera_name, draw_options)
|
||||
if frame is None:
|
||||
frame = np.zeros((height,int(height*16/9),3), np.uint8)
|
||||
|
||||
width = int(height*frame.shape[1]/frame.shape[0])
|
||||
frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_LINEAR)
|
||||
|
||||
ret, jpg = cv2.imencode('.jpg', frame)
|
||||
yield (b'--frame\r\n'
|
||||
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
|
77
frigate/log.py
Normal file
@@ -0,0 +1,77 @@
|
||||
# adapted from https://medium.com/@jonathonbao/python3-logging-with-multiprocessing-f51f460b8778
|
||||
import logging
|
||||
import threading
|
||||
import os
|
||||
import signal
|
||||
import queue
|
||||
import multiprocessing as mp
|
||||
from logging import handlers
|
||||
from setproctitle import setproctitle
|
||||
|
||||
|
||||
def listener_configurer():
|
||||
root = logging.getLogger()
|
||||
console_handler = logging.StreamHandler()
|
||||
formatter = logging.Formatter('%(name)-30s %(levelname)-8s: %(message)s')
|
||||
console_handler.setFormatter(formatter)
|
||||
root.addHandler(console_handler)
|
||||
root.setLevel(logging.INFO)
|
||||
|
||||
def root_configurer(queue):
|
||||
h = handlers.QueueHandler(queue)
|
||||
root = logging.getLogger()
|
||||
root.addHandler(h)
|
||||
root.setLevel(logging.INFO)
|
||||
|
||||
def log_process(log_queue):
|
||||
stop_event = mp.Event()
|
||||
def receiveSignal(signalNumber, frame):
|
||||
stop_event.set()
|
||||
|
||||
signal.signal(signal.SIGTERM, receiveSignal)
|
||||
signal.signal(signal.SIGINT, receiveSignal)
|
||||
|
||||
threading.current_thread().name = f"logger"
|
||||
setproctitle("frigate.logger")
|
||||
listener_configurer()
|
||||
while True:
|
||||
if stop_event.is_set() and log_queue.empty():
|
||||
break
|
||||
try:
|
||||
record = log_queue.get(timeout=5)
|
||||
except queue.Empty:
|
||||
continue
|
||||
logger = logging.getLogger(record.name)
|
||||
logger.handle(record)
|
||||
|
||||
# based on https://codereview.stackexchange.com/a/17959
|
||||
class LogPipe(threading.Thread):
|
||||
def __init__(self, log_name, level):
|
||||
"""Setup the object with a logger and a loglevel
|
||||
and start the thread
|
||||
"""
|
||||
threading.Thread.__init__(self)
|
||||
self.daemon = False
|
||||
self.logger = logging.getLogger(log_name)
|
||||
self.level = level
|
||||
self.fdRead, self.fdWrite = os.pipe()
|
||||
self.pipeReader = os.fdopen(self.fdRead)
|
||||
self.start()
|
||||
|
||||
def fileno(self):
|
||||
"""Return the write file descriptor of the pipe
|
||||
"""
|
||||
return self.fdWrite
|
||||
|
||||
def run(self):
|
||||
"""Run the thread, logging everything.
|
||||
"""
|
||||
for line in iter(self.pipeReader.readline, ''):
|
||||
self.logger.log(self.level, line.strip('\n'))
|
||||
|
||||
self.pipeReader.close()
|
||||
|
||||
def close(self):
|
||||
"""Close the write end of the pipe.
|
||||
"""
|
||||
os.close(self.fdWrite)
|
16
frigate/models.py
Normal file
@@ -0,0 +1,16 @@
|
||||
from peewee import *
|
||||
from playhouse.sqlite_ext import *
|
||||
|
||||
|
||||
class Event(Model):
|
||||
id = CharField(null=False, primary_key=True, max_length=30)
|
||||
label = CharField(index=True, max_length=20)
|
||||
camera = CharField(index=True, max_length=20)
|
||||
start_time = DateTimeField()
|
||||
end_time = DateTimeField()
|
||||
top_score = FloatField()
|
||||
false_positive = BooleanField()
|
||||
zones = JSONField()
|
||||
thumbnail = TextField()
|
||||
has_clip = BooleanField(default=True)
|
||||
has_snapshot = BooleanField(default=True)
|
@@ -1,17 +1,20 @@
|
||||
import cv2
|
||||
import imutils
|
||||
import numpy as np
|
||||
from frigate.config import MotionConfig
|
||||
|
||||
|
||||
class MotionDetector():
|
||||
def __init__(self, frame_shape, mask, resize_factor=4):
|
||||
def __init__(self, frame_shape, config: MotionConfig):
|
||||
self.config = config
|
||||
self.frame_shape = frame_shape
|
||||
self.resize_factor = resize_factor
|
||||
self.motion_frame_size = (int(frame_shape[0]/resize_factor), int(frame_shape[1]/resize_factor))
|
||||
self.resize_factor = frame_shape[0]/config.frame_height
|
||||
self.motion_frame_size = (config.frame_height, config.frame_height*frame_shape[1]//frame_shape[0])
|
||||
self.avg_frame = np.zeros(self.motion_frame_size, np.float)
|
||||
self.avg_delta = np.zeros(self.motion_frame_size, np.float)
|
||||
self.motion_frame_count = 0
|
||||
self.frame_counter = 0
|
||||
resized_mask = cv2.resize(mask, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR)
|
||||
resized_mask = cv2.resize(config.mask, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR)
|
||||
self.mask = np.where(resized_mask==[0])
|
||||
|
||||
def detect(self, frame):
|
||||
@@ -22,6 +25,8 @@ class MotionDetector():
|
||||
# resize frame
|
||||
resized_frame = cv2.resize(gray, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR)
|
||||
|
||||
# TODO: can I improve the contrast of the grayscale image here?
|
||||
|
||||
# convert to grayscale
|
||||
# resized_frame = cv2.cvtColor(resized_frame, cv2.COLOR_BGR2GRAY)
|
||||
|
||||
@@ -37,22 +42,21 @@ class MotionDetector():
|
||||
frameDelta = cv2.absdiff(resized_frame, cv2.convertScaleAbs(self.avg_frame))
|
||||
|
||||
# compute the average delta over the past few frames
|
||||
# the alpha value can be modified to configure how sensitive the motion detection is.
|
||||
# higher values mean the current frame impacts the delta a lot, and a single raindrop may
|
||||
# register as motion, too low and a fast moving person wont be detected as motion
|
||||
# this also assumes that a person is in the same location across more than a single frame
|
||||
cv2.accumulateWeighted(frameDelta, self.avg_delta, 0.2)
|
||||
cv2.accumulateWeighted(frameDelta, self.avg_delta, self.config.delta_alpha)
|
||||
|
||||
# compute the threshold image for the current frame
|
||||
current_thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
|
||||
# TODO: threshold
|
||||
current_thresh = cv2.threshold(frameDelta, self.config.threshold, 255, cv2.THRESH_BINARY)[1]
|
||||
|
||||
# black out everything in the avg_delta where there isnt motion in the current frame
|
||||
avg_delta_image = cv2.convertScaleAbs(self.avg_delta)
|
||||
avg_delta_image[np.where(current_thresh==[0])] = [0]
|
||||
avg_delta_image = cv2.bitwise_and(avg_delta_image, current_thresh)
|
||||
|
||||
# then look for deltas above the threshold, but only in areas where there is a delta
|
||||
# in the current frame. this prevents deltas from previous frames from being included
|
||||
thresh = cv2.threshold(avg_delta_image, 25, 255, cv2.THRESH_BINARY)[1]
|
||||
thresh = cv2.threshold(avg_delta_image, self.config.threshold, 255, cv2.THRESH_BINARY)[1]
|
||||
|
||||
# dilate the thresholded image to fill in holes, then find contours
|
||||
# on thresholded image
|
||||
@@ -64,19 +68,18 @@ class MotionDetector():
|
||||
for c in cnts:
|
||||
# if the contour is big enough, count it as motion
|
||||
contour_area = cv2.contourArea(c)
|
||||
if contour_area > 100:
|
||||
if contour_area > self.config.contour_area:
|
||||
x, y, w, h = cv2.boundingRect(c)
|
||||
motion_boxes.append((x*self.resize_factor, y*self.resize_factor, (x+w)*self.resize_factor, (y+h)*self.resize_factor))
|
||||
motion_boxes.append((int(x*self.resize_factor), int(y*self.resize_factor), int((x+w)*self.resize_factor), int((y+h)*self.resize_factor)))
|
||||
|
||||
if len(motion_boxes) > 0:
|
||||
self.motion_frame_count += 1
|
||||
# TODO: this really depends on FPS
|
||||
if self.motion_frame_count >= 10:
|
||||
# only average in the current frame if the difference persists for at least 3 frames
|
||||
cv2.accumulateWeighted(resized_frame, self.avg_frame, 0.2)
|
||||
# only average in the current frame if the difference persists for a bit
|
||||
cv2.accumulateWeighted(resized_frame, self.avg_frame, self.config.frame_alpha)
|
||||
else:
|
||||
# when no motion, just keep averaging the frames together
|
||||
cv2.accumulateWeighted(resized_frame, self.avg_frame, 0.2)
|
||||
cv2.accumulateWeighted(resized_frame, self.avg_frame, self.config.frame_alpha)
|
||||
self.motion_frame_count = 0
|
||||
|
||||
return motion_boxes
|
||||
return motion_boxes
|
||||
|
125
frigate/mqtt.py
Normal file
@@ -0,0 +1,125 @@
|
||||
import logging
|
||||
import threading
|
||||
|
||||
import paho.mqtt.client as mqtt
|
||||
|
||||
from frigate.config import FrigateConfig
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
def create_mqtt_client(config: FrigateConfig, camera_metrics):
|
||||
mqtt_config = config.mqtt
|
||||
|
||||
def on_clips_command(client, userdata, message):
|
||||
payload = message.payload.decode()
|
||||
logger.debug(f"on_clips_toggle: {message.topic} {payload}")
|
||||
|
||||
camera_name = message.topic.split('/')[-3]
|
||||
|
||||
clips_settings = config.cameras[camera_name].clips
|
||||
|
||||
if payload == 'ON':
|
||||
if not clips_settings.enabled:
|
||||
logger.info(f"Turning on clips for {camera_name} via mqtt")
|
||||
clips_settings._enabled = True
|
||||
elif payload == 'OFF':
|
||||
if clips_settings.enabled:
|
||||
logger.info(f"Turning off clips for {camera_name} via mqtt")
|
||||
clips_settings._enabled = False
|
||||
else:
|
||||
logger.warning(f"Received unsupported value at {message.topic}: {payload}")
|
||||
|
||||
state_topic = f"{message.topic[:-4]}/state"
|
||||
client.publish(state_topic, payload, retain=True)
|
||||
|
||||
def on_snapshots_command(client, userdata, message):
|
||||
payload = message.payload.decode()
|
||||
logger.debug(f"on_snapshots_toggle: {message.topic} {payload}")
|
||||
|
||||
camera_name = message.topic.split('/')[-3]
|
||||
|
||||
snapshots_settings = config.cameras[camera_name].snapshots
|
||||
|
||||
if payload == 'ON':
|
||||
if not snapshots_settings.enabled:
|
||||
logger.info(f"Turning on snapshots for {camera_name} via mqtt")
|
||||
snapshots_settings._enabled = True
|
||||
elif payload == 'OFF':
|
||||
if snapshots_settings.enabled:
|
||||
logger.info(f"Turning off snapshots for {camera_name} via mqtt")
|
||||
snapshots_settings._enabled = False
|
||||
else:
|
||||
logger.warning(f"Received unsupported value at {message.topic}: {payload}")
|
||||
|
||||
state_topic = f"{message.topic[:-4]}/state"
|
||||
client.publish(state_topic, payload, retain=True)
|
||||
|
||||
def on_detect_command(client, userdata, message):
|
||||
payload = message.payload.decode()
|
||||
logger.debug(f"on_detect_toggle: {message.topic} {payload}")
|
||||
|
||||
camera_name = message.topic.split('/')[-3]
|
||||
|
||||
detect_settings = config.cameras[camera_name].detect
|
||||
|
||||
if payload == 'ON':
|
||||
if not camera_metrics[camera_name]["detection_enabled"].value:
|
||||
logger.info(f"Turning on detection for {camera_name} via mqtt")
|
||||
camera_metrics[camera_name]["detection_enabled"].value = True
|
||||
detect_settings._enabled = True
|
||||
elif payload == 'OFF':
|
||||
if camera_metrics[camera_name]["detection_enabled"].value:
|
||||
logger.info(f"Turning off detection for {camera_name} via mqtt")
|
||||
camera_metrics[camera_name]["detection_enabled"].value = False
|
||||
detect_settings._enabled = False
|
||||
else:
|
||||
logger.warning(f"Received unsupported value at {message.topic}: {payload}")
|
||||
|
||||
state_topic = f"{message.topic[:-4]}/state"
|
||||
client.publish(state_topic, payload, retain=True)
|
||||
|
||||
def on_connect(client, userdata, flags, rc):
|
||||
threading.current_thread().name = "mqtt"
|
||||
if rc != 0:
|
||||
if rc == 3:
|
||||
logger.error("MQTT Server unavailable")
|
||||
elif rc == 4:
|
||||
logger.error("MQTT Bad username or password")
|
||||
elif rc == 5:
|
||||
logger.error("MQTT Not authorized")
|
||||
else:
|
||||
logger.error("Unable to connect to MQTT: Connection refused. Error code: " + str(rc))
|
||||
|
||||
logger.info("MQTT connected")
|
||||
client.publish(mqtt_config.topic_prefix+'/available', 'online', retain=True)
|
||||
|
||||
client = mqtt.Client(client_id=mqtt_config.client_id)
|
||||
client.on_connect = on_connect
|
||||
client.will_set(mqtt_config.topic_prefix+'/available', payload='offline', qos=1, retain=True)
|
||||
|
||||
# register callbacks
|
||||
for name in config.cameras.keys():
|
||||
client.message_callback_add(f"{mqtt_config.topic_prefix}/{name}/clips/set", on_clips_command)
|
||||
client.message_callback_add(f"{mqtt_config.topic_prefix}/{name}/snapshots/set", on_snapshots_command)
|
||||
client.message_callback_add(f"{mqtt_config.topic_prefix}/{name}/detect/set", on_detect_command)
|
||||
|
||||
if not mqtt_config.user is None:
|
||||
client.username_pw_set(mqtt_config.user, password=mqtt_config.password)
|
||||
try:
|
||||
client.connect(mqtt_config.host, mqtt_config.port, 60)
|
||||
except Exception as e:
|
||||
logger.error(f"Unable to connect to MQTT server: {e}")
|
||||
raise
|
||||
|
||||
client.loop_start()
|
||||
|
||||
for name in config.cameras.keys():
|
||||
client.publish(f"{mqtt_config.topic_prefix}/{name}/clips/state", 'ON' if config.cameras[name].clips.enabled else 'OFF', retain=True)
|
||||
client.publish(f"{mqtt_config.topic_prefix}/{name}/snapshots/state", 'ON' if config.cameras[name].snapshots.enabled else 'OFF', retain=True)
|
||||
client.publish(f"{mqtt_config.topic_prefix}/{name}/detect/state", 'ON' if config.cameras[name].detect.enabled else 'OFF', retain=True)
|
||||
|
||||
client.subscribe(f"{mqtt_config.topic_prefix}/+/clips/set")
|
||||
client.subscribe(f"{mqtt_config.topic_prefix}/+/snapshots/set")
|
||||
client.subscribe(f"{mqtt_config.topic_prefix}/+/detect/set")
|
||||
|
||||
return client
|
@@ -1,20 +1,28 @@
|
||||
import json
|
||||
import hashlib
|
||||
import copy
|
||||
import base64
|
||||
import datetime
|
||||
import time
|
||||
import copy
|
||||
import cv2
|
||||
import threading
|
||||
import queue
|
||||
import copy
|
||||
import numpy as np
|
||||
from collections import Counter, defaultdict
|
||||
import hashlib
|
||||
import itertools
|
||||
import matplotlib.pyplot as plt
|
||||
from frigate.util import draw_box_with_label, SharedMemoryFrameManager
|
||||
from frigate.edgetpu import load_labels
|
||||
from typing import Callable, Dict
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import queue
|
||||
import threading
|
||||
import time
|
||||
from collections import Counter, defaultdict
|
||||
from statistics import mean, median
|
||||
from typing import Callable, Dict
|
||||
|
||||
import cv2
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
from frigate.config import FrigateConfig, CameraConfig
|
||||
from frigate.const import RECORD_DIR, CLIPS_DIR, CACHE_DIR
|
||||
from frigate.edgetpu import load_labels
|
||||
from frigate.util import SharedMemoryFrameManager, draw_box_with_label, calculate_region
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
PATH_TO_LABELS = '/labelmap.txt'
|
||||
|
||||
@@ -25,26 +33,216 @@ COLOR_MAP = {}
|
||||
for key, val in LABELS.items():
|
||||
COLOR_MAP[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3])
|
||||
|
||||
def zone_filtered(obj, object_config):
|
||||
object_name = obj['label']
|
||||
def on_edge(box, frame_shape):
|
||||
if (
|
||||
box[0] == 0 or
|
||||
box[1] == 0 or
|
||||
box[2] == frame_shape[1]-1 or
|
||||
box[3] == frame_shape[0]-1
|
||||
):
|
||||
return True
|
||||
|
||||
def is_better_thumbnail(current_thumb, new_obj, frame_shape) -> bool:
|
||||
# larger is better
|
||||
# cutoff images are less ideal, but they should also be smaller?
|
||||
# better scores are obviously better too
|
||||
|
||||
# if the new_thumb is on an edge, and the current thumb is not
|
||||
if on_edge(new_obj['box'], frame_shape) and not on_edge(current_thumb['box'], frame_shape):
|
||||
return False
|
||||
|
||||
# if the score is better by more than 5%
|
||||
if new_obj['score'] > current_thumb['score']+.05:
|
||||
return True
|
||||
|
||||
# if the area is 10% larger
|
||||
if new_obj['area'] > current_thumb['area']*1.1:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
class TrackedObject():
|
||||
def __init__(self, camera, camera_config: CameraConfig, frame_cache, obj_data):
|
||||
self.obj_data = obj_data
|
||||
self.camera = camera
|
||||
self.camera_config = camera_config
|
||||
self.frame_cache = frame_cache
|
||||
self.current_zones = []
|
||||
self.entered_zones = set()
|
||||
self.false_positive = True
|
||||
self.top_score = self.computed_score = 0.0
|
||||
self.thumbnail_data = None
|
||||
self.last_updated = 0
|
||||
self.last_published = 0
|
||||
self.frame = None
|
||||
self.previous = self.to_dict()
|
||||
|
||||
# start the score history
|
||||
self.score_history = [self.obj_data['score']]
|
||||
|
||||
def _is_false_positive(self):
|
||||
# once a true positive, always a true positive
|
||||
if not self.false_positive:
|
||||
return False
|
||||
|
||||
threshold = self.camera_config.objects.filters[self.obj_data['label']].threshold
|
||||
if self.computed_score < threshold:
|
||||
return True
|
||||
return False
|
||||
|
||||
def compute_score(self):
|
||||
scores = self.score_history[:]
|
||||
# pad with zeros if you dont have at least 3 scores
|
||||
if len(scores) < 3:
|
||||
scores += [0.0]*(3 - len(scores))
|
||||
return median(scores)
|
||||
|
||||
def update(self, current_frame_time, obj_data):
|
||||
significant_update = False
|
||||
self.obj_data.update(obj_data)
|
||||
# if the object is not in the current frame, add a 0.0 to the score history
|
||||
if self.obj_data['frame_time'] != current_frame_time:
|
||||
self.score_history.append(0.0)
|
||||
else:
|
||||
self.score_history.append(self.obj_data['score'])
|
||||
# only keep the last 10 scores
|
||||
if len(self.score_history) > 10:
|
||||
self.score_history = self.score_history[-10:]
|
||||
|
||||
# calculate if this is a false positive
|
||||
self.computed_score = self.compute_score()
|
||||
if self.computed_score > self.top_score:
|
||||
self.top_score = self.computed_score
|
||||
self.false_positive = self._is_false_positive()
|
||||
|
||||
if not self.false_positive:
|
||||
# determine if this frame is a better thumbnail
|
||||
if (
|
||||
self.thumbnail_data is None
|
||||
or is_better_thumbnail(self.thumbnail_data, self.obj_data, self.camera_config.frame_shape)
|
||||
):
|
||||
self.thumbnail_data = {
|
||||
'frame_time': self.obj_data['frame_time'],
|
||||
'box': self.obj_data['box'],
|
||||
'area': self.obj_data['area'],
|
||||
'region': self.obj_data['region'],
|
||||
'score': self.obj_data['score']
|
||||
}
|
||||
significant_update = True
|
||||
|
||||
# check zones
|
||||
current_zones = []
|
||||
bottom_center = (self.obj_data['centroid'][0], self.obj_data['box'][3])
|
||||
# check each zone
|
||||
for name, zone in self.camera_config.zones.items():
|
||||
contour = zone.contour
|
||||
# check if the object is in the zone
|
||||
if (cv2.pointPolygonTest(contour, bottom_center, False) >= 0):
|
||||
# if the object passed the filters once, dont apply again
|
||||
if name in self.current_zones or not zone_filtered(self, zone.filters):
|
||||
current_zones.append(name)
|
||||
self.entered_zones.add(name)
|
||||
|
||||
# if the zones changed, signal an update
|
||||
if not self.false_positive and set(self.current_zones) != set(current_zones):
|
||||
significant_update = True
|
||||
|
||||
self.current_zones = current_zones
|
||||
return significant_update
|
||||
|
||||
def to_dict(self, include_thumbnail: bool = False):
|
||||
return {
|
||||
'id': self.obj_data['id'],
|
||||
'camera': self.camera,
|
||||
'frame_time': self.obj_data['frame_time'],
|
||||
'label': self.obj_data['label'],
|
||||
'top_score': self.top_score,
|
||||
'false_positive': self.false_positive,
|
||||
'start_time': self.obj_data['start_time'],
|
||||
'end_time': self.obj_data.get('end_time', None),
|
||||
'score': self.obj_data['score'],
|
||||
'box': self.obj_data['box'],
|
||||
'area': self.obj_data['area'],
|
||||
'region': self.obj_data['region'],
|
||||
'current_zones': self.current_zones.copy(),
|
||||
'entered_zones': list(self.entered_zones).copy(),
|
||||
'thumbnail': base64.b64encode(self.get_thumbnail()).decode('utf-8') if include_thumbnail else None
|
||||
}
|
||||
|
||||
def get_thumbnail(self):
|
||||
if self.thumbnail_data is None or not self.thumbnail_data['frame_time'] in self.frame_cache:
|
||||
ret, jpg = cv2.imencode('.jpg', np.zeros((175,175,3), np.uint8))
|
||||
|
||||
jpg_bytes = self.get_jpg_bytes(timestamp=False, bounding_box=False, crop=True, height=175)
|
||||
|
||||
if jpg_bytes:
|
||||
return jpg_bytes
|
||||
else:
|
||||
ret, jpg = cv2.imencode('.jpg', np.zeros((175,175,3), np.uint8))
|
||||
return jpg.tobytes()
|
||||
|
||||
def get_jpg_bytes(self, timestamp=False, bounding_box=False, crop=False, height=None):
|
||||
if self.thumbnail_data is None:
|
||||
return None
|
||||
|
||||
try:
|
||||
best_frame = cv2.cvtColor(self.frame_cache[self.thumbnail_data['frame_time']], cv2.COLOR_YUV2BGR_I420)
|
||||
except KeyError:
|
||||
logger.warning(f"Unable to create jpg because frame {self.thumbnail_data['frame_time']} is not in the cache")
|
||||
return None
|
||||
|
||||
if bounding_box:
|
||||
thickness = 2
|
||||
color = COLOR_MAP[self.obj_data['label']]
|
||||
|
||||
# draw the bounding boxes on the frame
|
||||
box = self.thumbnail_data['box']
|
||||
draw_box_with_label(best_frame, box[0], box[1], box[2], box[3], self.obj_data['label'], f"{int(self.thumbnail_data['score']*100)}% {int(self.thumbnail_data['area'])}", thickness=thickness, color=color)
|
||||
|
||||
if crop:
|
||||
box = self.thumbnail_data['box']
|
||||
region = calculate_region(best_frame.shape, box[0], box[1], box[2], box[3], 1.1)
|
||||
best_frame = best_frame[region[1]:region[3], region[0]:region[2]]
|
||||
|
||||
if height:
|
||||
width = int(height*best_frame.shape[1]/best_frame.shape[0])
|
||||
best_frame = cv2.resize(best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
|
||||
|
||||
if timestamp:
|
||||
time_to_show = datetime.datetime.fromtimestamp(self.thumbnail_data['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
|
||||
size = cv2.getTextSize(time_to_show, cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, thickness=2)
|
||||
text_width = size[0][0]
|
||||
desired_size = max(150, 0.33*best_frame.shape[1])
|
||||
font_scale = desired_size/text_width
|
||||
cv2.putText(best_frame, time_to_show, (5, best_frame.shape[0]-7), cv2.FONT_HERSHEY_SIMPLEX,
|
||||
fontScale=font_scale, color=(255, 255, 255), thickness=2)
|
||||
|
||||
ret, jpg = cv2.imencode('.jpg', best_frame)
|
||||
if ret:
|
||||
return jpg.tobytes()
|
||||
else:
|
||||
return None
|
||||
|
||||
def zone_filtered(obj: TrackedObject, object_config):
|
||||
object_name = obj.obj_data['label']
|
||||
|
||||
if object_name in object_config:
|
||||
obj_settings = object_config[object_name]
|
||||
|
||||
# if the min area is larger than the
|
||||
# detected object, don't add it to detected objects
|
||||
if obj_settings.get('min_area',-1) > obj['area']:
|
||||
if obj_settings.min_area > obj.obj_data['area']:
|
||||
return True
|
||||
|
||||
|
||||
# if the detected object is larger than the
|
||||
# max area, don't add it to detected objects
|
||||
if obj_settings.get('max_area', 24000000) < obj['area']:
|
||||
if obj_settings.max_area < obj.obj_data['area']:
|
||||
return True
|
||||
|
||||
# if the score is lower than the threshold, skip
|
||||
if obj_settings.get('threshold', 0) > obj['computed_score']:
|
||||
if obj_settings.threshold > obj.computed_score:
|
||||
return True
|
||||
|
||||
|
||||
return False
|
||||
|
||||
# Maintains the state of a camera
|
||||
@@ -52,32 +250,37 @@ class CameraState():
|
||||
def __init__(self, name, config, frame_manager):
|
||||
self.name = name
|
||||
self.config = config
|
||||
self.camera_config = config.cameras[name]
|
||||
self.frame_manager = frame_manager
|
||||
|
||||
self.best_objects = {}
|
||||
self.object_status = defaultdict(lambda: 'OFF')
|
||||
self.tracked_objects = {}
|
||||
self.best_objects: Dict[str, TrackedObject] = {}
|
||||
self.object_counts = defaultdict(lambda: 0)
|
||||
self.tracked_objects: Dict[str, TrackedObject] = {}
|
||||
self.frame_cache = {}
|
||||
self.zone_objects = defaultdict(lambda: [])
|
||||
self._current_frame = np.zeros((self.config['frame_shape'][0]*3//2, self.config['frame_shape'][1]), np.uint8)
|
||||
self._current_frame = np.zeros(self.camera_config.frame_shape_yuv, np.uint8)
|
||||
self.current_frame_lock = threading.Lock()
|
||||
self.current_frame_time = 0.0
|
||||
self.motion_boxes = []
|
||||
self.regions = []
|
||||
self.previous_frame_id = None
|
||||
self.callbacks = defaultdict(lambda: [])
|
||||
|
||||
def get_current_frame(self, draw=False):
|
||||
def get_current_frame(self, draw_options={}):
|
||||
with self.current_frame_lock:
|
||||
frame_copy = np.copy(self._current_frame)
|
||||
frame_time = self.current_frame_time
|
||||
tracked_objects = copy.deepcopy(self.tracked_objects)
|
||||
|
||||
tracked_objects = {k: v.to_dict() for k,v in self.tracked_objects.items()}
|
||||
motion_boxes = self.motion_boxes.copy()
|
||||
regions = self.regions.copy()
|
||||
|
||||
frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_YUV2BGR_I420)
|
||||
# draw on the frame
|
||||
if draw:
|
||||
if draw_options.get('bounding_boxes'):
|
||||
# draw the bounding boxes on the frame
|
||||
for obj in tracked_objects.values():
|
||||
thickness = 2
|
||||
color = COLOR_MAP[obj['label']]
|
||||
|
||||
|
||||
if obj['frame_time'] != frame_time:
|
||||
thickness = 1
|
||||
color = (255,0,0)
|
||||
@@ -85,156 +288,135 @@ class CameraState():
|
||||
# draw the bounding boxes on the frame
|
||||
box = obj['box']
|
||||
draw_box_with_label(frame_copy, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
|
||||
# draw the regions on the frame
|
||||
region = obj['region']
|
||||
cv2.rectangle(frame_copy, (region[0], region[1]), (region[2], region[3]), (0,255,0), 1)
|
||||
|
||||
if self.config['snapshots']['show_timestamp']:
|
||||
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
|
||||
cv2.putText(frame_copy, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
|
||||
|
||||
if self.config['snapshots']['draw_zones']:
|
||||
for name, zone in self.config['zones'].items():
|
||||
thickness = 8 if any([name in obj['zones'] for obj in tracked_objects.values()]) else 2
|
||||
cv2.drawContours(frame_copy, [zone['contour']], -1, zone['color'], thickness)
|
||||
|
||||
if draw_options.get('regions'):
|
||||
for region in regions:
|
||||
cv2.rectangle(frame_copy, (region[0], region[1]), (region[2], region[3]), (0,255,0), 2)
|
||||
|
||||
if draw_options.get('zones'):
|
||||
for name, zone in self.camera_config.zones.items():
|
||||
thickness = 8 if any([name in obj['current_zones'] for obj in tracked_objects.values()]) else 2
|
||||
cv2.drawContours(frame_copy, [zone.contour], -1, zone.color, thickness)
|
||||
|
||||
if draw_options.get('mask'):
|
||||
mask_overlay = np.where(self.camera_config.motion.mask==[0])
|
||||
frame_copy[mask_overlay] = [0,0,0]
|
||||
|
||||
if draw_options.get('motion_boxes'):
|
||||
for m_box in motion_boxes:
|
||||
cv2.rectangle(frame_copy, (m_box[0], m_box[1]), (m_box[2], m_box[3]), (0,0,255), 2)
|
||||
|
||||
if draw_options.get('timestamp'):
|
||||
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
|
||||
cv2.putText(frame_copy, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
|
||||
|
||||
return frame_copy
|
||||
|
||||
def false_positive(self, obj):
|
||||
# once a true positive, always a true positive
|
||||
if not obj.get('false_positive', True):
|
||||
return False
|
||||
|
||||
threshold = self.config['objects'].get('filters', {}).get(obj['label'], {}).get('threshold', 0.85)
|
||||
if obj['computed_score'] < threshold:
|
||||
return True
|
||||
return False
|
||||
|
||||
def compute_score(self, obj):
|
||||
scores = obj['score_history'][:]
|
||||
# pad with zeros if you dont have at least 3 scores
|
||||
if len(scores) < 3:
|
||||
scores += [0.0]*(3 - len(scores))
|
||||
return median(scores)
|
||||
def finished(self, obj_id):
|
||||
del self.tracked_objects[obj_id]
|
||||
|
||||
def on(self, event_type: str, callback: Callable[[Dict], None]):
|
||||
self.callbacks[event_type].append(callback)
|
||||
|
||||
def update(self, frame_time, tracked_objects):
|
||||
def update(self, frame_time, current_detections, motion_boxes, regions):
|
||||
self.current_frame_time = frame_time
|
||||
# get the new frame and delete the old frame
|
||||
self.motion_boxes = motion_boxes
|
||||
self.regions = regions
|
||||
# get the new frame
|
||||
frame_id = f"{self.name}{frame_time}"
|
||||
current_frame = self.frame_manager.get(frame_id, (self.config['frame_shape'][0]*3//2, self.config['frame_shape'][1]))
|
||||
current_frame = self.frame_manager.get(frame_id, self.camera_config.frame_shape_yuv)
|
||||
|
||||
current_ids = tracked_objects.keys()
|
||||
current_ids = current_detections.keys()
|
||||
previous_ids = self.tracked_objects.keys()
|
||||
removed_ids = list(set(previous_ids).difference(current_ids))
|
||||
new_ids = list(set(current_ids).difference(previous_ids))
|
||||
updated_ids = list(set(current_ids).intersection(previous_ids))
|
||||
|
||||
for id in new_ids:
|
||||
self.tracked_objects[id] = tracked_objects[id]
|
||||
self.tracked_objects[id]['zones'] = []
|
||||
|
||||
# start the score history
|
||||
self.tracked_objects[id]['score_history'] = [self.tracked_objects[id]['score']]
|
||||
|
||||
# calculate if this is a false positive
|
||||
self.tracked_objects[id]['computed_score'] = self.compute_score(self.tracked_objects[id])
|
||||
self.tracked_objects[id]['false_positive'] = self.false_positive(self.tracked_objects[id])
|
||||
new_obj = self.tracked_objects[id] = TrackedObject(self.name, self.camera_config, self.frame_cache, current_detections[id])
|
||||
|
||||
# call event handlers
|
||||
for c in self.callbacks['start']:
|
||||
c(self.name, tracked_objects[id])
|
||||
|
||||
c(self.name, new_obj, frame_time)
|
||||
|
||||
for id in updated_ids:
|
||||
self.tracked_objects[id].update(tracked_objects[id])
|
||||
updated_obj = self.tracked_objects[id]
|
||||
significant_update = updated_obj.update(frame_time, current_detections[id])
|
||||
|
||||
# if the object is not in the current frame, add a 0.0 to the score history
|
||||
if self.tracked_objects[id]['frame_time'] != self.current_frame_time:
|
||||
self.tracked_objects[id]['score_history'].append(0.0)
|
||||
else:
|
||||
self.tracked_objects[id]['score_history'].append(self.tracked_objects[id]['score'])
|
||||
# only keep the last 10 scores
|
||||
if len(self.tracked_objects[id]['score_history']) > 10:
|
||||
self.tracked_objects[id]['score_history'] = self.tracked_objects[id]['score_history'][-10:]
|
||||
if significant_update:
|
||||
# ensure this frame is stored in the cache
|
||||
if updated_obj.thumbnail_data['frame_time'] == frame_time and frame_time not in self.frame_cache:
|
||||
self.frame_cache[frame_time] = np.copy(current_frame)
|
||||
|
||||
updated_obj.last_updated = frame_time
|
||||
|
||||
# if it has been more than 5 seconds since the last publish
|
||||
# and the last update is greater than the last publish
|
||||
if frame_time - updated_obj.last_published > 5 and updated_obj.last_updated > updated_obj.last_published:
|
||||
# call event handlers
|
||||
for c in self.callbacks['update']:
|
||||
c(self.name, updated_obj, frame_time)
|
||||
updated_obj.last_published = frame_time
|
||||
|
||||
# calculate if this is a false positive
|
||||
self.tracked_objects[id]['computed_score'] = self.compute_score(self.tracked_objects[id])
|
||||
self.tracked_objects[id]['false_positive'] = self.false_positive(self.tracked_objects[id])
|
||||
|
||||
# call event handlers
|
||||
for c in self.callbacks['update']:
|
||||
c(self.name, self.tracked_objects[id])
|
||||
|
||||
for id in removed_ids:
|
||||
# publish events to mqtt
|
||||
self.tracked_objects[id]['end_time'] = frame_time
|
||||
for c in self.callbacks['end']:
|
||||
c(self.name, self.tracked_objects[id])
|
||||
del self.tracked_objects[id]
|
||||
|
||||
# check to see if the objects are in any zones
|
||||
for obj in self.tracked_objects.values():
|
||||
current_zones = []
|
||||
bottom_center = (obj['centroid'][0], obj['box'][3])
|
||||
# check each zone
|
||||
for name, zone in self.config['zones'].items():
|
||||
contour = zone['contour']
|
||||
# check if the object is in the zone
|
||||
if (cv2.pointPolygonTest(contour, bottom_center, False) >= 0):
|
||||
# if the object passed the filters once, dont apply again
|
||||
if name in obj.get('zones', []) or not zone_filtered(obj, zone.get('filters', {})):
|
||||
current_zones.append(name)
|
||||
|
||||
obj['zones'] = current_zones
|
||||
removed_obj = self.tracked_objects[id]
|
||||
if not 'end_time' in removed_obj.obj_data:
|
||||
removed_obj.obj_data['end_time'] = frame_time
|
||||
for c in self.callbacks['end']:
|
||||
c(self.name, removed_obj, frame_time)
|
||||
|
||||
# TODO: can i switch to looking this up and only changing when an event ends?
|
||||
# maintain best objects
|
||||
for obj in self.tracked_objects.values():
|
||||
object_type = obj['label']
|
||||
# if the object wasn't seen on the current frame, skip it
|
||||
if obj['frame_time'] != self.current_frame_time or obj['false_positive']:
|
||||
object_type = obj.obj_data['label']
|
||||
# if the object's thumbnail is not from the current frame
|
||||
if obj.false_positive or obj.thumbnail_data['frame_time'] != self.current_frame_time:
|
||||
continue
|
||||
obj_copy = copy.deepcopy(obj)
|
||||
if object_type in self.best_objects:
|
||||
current_best = self.best_objects[object_type]
|
||||
now = datetime.datetime.now().timestamp()
|
||||
# if the object is a higher score than the current best score
|
||||
# if the object is a higher score than the current best score
|
||||
# or the current object is older than desired, use the new object
|
||||
if obj_copy['score'] > current_best['score'] or (now - current_best['frame_time']) > self.config.get('best_image_timeout', 60):
|
||||
obj_copy['frame'] = np.copy(current_frame)
|
||||
self.best_objects[object_type] = obj_copy
|
||||
if (is_better_thumbnail(current_best.thumbnail_data, obj.thumbnail_data, self.camera_config.frame_shape)
|
||||
or (now - current_best.thumbnail_data['frame_time']) > self.camera_config.best_image_timeout):
|
||||
self.best_objects[object_type] = obj
|
||||
for c in self.callbacks['snapshot']:
|
||||
c(self.name, self.best_objects[object_type])
|
||||
c(self.name, self.best_objects[object_type], frame_time)
|
||||
else:
|
||||
obj_copy['frame'] = np.copy(current_frame)
|
||||
self.best_objects[object_type] = obj_copy
|
||||
self.best_objects[object_type] = obj
|
||||
for c in self.callbacks['snapshot']:
|
||||
c(self.name, self.best_objects[object_type])
|
||||
|
||||
c(self.name, self.best_objects[object_type], frame_time)
|
||||
|
||||
# update overall camera state for each object type
|
||||
obj_counter = Counter()
|
||||
for obj in self.tracked_objects.values():
|
||||
if not obj['false_positive']:
|
||||
obj_counter[obj['label']] += 1
|
||||
|
||||
if not obj.false_positive:
|
||||
obj_counter[obj.obj_data['label']] += 1
|
||||
|
||||
# report on detected objects
|
||||
for obj_name, count in obj_counter.items():
|
||||
new_status = 'ON' if count > 0 else 'OFF'
|
||||
if new_status != self.object_status[obj_name]:
|
||||
self.object_status[obj_name] = new_status
|
||||
if count != self.object_counts[obj_name]:
|
||||
self.object_counts[obj_name] = count
|
||||
for c in self.callbacks['object_status']:
|
||||
c(self.name, obj_name, new_status)
|
||||
c(self.name, obj_name, count)
|
||||
|
||||
# expire any objects that are ON and no longer detected
|
||||
expired_objects = [obj_name for obj_name, status in self.object_status.items() if status == 'ON' and not obj_name in obj_counter]
|
||||
# expire any objects that are >0 and no longer detected
|
||||
expired_objects = [obj_name for obj_name, count in self.object_counts.items() if count > 0 and not obj_name in obj_counter]
|
||||
for obj_name in expired_objects:
|
||||
self.object_status[obj_name] = 'OFF'
|
||||
self.object_counts[obj_name] = 0
|
||||
for c in self.callbacks['object_status']:
|
||||
c(self.name, obj_name, 'OFF')
|
||||
c(self.name, obj_name, 0)
|
||||
for c in self.callbacks['snapshot']:
|
||||
c(self.name, self.best_objects[obj_name])
|
||||
|
||||
c(self.name, self.best_objects[obj_name], frame_time)
|
||||
|
||||
# cleanup thumbnail frame cache
|
||||
current_thumb_frames = set([obj.thumbnail_data['frame_time'] for obj in self.tracked_objects.values() if not obj.false_positive])
|
||||
current_best_frames = set([obj.thumbnail_data['frame_time'] for obj in self.best_objects.values()])
|
||||
thumb_frames_to_delete = [t for t in self.frame_cache.keys() if not t in current_thumb_frames and not t in current_best_frames]
|
||||
for t in thumb_frames_to_delete:
|
||||
del self.frame_cache[t]
|
||||
|
||||
with self.current_frame_lock:
|
||||
self._current_frame = current_frame
|
||||
if not self.previous_frame_id is None:
|
||||
@@ -242,68 +424,64 @@ class CameraState():
|
||||
self.previous_frame_id = frame_id
|
||||
|
||||
class TrackedObjectProcessor(threading.Thread):
|
||||
def __init__(self, camera_config, client, topic_prefix, tracked_objects_queue, event_queue, stop_event):
|
||||
def __init__(self, config: FrigateConfig, client, topic_prefix, tracked_objects_queue, event_queue, event_processed_queue, stop_event):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera_config = camera_config
|
||||
self.name = "detected_frames_processor"
|
||||
self.config = config
|
||||
self.client = client
|
||||
self.topic_prefix = topic_prefix
|
||||
self.tracked_objects_queue = tracked_objects_queue
|
||||
self.event_queue = event_queue
|
||||
self.event_processed_queue = event_processed_queue
|
||||
self.stop_event = stop_event
|
||||
self.camera_states: Dict[str, CameraState] = {}
|
||||
self.frame_manager = SharedMemoryFrameManager()
|
||||
|
||||
def start(camera, obj):
|
||||
# publish events to mqtt
|
||||
self.client.publish(f"{self.topic_prefix}/{camera}/events/start", json.dumps(obj), retain=False)
|
||||
self.event_queue.put(('start', camera, obj))
|
||||
def start(camera, obj: TrackedObject, current_frame_time):
|
||||
self.event_queue.put(('start', camera, obj.to_dict()))
|
||||
|
||||
def update(camera, obj):
|
||||
pass
|
||||
def update(camera, obj: TrackedObject, current_frame_time):
|
||||
after = obj.to_dict()
|
||||
message = { 'before': obj.previous, 'after': after, 'type': 'new' if obj.previous['false_positive'] else 'update' }
|
||||
self.client.publish(f"{self.topic_prefix}/events", json.dumps(message), retain=False)
|
||||
obj.previous = after
|
||||
|
||||
def end(camera, obj):
|
||||
self.client.publish(f"{self.topic_prefix}/{camera}/events/end", json.dumps(obj), retain=False)
|
||||
self.event_queue.put(('end', camera, obj))
|
||||
def end(camera, obj: TrackedObject, current_frame_time):
|
||||
snapshot_config = self.config.cameras[camera].snapshots
|
||||
event_data = obj.to_dict(include_thumbnail=True)
|
||||
event_data['has_snapshot'] = False
|
||||
if not obj.false_positive:
|
||||
message = { 'before': obj.previous, 'after': obj.to_dict(), 'type': 'end' }
|
||||
self.client.publish(f"{self.topic_prefix}/events", json.dumps(message), retain=False)
|
||||
# write snapshot to disk if enabled
|
||||
if snapshot_config.enabled:
|
||||
jpg_bytes = obj.get_jpg_bytes(
|
||||
timestamp=snapshot_config.timestamp,
|
||||
bounding_box=snapshot_config.bounding_box,
|
||||
crop=snapshot_config.crop,
|
||||
height=snapshot_config.height
|
||||
)
|
||||
with open(os.path.join(CLIPS_DIR, f"{camera}-{obj.obj_data['id']}.jpg"), 'wb') as j:
|
||||
j.write(jpg_bytes)
|
||||
event_data['has_snapshot'] = True
|
||||
self.event_queue.put(('end', camera, event_data))
|
||||
|
||||
def snapshot(camera, obj):
|
||||
if not 'frame' in obj:
|
||||
return
|
||||
|
||||
best_frame = cv2.cvtColor(obj['frame'], cv2.COLOR_YUV2BGR_I420)
|
||||
if self.camera_config[camera]['snapshots']['draw_bounding_boxes']:
|
||||
thickness = 2
|
||||
color = COLOR_MAP[obj['label']]
|
||||
box = obj['box']
|
||||
draw_box_with_label(best_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
|
||||
|
||||
mqtt_config = self.camera_config[camera].get('mqtt', {'crop_to_region': False})
|
||||
if mqtt_config.get('crop_to_region'):
|
||||
region = obj['region']
|
||||
best_frame = best_frame[region[1]:region[3], region[0]:region[2]]
|
||||
if 'snapshot_height' in mqtt_config:
|
||||
height = int(mqtt_config['snapshot_height'])
|
||||
width = int(height*best_frame.shape[1]/best_frame.shape[0])
|
||||
best_frame = cv2.resize(best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
|
||||
|
||||
if self.camera_config[camera]['snapshots']['show_timestamp']:
|
||||
time_to_show = datetime.datetime.fromtimestamp(obj['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
|
||||
size = cv2.getTextSize(time_to_show, cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, thickness=2)
|
||||
text_width = size[0][0]
|
||||
text_height = size[0][1]
|
||||
desired_size = max(200, 0.33*best_frame.shape[1])
|
||||
font_scale = desired_size/text_width
|
||||
cv2.putText(best_frame, time_to_show, (5, best_frame.shape[0]-7), cv2.FONT_HERSHEY_SIMPLEX, fontScale=font_scale, color=(255, 255, 255), thickness=2)
|
||||
|
||||
ret, jpg = cv2.imencode('.jpg', best_frame)
|
||||
if ret:
|
||||
jpg_bytes = jpg.tobytes()
|
||||
self.client.publish(f"{self.topic_prefix}/{camera}/{obj['label']}/snapshot", jpg_bytes, retain=True)
|
||||
def snapshot(camera, obj: TrackedObject, current_frame_time):
|
||||
mqtt_config = self.config.cameras[camera].mqtt
|
||||
if mqtt_config.enabled:
|
||||
jpg_bytes = obj.get_jpg_bytes(
|
||||
timestamp=mqtt_config.timestamp,
|
||||
bounding_box=mqtt_config.bounding_box,
|
||||
crop=mqtt_config.crop,
|
||||
height=mqtt_config.height
|
||||
)
|
||||
self.client.publish(f"{self.topic_prefix}/{camera}/{obj.obj_data['label']}/snapshot", jpg_bytes, retain=True)
|
||||
|
||||
def object_status(camera, object_name, status):
|
||||
self.client.publish(f"{self.topic_prefix}/{camera}/{object_name}", status, retain=False)
|
||||
|
||||
for camera in self.camera_config.keys():
|
||||
camera_state = CameraState(camera, self.camera_config[camera], self.frame_manager)
|
||||
for camera in self.config.cameras.keys():
|
||||
camera_state = CameraState(camera, self.config, self.frame_manager)
|
||||
camera_state.on('start', start)
|
||||
camera_state.on('update', update)
|
||||
camera_state.on('end', end)
|
||||
@@ -311,83 +489,71 @@ class TrackedObjectProcessor(threading.Thread):
|
||||
camera_state.on('object_status', object_status)
|
||||
self.camera_states[camera] = camera_state
|
||||
|
||||
self.camera_data = defaultdict(lambda: {
|
||||
'best_objects': {},
|
||||
'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')),
|
||||
'tracked_objects': {},
|
||||
'current_frame': np.zeros((720,1280,3), np.uint8),
|
||||
'current_frame_time': 0.0,
|
||||
'object_id': None
|
||||
})
|
||||
# {
|
||||
# 'zone_name': {
|
||||
# 'person': ['camera_1', 'camera_2']
|
||||
# 'person': {
|
||||
# 'camera_1': 2,
|
||||
# 'camera_2': 1
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
self.zone_data = defaultdict(lambda: defaultdict(lambda: set()))
|
||||
self.zone_data = defaultdict(lambda: defaultdict(lambda: {}))
|
||||
|
||||
# set colors for zones
|
||||
all_zone_names = set([zone for config in self.camera_config.values() for zone in config['zones'].keys()])
|
||||
zone_colors = {}
|
||||
colors = plt.cm.get_cmap('tab10', len(all_zone_names))
|
||||
for i, zone in enumerate(all_zone_names):
|
||||
zone_colors[zone] = tuple(int(round(255 * c)) for c in colors(i)[:3])
|
||||
|
||||
# create zone contours
|
||||
for camera_config in self.camera_config.values():
|
||||
for zone_name, zone_config in camera_config['zones'].items():
|
||||
zone_config['color'] = zone_colors[zone_name]
|
||||
coordinates = zone_config['coordinates']
|
||||
if isinstance(coordinates, list):
|
||||
zone_config['contour'] = np.array([[int(p.split(',')[0]), int(p.split(',')[1])] for p in coordinates])
|
||||
elif isinstance(coordinates, str):
|
||||
points = coordinates.split(',')
|
||||
zone_config['contour'] = np.array([[int(points[i]), int(points[i+1])] for i in range(0, len(points), 2)])
|
||||
else:
|
||||
print(f"Unable to parse zone coordinates for {zone_name} - {camera}")
|
||||
|
||||
def get_best(self, camera, label):
|
||||
best_objects = self.camera_states[camera].best_objects
|
||||
if label in best_objects:
|
||||
return best_objects[label]
|
||||
# TODO: need a lock here
|
||||
camera_state = self.camera_states[camera]
|
||||
if label in camera_state.best_objects:
|
||||
best_obj = camera_state.best_objects[label]
|
||||
best = best_obj.thumbnail_data.copy()
|
||||
best['frame'] = camera_state.frame_cache.get(best_obj.thumbnail_data['frame_time'])
|
||||
return best
|
||||
else:
|
||||
return {}
|
||||
|
||||
def get_current_frame(self, camera, draw=False):
|
||||
return self.camera_states[camera].get_current_frame(draw)
|
||||
|
||||
def get_current_frame(self, camera, draw_options={}):
|
||||
return self.camera_states[camera].get_current_frame(draw_options)
|
||||
|
||||
def run(self):
|
||||
while True:
|
||||
if self.stop_event.is_set():
|
||||
print(f"Exiting object processor...")
|
||||
logger.info(f"Exiting object processor...")
|
||||
break
|
||||
|
||||
try:
|
||||
camera, frame_time, current_tracked_objects = self.tracked_objects_queue.get(True, 10)
|
||||
camera, frame_time, current_tracked_objects, motion_boxes, regions = self.tracked_objects_queue.get(True, 10)
|
||||
except queue.Empty:
|
||||
continue
|
||||
|
||||
camera_state = self.camera_states[camera]
|
||||
|
||||
camera_state.update(frame_time, current_tracked_objects)
|
||||
camera_state.update(frame_time, current_tracked_objects, motion_boxes, regions)
|
||||
|
||||
# update zone status for each label
|
||||
for zone in camera_state.config['zones'].keys():
|
||||
# get labels for current camera and all labels in current zone
|
||||
labels_for_camera = set([obj['label'] for obj in camera_state.tracked_objects.values() if zone in obj['zones'] and not obj['false_positive']])
|
||||
labels_to_check = labels_for_camera | set(self.zone_data[zone].keys())
|
||||
# for each label in zone
|
||||
for label in labels_to_check:
|
||||
camera_list = self.zone_data[zone][label]
|
||||
# remove or add the camera to the list for the current label
|
||||
previous_state = len(camera_list) > 0
|
||||
if label in labels_for_camera:
|
||||
camera_list.add(camera_state.name)
|
||||
elif camera_state.name in camera_list:
|
||||
camera_list.remove(camera_state.name)
|
||||
new_state = len(camera_list) > 0
|
||||
# if the value is changing, send over MQTT
|
||||
if previous_state == False and new_state == True:
|
||||
self.client.publish(f"{self.topic_prefix}/{zone}/{label}", 'ON', retain=False)
|
||||
elif previous_state == True and new_state == False:
|
||||
self.client.publish(f"{self.topic_prefix}/{zone}/{label}", 'OFF', retain=False)
|
||||
# update zone counts for each label
|
||||
# for each zone in the current camera
|
||||
for zone in self.config.cameras[camera].zones.keys():
|
||||
# count labels for the camera in the zone
|
||||
obj_counter = Counter()
|
||||
for obj in camera_state.tracked_objects.values():
|
||||
if zone in obj.current_zones and not obj.false_positive:
|
||||
obj_counter[obj.obj_data['label']] += 1
|
||||
|
||||
# update counts and publish status
|
||||
for label in set(list(self.zone_data[zone].keys()) + list(obj_counter.keys())):
|
||||
# if we have previously published a count for this zone/label
|
||||
zone_label = self.zone_data[zone][label]
|
||||
if camera in zone_label:
|
||||
current_count = sum(zone_label.values())
|
||||
zone_label[camera] = obj_counter[label] if label in obj_counter else 0
|
||||
new_count = sum(zone_label.values())
|
||||
if new_count != current_count:
|
||||
self.client.publish(f"{self.topic_prefix}/{zone}/{label}", new_count, retain=False)
|
||||
# if this is a new zone/label combo for this camera
|
||||
else:
|
||||
if label in obj_counter:
|
||||
zone_label[camera] = obj_counter[label]
|
||||
self.client.publish(f"{self.topic_prefix}/{zone}/{label}", obj_counter[label], retain=False)
|
||||
|
||||
# cleanup event finished queue
|
||||
while not self.event_processed_queue.empty():
|
||||
event_id, camera = self.event_processed_queue.get()
|
||||
self.camera_states[camera].finished(event_id)
|
||||
|
@@ -1,29 +1,32 @@
|
||||
import time
|
||||
import datetime
|
||||
import threading
|
||||
import cv2
|
||||
import itertools
|
||||
import copy
|
||||
import numpy as np
|
||||
import datetime
|
||||
import itertools
|
||||
import multiprocessing as mp
|
||||
import random
|
||||
import string
|
||||
import multiprocessing as mp
|
||||
import threading
|
||||
import time
|
||||
from collections import defaultdict
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from scipy.spatial import distance as dist
|
||||
from frigate.util import draw_box_with_label, calculate_region
|
||||
|
||||
from frigate.config import DetectConfig
|
||||
from frigate.util import draw_box_with_label
|
||||
|
||||
|
||||
class ObjectTracker():
|
||||
def __init__(self, max_disappeared):
|
||||
def __init__(self, config: DetectConfig):
|
||||
self.tracked_objects = {}
|
||||
self.disappeared = {}
|
||||
self.max_disappeared = max_disappeared
|
||||
self.max_disappeared = config.max_disappeared
|
||||
|
||||
def register(self, index, obj):
|
||||
rand_id = ''.join(random.choices(string.ascii_lowercase + string.digits, k=6))
|
||||
id = f"{obj['frame_time']}-{rand_id}"
|
||||
obj['id'] = id
|
||||
obj['start_time'] = obj['frame_time']
|
||||
obj['top_score'] = obj['score']
|
||||
self.tracked_objects[id] = obj
|
||||
self.disappeared[id] = 0
|
||||
|
||||
@@ -34,8 +37,6 @@ class ObjectTracker():
|
||||
def update(self, id, new_obj):
|
||||
self.disappeared[id] = 0
|
||||
self.tracked_objects[id].update(new_obj)
|
||||
if self.tracked_objects[id]['score'] > self.tracked_objects[id]['top_score']:
|
||||
self.tracked_objects[id]['top_score'] = self.tracked_objects[id]['score']
|
||||
|
||||
def match_and_update(self, frame_time, new_objects):
|
||||
# group by name
|
||||
|
208
frigate/process_clip.py
Normal file
@@ -0,0 +1,208 @@
|
||||
import datetime
|
||||
import json
|
||||
import logging
|
||||
import multiprocessing as mp
|
||||
import os
|
||||
import subprocess as sp
|
||||
import sys
|
||||
from unittest import TestCase, main
|
||||
|
||||
import click
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from frigate.config import FRIGATE_CONFIG_SCHEMA, FrigateConfig
|
||||
from frigate.edgetpu import LocalObjectDetector
|
||||
from frigate.motion import MotionDetector
|
||||
from frigate.object_processing import COLOR_MAP, CameraState
|
||||
from frigate.objects import ObjectTracker
|
||||
from frigate.util import (DictFrameManager, EventsPerSecond,
|
||||
SharedMemoryFrameManager, draw_box_with_label)
|
||||
from frigate.video import (capture_frames, process_frames,
|
||||
start_or_restart_ffmpeg)
|
||||
|
||||
logging.basicConfig()
|
||||
logging.root.setLevel(logging.DEBUG)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
def get_frame_shape(source):
|
||||
ffprobe_cmd = " ".join([
|
||||
'ffprobe',
|
||||
'-v',
|
||||
'panic',
|
||||
'-show_error',
|
||||
'-show_streams',
|
||||
'-of',
|
||||
'json',
|
||||
'"'+source+'"'
|
||||
])
|
||||
p = sp.Popen(ffprobe_cmd, stdout=sp.PIPE, shell=True)
|
||||
(output, err) = p.communicate()
|
||||
p_status = p.wait()
|
||||
info = json.loads(output)
|
||||
|
||||
video_info = [s for s in info['streams'] if s['codec_type'] == 'video'][0]
|
||||
|
||||
if video_info['height'] != 0 and video_info['width'] != 0:
|
||||
return (video_info['height'], video_info['width'], 3)
|
||||
|
||||
# fallback to using opencv if ffprobe didnt succeed
|
||||
video = cv2.VideoCapture(source)
|
||||
ret, frame = video.read()
|
||||
frame_shape = frame.shape
|
||||
video.release()
|
||||
return frame_shape
|
||||
|
||||
class ProcessClip():
|
||||
def __init__(self, clip_path, frame_shape, config: FrigateConfig):
|
||||
self.clip_path = clip_path
|
||||
self.camera_name = 'camera'
|
||||
self.config = config
|
||||
self.camera_config = self.config.cameras['camera']
|
||||
self.frame_shape = self.camera_config.frame_shape
|
||||
self.ffmpeg_cmd = [c['cmd'] for c in self.camera_config.ffmpeg_cmds if 'detect' in c['roles']][0]
|
||||
self.frame_manager = SharedMemoryFrameManager()
|
||||
self.frame_queue = mp.Queue()
|
||||
self.detected_objects_queue = mp.Queue()
|
||||
self.camera_state = CameraState(self.camera_name, config, self.frame_manager)
|
||||
|
||||
def load_frames(self):
|
||||
fps = EventsPerSecond()
|
||||
skipped_fps = EventsPerSecond()
|
||||
current_frame = mp.Value('d', 0.0)
|
||||
frame_size = self.camera_config.frame_shape_yuv[0] * self.camera_config.frame_shape_yuv[1]
|
||||
ffmpeg_process = start_or_restart_ffmpeg(self.ffmpeg_cmd, logger, sp.DEVNULL, frame_size)
|
||||
capture_frames(ffmpeg_process, self.camera_name, self.camera_config.frame_shape_yuv, self.frame_manager,
|
||||
self.frame_queue, fps, skipped_fps, current_frame)
|
||||
ffmpeg_process.wait()
|
||||
ffmpeg_process.communicate()
|
||||
|
||||
def process_frames(self, objects_to_track=['person'], object_filters={}):
|
||||
mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
|
||||
mask[:] = 255
|
||||
motion_detector = MotionDetector(self.frame_shape, mask, self.camera_config.motion)
|
||||
|
||||
object_detector = LocalObjectDetector(labels='/labelmap.txt')
|
||||
object_tracker = ObjectTracker(self.camera_config.detect)
|
||||
process_info = {
|
||||
'process_fps': mp.Value('d', 0.0),
|
||||
'detection_fps': mp.Value('d', 0.0),
|
||||
'detection_frame': mp.Value('d', 0.0)
|
||||
}
|
||||
stop_event = mp.Event()
|
||||
model_shape = (self.config.model.height, self.config.model.width)
|
||||
|
||||
process_frames(self.camera_name, self.frame_queue, self.frame_shape, model_shape,
|
||||
self.frame_manager, motion_detector, object_detector, object_tracker,
|
||||
self.detected_objects_queue, process_info,
|
||||
objects_to_track, object_filters, mask, stop_event, exit_on_empty=True)
|
||||
|
||||
def top_object(self, debug_path=None):
|
||||
obj_detected = False
|
||||
top_computed_score = 0.0
|
||||
def handle_event(name, obj, frame_time):
|
||||
nonlocal obj_detected
|
||||
nonlocal top_computed_score
|
||||
if obj.computed_score > top_computed_score:
|
||||
top_computed_score = obj.computed_score
|
||||
if not obj.false_positive:
|
||||
obj_detected = True
|
||||
self.camera_state.on('new', handle_event)
|
||||
self.camera_state.on('update', handle_event)
|
||||
|
||||
while(not self.detected_objects_queue.empty()):
|
||||
camera_name, frame_time, current_tracked_objects, motion_boxes, regions = self.detected_objects_queue.get()
|
||||
if not debug_path is None:
|
||||
self.save_debug_frame(debug_path, frame_time, current_tracked_objects.values())
|
||||
|
||||
self.camera_state.update(frame_time, current_tracked_objects, motion_boxes, regions)
|
||||
|
||||
self.frame_manager.delete(self.camera_state.previous_frame_id)
|
||||
|
||||
return {
|
||||
'object_detected': obj_detected,
|
||||
'top_score': top_computed_score
|
||||
}
|
||||
|
||||
def save_debug_frame(self, debug_path, frame_time, tracked_objects):
|
||||
current_frame = cv2.cvtColor(self.frame_manager.get(f"{self.camera_name}{frame_time}", self.camera_config.frame_shape_yuv), cv2.COLOR_YUV2BGR_I420)
|
||||
# draw the bounding boxes on the frame
|
||||
for obj in tracked_objects:
|
||||
thickness = 2
|
||||
color = (0,0,175)
|
||||
|
||||
if obj['frame_time'] != frame_time:
|
||||
thickness = 1
|
||||
color = (255,0,0)
|
||||
else:
|
||||
color = (255,255,0)
|
||||
|
||||
# draw the bounding boxes on the frame
|
||||
box = obj['box']
|
||||
draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['id'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
|
||||
# draw the regions on the frame
|
||||
region = obj['region']
|
||||
draw_box_with_label(current_frame, region[0], region[1], region[2], region[3], 'region', "", thickness=1, color=(0,255,0))
|
||||
|
||||
cv2.imwrite(f"{os.path.join(debug_path, os.path.basename(self.clip_path))}.{int(frame_time*1000000)}.jpg", current_frame)
|
||||
|
||||
@click.command()
|
||||
@click.option("-p", "--path", required=True, help="Path to clip or directory to test.")
|
||||
@click.option("-l", "--label", default='person', help="Label name to detect.")
|
||||
@click.option("-t", "--threshold", default=0.85, help="Threshold value for objects.")
|
||||
@click.option("-s", "--scores", default=None, help="File to save csv of top scores")
|
||||
@click.option("--debug-path", default=None, help="Path to output frames for debugging.")
|
||||
def process(path, label, threshold, scores, debug_path):
|
||||
clips = []
|
||||
if os.path.isdir(path):
|
||||
files = os.listdir(path)
|
||||
files.sort()
|
||||
clips = [os.path.join(path, file) for file in files]
|
||||
elif os.path.isfile(path):
|
||||
clips.append(path)
|
||||
|
||||
json_config = {
|
||||
'mqtt': {
|
||||
'host': 'mqtt'
|
||||
},
|
||||
'cameras': {
|
||||
'camera': {
|
||||
'ffmpeg': {
|
||||
'inputs': [
|
||||
{ 'path': 'path.mp4', 'global_args': '', 'input_args': '', 'roles': ['detect'] }
|
||||
]
|
||||
},
|
||||
'height': 1920,
|
||||
'width': 1080
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
results = []
|
||||
for c in clips:
|
||||
logger.info(c)
|
||||
frame_shape = get_frame_shape(c)
|
||||
|
||||
json_config['cameras']['camera']['height'] = frame_shape[0]
|
||||
json_config['cameras']['camera']['width'] = frame_shape[1]
|
||||
json_config['cameras']['camera']['ffmpeg']['inputs'][0]['path'] = c
|
||||
|
||||
config = FrigateConfig(config=FRIGATE_CONFIG_SCHEMA(json_config))
|
||||
|
||||
process_clip = ProcessClip(c, frame_shape, config)
|
||||
process_clip.load_frames()
|
||||
process_clip.process_frames(objects_to_track=[label])
|
||||
|
||||
results.append((c, process_clip.top_object(debug_path)))
|
||||
|
||||
if not scores is None:
|
||||
with open(scores, 'w') as writer:
|
||||
for result in results:
|
||||
writer.write(f"{result[0]},{result[1]['top_score']}\n")
|
||||
|
||||
positive_count = sum(1 for result in results if result[1]['object_detected'])
|
||||
print(f"Objects were detected in {positive_count}/{len(results)}({positive_count/len(results)*100:.2f}%) clip(s).")
|
||||
|
||||
if __name__ == '__main__':
|
||||
process()
|
125
frigate/record.py
Normal file
@@ -0,0 +1,125 @@
|
||||
import datetime
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import queue
|
||||
import subprocess as sp
|
||||
import threading
|
||||
import time
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
|
||||
import psutil
|
||||
|
||||
from frigate.config import FrigateConfig
|
||||
from frigate.const import RECORD_DIR, CLIPS_DIR, CACHE_DIR
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
SECONDS_IN_DAY = 60 * 60 * 24
|
||||
|
||||
def remove_empty_directories(directory):
|
||||
# list all directories recursively and sort them by path,
|
||||
# longest first
|
||||
paths = sorted(
|
||||
[x[0] for x in os.walk(RECORD_DIR)],
|
||||
key=lambda p: len(str(p)),
|
||||
reverse=True,
|
||||
)
|
||||
for path in paths:
|
||||
# don't delete the parent
|
||||
if path == RECORD_DIR:
|
||||
continue
|
||||
if len(os.listdir(path)) == 0:
|
||||
os.rmdir(path)
|
||||
|
||||
class RecordingMaintainer(threading.Thread):
|
||||
def __init__(self, config: FrigateConfig, stop_event):
|
||||
threading.Thread.__init__(self)
|
||||
self.name = 'recording_maint'
|
||||
self.config = config
|
||||
self.stop_event = stop_event
|
||||
|
||||
def move_files(self):
|
||||
recordings = [d for d in os.listdir(RECORD_DIR) if os.path.isfile(os.path.join(RECORD_DIR, d)) and d.endswith(".mp4")]
|
||||
|
||||
files_in_use = []
|
||||
for process in psutil.process_iter():
|
||||
try:
|
||||
if process.name() != 'ffmpeg':
|
||||
continue
|
||||
flist = process.open_files()
|
||||
if flist:
|
||||
for nt in flist:
|
||||
if nt.path.startswith(RECORD_DIR):
|
||||
files_in_use.append(nt.path.split('/')[-1])
|
||||
except:
|
||||
continue
|
||||
|
||||
for f in recordings:
|
||||
if f in files_in_use:
|
||||
continue
|
||||
|
||||
camera = '-'.join(f.split('-')[:-1])
|
||||
start_time = datetime.datetime.strptime(f.split('-')[-1].split('.')[0], '%Y%m%d%H%M%S')
|
||||
|
||||
ffprobe_cmd = " ".join([
|
||||
'ffprobe',
|
||||
'-v',
|
||||
'error',
|
||||
'-show_entries',
|
||||
'format=duration',
|
||||
'-of',
|
||||
'default=noprint_wrappers=1:nokey=1',
|
||||
f"{os.path.join(RECORD_DIR,f)}"
|
||||
])
|
||||
p = sp.Popen(ffprobe_cmd, stdout=sp.PIPE, shell=True)
|
||||
(output, err) = p.communicate()
|
||||
p_status = p.wait()
|
||||
if p_status == 0:
|
||||
duration = float(output.decode('utf-8').strip())
|
||||
else:
|
||||
logger.info(f"bad file: {f}")
|
||||
os.remove(os.path.join(RECORD_DIR,f))
|
||||
continue
|
||||
|
||||
directory = os.path.join(RECORD_DIR, start_time.strftime('%Y-%m/%d/%H'), camera)
|
||||
|
||||
if not os.path.exists(directory):
|
||||
os.makedirs(directory)
|
||||
|
||||
file_name = f"{start_time.strftime('%M.%S.mp4')}"
|
||||
|
||||
os.rename(os.path.join(RECORD_DIR,f), os.path.join(directory,file_name))
|
||||
|
||||
def expire_files(self):
|
||||
delete_before = {}
|
||||
for name, camera in self.config.cameras.items():
|
||||
delete_before[name] = datetime.datetime.now().timestamp() - SECONDS_IN_DAY*camera.record.retain_days
|
||||
|
||||
for p in Path('/media/frigate/recordings').rglob("*.mp4"):
|
||||
if not p.parent.name in delete_before:
|
||||
continue
|
||||
if p.stat().st_mtime < delete_before[p.parent.name]:
|
||||
p.unlink(missing_ok=True)
|
||||
|
||||
def run(self):
|
||||
counter = 0
|
||||
self.expire_files()
|
||||
while(True):
|
||||
if self.stop_event.is_set():
|
||||
logger.info(f"Exiting recording maintenance...")
|
||||
break
|
||||
|
||||
# only expire events every 10 minutes, but check for new files every 10 seconds
|
||||
time.sleep(10)
|
||||
counter = counter + 1
|
||||
if counter > 60:
|
||||
self.expire_files()
|
||||
remove_empty_directories(RECORD_DIR)
|
||||
counter = 0
|
||||
|
||||
self.move_files()
|
||||
|
||||
|
||||
|
70
frigate/stats.py
Normal file
@@ -0,0 +1,70 @@
|
||||
import json
|
||||
import logging
|
||||
import threading
|
||||
import time
|
||||
|
||||
from frigate.config import FrigateConfig
|
||||
from frigate.version import VERSION
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
def stats_init(camera_metrics, detectors):
|
||||
stats_tracking = {
|
||||
'camera_metrics': camera_metrics,
|
||||
'detectors': detectors,
|
||||
'started': int(time.time())
|
||||
}
|
||||
return stats_tracking
|
||||
|
||||
def stats_snapshot(stats_tracking):
|
||||
camera_metrics = stats_tracking['camera_metrics']
|
||||
stats = {}
|
||||
|
||||
total_detection_fps = 0
|
||||
|
||||
for name, camera_stats in camera_metrics.items():
|
||||
total_detection_fps += camera_stats['detection_fps'].value
|
||||
stats[name] = {
|
||||
'camera_fps': round(camera_stats['camera_fps'].value, 2),
|
||||
'process_fps': round(camera_stats['process_fps'].value, 2),
|
||||
'skipped_fps': round(camera_stats['skipped_fps'].value, 2),
|
||||
'detection_fps': round(camera_stats['detection_fps'].value, 2),
|
||||
'pid': camera_stats['process'].pid,
|
||||
'capture_pid': camera_stats['capture_process'].pid
|
||||
}
|
||||
|
||||
stats['detectors'] = {}
|
||||
for name, detector in stats_tracking["detectors"].items():
|
||||
stats['detectors'][name] = {
|
||||
'inference_speed': round(detector.avg_inference_speed.value * 1000, 2),
|
||||
'detection_start': detector.detection_start.value,
|
||||
'pid': detector.detect_process.pid
|
||||
}
|
||||
stats['detection_fps'] = round(total_detection_fps, 2)
|
||||
|
||||
stats['service'] = {
|
||||
'uptime': (int(time.time()) - stats_tracking['started']),
|
||||
'version': VERSION
|
||||
}
|
||||
|
||||
return stats
|
||||
|
||||
class StatsEmitter(threading.Thread):
|
||||
def __init__(self, config: FrigateConfig, stats_tracking, mqtt_client, topic_prefix, stop_event):
|
||||
threading.Thread.__init__(self)
|
||||
self.name = 'frigate_stats_emitter'
|
||||
self.config = config
|
||||
self.stats_tracking = stats_tracking
|
||||
self.mqtt_client = mqtt_client
|
||||
self.topic_prefix = topic_prefix
|
||||
self.stop_event = stop_event
|
||||
|
||||
def run(self):
|
||||
time.sleep(10)
|
||||
while True:
|
||||
if self.stop_event.is_set():
|
||||
logger.info(f"Exiting watchdog...")
|
||||
break
|
||||
stats = stats_snapshot(self.stats_tracking)
|
||||
self.mqtt_client.publish(f"{self.topic_prefix}/stats", json.dumps(stats), retain=False)
|
||||
time.sleep(self.config.mqtt.stats_interval)
|
0
frigate/test/__init__.py
Normal file
342
frigate/test/test_config.py
Normal file
@@ -0,0 +1,342 @@
|
||||
import json
|
||||
from unittest import TestCase, main
|
||||
import voluptuous as vol
|
||||
from frigate.config import FRIGATE_CONFIG_SCHEMA, FrigateConfig
|
||||
|
||||
class TestConfig(TestCase):
|
||||
def setUp(self):
|
||||
self.minimal = {
|
||||
'mqtt': {
|
||||
'host': 'mqtt'
|
||||
},
|
||||
'cameras': {
|
||||
'back': {
|
||||
'ffmpeg': {
|
||||
'inputs': [
|
||||
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
|
||||
]
|
||||
},
|
||||
'height': 1080,
|
||||
'width': 1920
|
||||
}
|
||||
}
|
||||
}
|
||||
def test_empty(self):
|
||||
FRIGATE_CONFIG_SCHEMA({})
|
||||
|
||||
def test_minimal(self):
|
||||
FRIGATE_CONFIG_SCHEMA(self.minimal)
|
||||
|
||||
def test_config_class(self):
|
||||
FrigateConfig(config=self.minimal)
|
||||
|
||||
def test_inherit_tracked_objects(self):
|
||||
config = {
|
||||
'mqtt': {
|
||||
'host': 'mqtt'
|
||||
},
|
||||
'objects': {
|
||||
'track': ['person', 'dog']
|
||||
},
|
||||
'cameras': {
|
||||
'back': {
|
||||
'ffmpeg': {
|
||||
'inputs': [
|
||||
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
|
||||
]
|
||||
},
|
||||
'height': 1080,
|
||||
'width': 1920
|
||||
}
|
||||
}
|
||||
}
|
||||
frigate_config = FrigateConfig(config=config)
|
||||
assert('dog' in frigate_config.cameras['back'].objects.track)
|
||||
|
||||
def test_override_tracked_objects(self):
|
||||
config = {
|
||||
'mqtt': {
|
||||
'host': 'mqtt'
|
||||
},
|
||||
'objects': {
|
||||
'track': ['person', 'dog']
|
||||
},
|
||||
'cameras': {
|
||||
'back': {
|
||||
'ffmpeg': {
|
||||
'inputs': [
|
||||
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
|
||||
]
|
||||
},
|
||||
'height': 1080,
|
||||
'width': 1920,
|
||||
'objects': {
|
||||
'track': ['cat']
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
frigate_config = FrigateConfig(config=config)
|
||||
assert('cat' in frigate_config.cameras['back'].objects.track)
|
||||
|
||||
def test_default_object_filters(self):
|
||||
config = {
|
||||
'mqtt': {
|
||||
'host': 'mqtt'
|
||||
},
|
||||
'objects': {
|
||||
'track': ['person', 'dog']
|
||||
},
|
||||
'cameras': {
|
||||
'back': {
|
||||
'ffmpeg': {
|
||||
'inputs': [
|
||||
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
|
||||
]
|
||||
},
|
||||
'height': 1080,
|
||||
'width': 1920
|
||||
}
|
||||
}
|
||||
}
|
||||
frigate_config = FrigateConfig(config=config)
|
||||
assert('dog' in frigate_config.cameras['back'].objects.filters)
|
||||
|
||||
def test_inherit_object_filters(self):
|
||||
config = {
|
||||
'mqtt': {
|
||||
'host': 'mqtt'
|
||||
},
|
||||
'objects': {
|
||||
'track': ['person', 'dog'],
|
||||
'filters': {
|
||||
'dog': {
|
||||
'threshold': 0.7
|
||||
}
|
||||
}
|
||||
},
|
||||
'cameras': {
|
||||
'back': {
|
||||
'ffmpeg': {
|
||||
'inputs': [
|
||||
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
|
||||
]
|
||||
},
|
||||
'height': 1080,
|
||||
'width': 1920
|
||||
}
|
||||
}
|
||||
}
|
||||
frigate_config = FrigateConfig(config=config)
|
||||
assert('dog' in frigate_config.cameras['back'].objects.filters)
|
||||
assert(frigate_config.cameras['back'].objects.filters['dog'].threshold == 0.7)
|
||||
|
||||
def test_override_object_filters(self):
|
||||
config = {
|
||||
'mqtt': {
|
||||
'host': 'mqtt'
|
||||
},
|
||||
'cameras': {
|
||||
'back': {
|
||||
'ffmpeg': {
|
||||
'inputs': [
|
||||
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
|
||||
]
|
||||
},
|
||||
'height': 1080,
|
||||
'width': 1920,
|
||||
'objects': {
|
||||
'track': ['person', 'dog'],
|
||||
'filters': {
|
||||
'dog': {
|
||||
'threshold': 0.7
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
frigate_config = FrigateConfig(config=config)
|
||||
assert('dog' in frigate_config.cameras['back'].objects.filters)
|
||||
assert(frigate_config.cameras['back'].objects.filters['dog'].threshold == 0.7)
|
||||
|
||||
def test_ffmpeg_params(self):
|
||||
config = {
|
||||
'ffmpeg': {
|
||||
'input_args': ['-re']
|
||||
},
|
||||
'mqtt': {
|
||||
'host': 'mqtt'
|
||||
},
|
||||
'cameras': {
|
||||
'back': {
|
||||
'ffmpeg': {
|
||||
'inputs': [
|
||||
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
|
||||
]
|
||||
},
|
||||
'height': 1080,
|
||||
'width': 1920,
|
||||
'objects': {
|
||||
'track': ['person', 'dog'],
|
||||
'filters': {
|
||||
'dog': {
|
||||
'threshold': 0.7
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
frigate_config = FrigateConfig(config=config)
|
||||
assert('-re' in frigate_config.cameras['back'].ffmpeg_cmds[0]['cmd'])
|
||||
|
||||
def test_inherit_clips_retention(self):
|
||||
config = {
|
||||
'mqtt': {
|
||||
'host': 'mqtt'
|
||||
},
|
||||
'clips': {
|
||||
'retain': {
|
||||
'default': 20,
|
||||
'objects': {
|
||||
'person': 30
|
||||
}
|
||||
}
|
||||
},
|
||||
'cameras': {
|
||||
'back': {
|
||||
'ffmpeg': {
|
||||
'inputs': [
|
||||
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
|
||||
]
|
||||
},
|
||||
'height': 1080,
|
||||
'width': 1920
|
||||
}
|
||||
}
|
||||
}
|
||||
frigate_config = FrigateConfig(config=config)
|
||||
assert(frigate_config.cameras['back'].clips.retain.objects['person'] == 30)
|
||||
|
||||
def test_roles_listed_twice_throws_error(self):
|
||||
config = {
|
||||
'mqtt': {
|
||||
'host': 'mqtt'
|
||||
},
|
||||
'clips': {
|
||||
'retain': {
|
||||
'default': 20,
|
||||
'objects': {
|
||||
'person': 30
|
||||
}
|
||||
}
|
||||
},
|
||||
'cameras': {
|
||||
'back': {
|
||||
'ffmpeg': {
|
||||
'inputs': [
|
||||
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] },
|
||||
{ 'path': 'rtsp://10.0.0.1:554/video2', 'roles': ['detect'] }
|
||||
]
|
||||
},
|
||||
'height': 1080,
|
||||
'width': 1920
|
||||
}
|
||||
}
|
||||
}
|
||||
self.assertRaises(vol.MultipleInvalid, lambda: FrigateConfig(config=config))
|
||||
|
||||
def test_zone_matching_camera_name_throws_error(self):
|
||||
config = {
|
||||
'mqtt': {
|
||||
'host': 'mqtt'
|
||||
},
|
||||
'clips': {
|
||||
'retain': {
|
||||
'default': 20,
|
||||
'objects': {
|
||||
'person': 30
|
||||
}
|
||||
}
|
||||
},
|
||||
'cameras': {
|
||||
'back': {
|
||||
'ffmpeg': {
|
||||
'inputs': [
|
||||
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
|
||||
]
|
||||
},
|
||||
'height': 1080,
|
||||
'width': 1920,
|
||||
'zones': {
|
||||
'back': {
|
||||
'coordinates': '1,1,1,1,1,1'
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
self.assertRaises(vol.MultipleInvalid, lambda: FrigateConfig(config=config))
|
||||
|
||||
def test_clips_should_default_to_global_objects(self):
|
||||
config = {
|
||||
'mqtt': {
|
||||
'host': 'mqtt'
|
||||
},
|
||||
'clips': {
|
||||
'retain': {
|
||||
'default': 20,
|
||||
'objects': {
|
||||
'person': 30
|
||||
}
|
||||
}
|
||||
},
|
||||
'objects': {
|
||||
'track': ['person', 'dog']
|
||||
},
|
||||
'cameras': {
|
||||
'back': {
|
||||
'ffmpeg': {
|
||||
'inputs': [
|
||||
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
|
||||
]
|
||||
},
|
||||
'height': 1080,
|
||||
'width': 1920,
|
||||
'clips': {
|
||||
'enabled': True
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
config = FrigateConfig(config=config)
|
||||
assert(config.cameras['back'].clips.objects is None)
|
||||
|
||||
def test_role_assigned_but_not_enabled(self):
|
||||
json_config = {
|
||||
'mqtt': {
|
||||
'host': 'mqtt'
|
||||
},
|
||||
'cameras': {
|
||||
'back': {
|
||||
'ffmpeg': {
|
||||
'inputs': [
|
||||
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect', 'rtmp'] },
|
||||
{ 'path': 'rtsp://10.0.0.1:554/record', 'roles': ['record'] }
|
||||
]
|
||||
},
|
||||
'height': 1080,
|
||||
'width': 1920
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
config = FrigateConfig(config=json_config)
|
||||
ffmpeg_cmds = config.cameras['back'].ffmpeg_cmds
|
||||
assert(len(ffmpeg_cmds) == 1)
|
||||
assert(not 'clips' in ffmpeg_cmds[0]['roles'])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main(verbosity=2)
|
39
frigate/test/test_yuv_region_2_rgb.py
Normal file
@@ -0,0 +1,39 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
from unittest import TestCase, main
|
||||
from frigate.util import yuv_region_2_rgb
|
||||
|
||||
class TestYuvRegion2RGB(TestCase):
|
||||
def setUp(self):
|
||||
self.bgr_frame = np.zeros((100, 200, 3), np.uint8)
|
||||
self.bgr_frame[:] = (0, 0, 255)
|
||||
self.bgr_frame[5:55, 5:55] = (255,0,0)
|
||||
# cv2.imwrite(f"bgr_frame.jpg", self.bgr_frame)
|
||||
self.yuv_frame = cv2.cvtColor(self.bgr_frame, cv2.COLOR_BGR2YUV_I420)
|
||||
|
||||
def test_crop_yuv(self):
|
||||
cropped = yuv_region_2_rgb(self.yuv_frame, (10,10,50,50))
|
||||
# ensure the upper left pixel is blue
|
||||
assert(np.all(cropped[0, 0] == [0, 0, 255]))
|
||||
|
||||
def test_crop_yuv_out_of_bounds(self):
|
||||
cropped = yuv_region_2_rgb(self.yuv_frame, (0,0,200,200))
|
||||
# cv2.imwrite(f"cropped.jpg", cv2.cvtColor(cropped, cv2.COLOR_RGB2BGR))
|
||||
# ensure the upper left pixel is red
|
||||
# the yuv conversion has some noise
|
||||
assert(np.all(cropped[0, 0] == [255, 1, 0]))
|
||||
# ensure the bottom right is black
|
||||
assert(np.all(cropped[199, 199] == [0, 0, 0]))
|
||||
|
||||
def test_crop_yuv_portrait(self):
|
||||
bgr_frame = np.zeros((1920, 1080, 3), np.uint8)
|
||||
bgr_frame[:] = (0, 0, 255)
|
||||
bgr_frame[5:55, 5:55] = (255,0,0)
|
||||
# cv2.imwrite(f"bgr_frame.jpg", self.bgr_frame)
|
||||
yuv_frame = cv2.cvtColor(bgr_frame, cv2.COLOR_BGR2YUV_I420)
|
||||
|
||||
cropped = yuv_region_2_rgb(yuv_frame, (0, 852, 648, 1500))
|
||||
# cv2.imwrite(f"cropped.jpg", cv2.cvtColor(cropped, cv2.COLOR_RGB2BGR))
|
||||
|
||||
if __name__ == '__main__':
|
||||
main(verbosity=2)
|
212
frigate/util.py
@@ -1,17 +1,24 @@
|
||||
from abc import ABC, abstractmethod
|
||||
import datetime
|
||||
import time
|
||||
import signal
|
||||
import traceback
|
||||
import collections
|
||||
import numpy as np
|
||||
import cv2
|
||||
import threading
|
||||
import matplotlib.pyplot as plt
|
||||
import datetime
|
||||
import hashlib
|
||||
import json
|
||||
import logging
|
||||
import signal
|
||||
import subprocess as sp
|
||||
import threading
|
||||
import time
|
||||
import traceback
|
||||
from abc import ABC, abstractmethod
|
||||
from multiprocessing import shared_memory
|
||||
from typing import AnyStr
|
||||
|
||||
import cv2
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thickness=2, color=None, position='ul'):
|
||||
if color is None:
|
||||
color = (0,0,255)
|
||||
@@ -43,14 +50,11 @@ def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thicknes
|
||||
cv2.putText(frame, display_text, (text_offset_x, text_offset_y + line_height - 3), font, fontScale=font_scale, color=(0, 0, 0), thickness=2)
|
||||
|
||||
def calculate_region(frame_shape, xmin, ymin, xmax, ymax, multiplier=2):
|
||||
# size is larger than longest edge
|
||||
size = int(max(xmax-xmin, ymax-ymin)*multiplier)
|
||||
# size is the longest edge and divisible by 4
|
||||
size = int(max(xmax-xmin, ymax-ymin)//4*4*multiplier)
|
||||
# dont go any smaller than 300
|
||||
if size < 300:
|
||||
size = 300
|
||||
# if the size is too big to fit in the frame
|
||||
if size > min(frame_shape[0], frame_shape[1]):
|
||||
size = min(frame_shape[0], frame_shape[1])
|
||||
|
||||
# x_offset is midpoint of bounding box minus half the size
|
||||
x_offset = int((xmax-xmin)/2.0+xmin-size/2.0)
|
||||
@@ -58,48 +62,156 @@ def calculate_region(frame_shape, xmin, ymin, xmax, ymax, multiplier=2):
|
||||
if x_offset < 0:
|
||||
x_offset = 0
|
||||
elif x_offset > (frame_shape[1]-size):
|
||||
x_offset = (frame_shape[1]-size)
|
||||
x_offset = max(0, (frame_shape[1]-size))
|
||||
|
||||
# y_offset is midpoint of bounding box minus half the size
|
||||
y_offset = int((ymax-ymin)/2.0+ymin-size/2.0)
|
||||
# if outside the image
|
||||
# # if outside the image
|
||||
if y_offset < 0:
|
||||
y_offset = 0
|
||||
elif y_offset > (frame_shape[0]-size):
|
||||
y_offset = (frame_shape[0]-size)
|
||||
y_offset = max(0, (frame_shape[0]-size))
|
||||
|
||||
return (x_offset, y_offset, x_offset+size, y_offset+size)
|
||||
|
||||
def get_yuv_crop(frame_shape, crop):
|
||||
# crop should be (x1,y1,x2,y2)
|
||||
frame_height = frame_shape[0]//3*2
|
||||
frame_width = frame_shape[1]
|
||||
|
||||
# compute the width/height of the uv channels
|
||||
uv_width = frame_width//2 # width of the uv channels
|
||||
uv_height = frame_height//4 # height of the uv channels
|
||||
|
||||
# compute the offset for upper left corner of the uv channels
|
||||
uv_x_offset = crop[0]//2 # x offset of the uv channels
|
||||
uv_y_offset = crop[1]//4 # y offset of the uv channels
|
||||
|
||||
# compute the width/height of the uv crops
|
||||
uv_crop_width = (crop[2] - crop[0])//2 # width of the cropped uv channels
|
||||
uv_crop_height = (crop[3] - crop[1])//4 # height of the cropped uv channels
|
||||
|
||||
# ensure crop dimensions are multiples of 2 and 4
|
||||
y = (
|
||||
crop[0],
|
||||
crop[1],
|
||||
crop[0] + uv_crop_width*2,
|
||||
crop[1] + uv_crop_height*4
|
||||
)
|
||||
|
||||
u1 = (
|
||||
0 + uv_x_offset,
|
||||
frame_height + uv_y_offset,
|
||||
0 + uv_x_offset + uv_crop_width,
|
||||
frame_height + uv_y_offset + uv_crop_height
|
||||
)
|
||||
|
||||
u2 = (
|
||||
uv_width + uv_x_offset,
|
||||
frame_height + uv_y_offset,
|
||||
uv_width + uv_x_offset + uv_crop_width,
|
||||
frame_height + uv_y_offset + uv_crop_height
|
||||
)
|
||||
|
||||
v1 = (
|
||||
0 + uv_x_offset,
|
||||
frame_height + uv_height + uv_y_offset,
|
||||
0 + uv_x_offset + uv_crop_width,
|
||||
frame_height + uv_height + uv_y_offset + uv_crop_height
|
||||
)
|
||||
|
||||
v2 = (
|
||||
uv_width + uv_x_offset,
|
||||
frame_height + uv_height + uv_y_offset,
|
||||
uv_width + uv_x_offset + uv_crop_width,
|
||||
frame_height + uv_height + uv_y_offset + uv_crop_height
|
||||
)
|
||||
|
||||
return y, u1, u2, v1, v2
|
||||
|
||||
def yuv_region_2_rgb(frame, region):
|
||||
height = frame.shape[0]//3*2
|
||||
width = frame.shape[1]
|
||||
# make sure the size is a multiple of 4
|
||||
size = (region[3] - region[1])//4*4
|
||||
try:
|
||||
height = frame.shape[0]//3*2
|
||||
width = frame.shape[1]
|
||||
|
||||
x1 = region[0]
|
||||
y1 = region[1]
|
||||
# get the crop box if the region extends beyond the frame
|
||||
crop_x1 = max(0, region[0])
|
||||
crop_y1 = max(0, region[1])
|
||||
# ensure these are a multiple of 4
|
||||
crop_x2 = min(width, region[2])
|
||||
crop_y2 = min(height, region[3])
|
||||
crop_box = (crop_x1, crop_y1, crop_x2, crop_y2)
|
||||
|
||||
uv_x1 = x1//2
|
||||
uv_y1 = y1//4
|
||||
y, u1, u2, v1, v2 = get_yuv_crop(frame.shape, crop_box)
|
||||
|
||||
uv_width = size//2
|
||||
uv_height = size//4
|
||||
# if the region starts outside the frame, indent the start point in the cropped frame
|
||||
y_channel_x_offset = abs(min(0, region[0]))
|
||||
y_channel_y_offset = abs(min(0, region[1]))
|
||||
|
||||
u_y_start = height
|
||||
v_y_start = height + height//4
|
||||
two_x_offset = width//2
|
||||
uv_channel_x_offset = y_channel_x_offset//2
|
||||
uv_channel_y_offset = y_channel_y_offset//4
|
||||
|
||||
yuv_cropped_frame = np.zeros((size+size//2, size), np.uint8)
|
||||
# y channel
|
||||
yuv_cropped_frame[0:size, 0:size] = frame[y1:y1+size, x1:x1+size]
|
||||
# u channel
|
||||
yuv_cropped_frame[size:size+uv_height, 0:uv_width] = frame[uv_y1+u_y_start:uv_y1+u_y_start+uv_height, uv_x1:uv_x1+uv_width]
|
||||
yuv_cropped_frame[size:size+uv_height, uv_width:size] = frame[uv_y1+u_y_start:uv_y1+u_y_start+uv_height, uv_x1+two_x_offset:uv_x1+two_x_offset+uv_width]
|
||||
# v channel
|
||||
yuv_cropped_frame[size+uv_height:size+uv_height*2, 0:uv_width] = frame[uv_y1+v_y_start:uv_y1+v_y_start+uv_height, uv_x1:uv_x1+uv_width]
|
||||
yuv_cropped_frame[size+uv_height:size+uv_height*2, uv_width:size] = frame[uv_y1+v_y_start:uv_y1+v_y_start+uv_height, uv_x1+two_x_offset:uv_x1+two_x_offset+uv_width]
|
||||
# create the yuv region frame
|
||||
# make sure the size is a multiple of 4
|
||||
size = (region[3] - region[1])//4*4
|
||||
yuv_cropped_frame = np.zeros((size+size//2, size), np.uint8)
|
||||
# fill in black
|
||||
yuv_cropped_frame[:] = 128
|
||||
yuv_cropped_frame[0:size,0:size] = 16
|
||||
|
||||
return cv2.cvtColor(yuv_cropped_frame, cv2.COLOR_YUV2RGB_I420)
|
||||
# copy the y channel
|
||||
yuv_cropped_frame[
|
||||
y_channel_y_offset:y_channel_y_offset + y[3] - y[1],
|
||||
y_channel_x_offset:y_channel_x_offset + y[2] - y[0]
|
||||
] = frame[
|
||||
y[1]:y[3],
|
||||
y[0]:y[2]
|
||||
]
|
||||
|
||||
uv_crop_width = u1[2] - u1[0]
|
||||
uv_crop_height = u1[3] - u1[1]
|
||||
|
||||
# copy u1
|
||||
yuv_cropped_frame[
|
||||
size + uv_channel_y_offset:size + uv_channel_y_offset + uv_crop_height,
|
||||
0 + uv_channel_x_offset:0 + uv_channel_x_offset + uv_crop_width
|
||||
] = frame[
|
||||
u1[1]:u1[3],
|
||||
u1[0]:u1[2]
|
||||
]
|
||||
|
||||
# copy u2
|
||||
yuv_cropped_frame[
|
||||
size + uv_channel_y_offset:size + uv_channel_y_offset + uv_crop_height,
|
||||
size//2 + uv_channel_x_offset:size//2 + uv_channel_x_offset + uv_crop_width
|
||||
] = frame[
|
||||
u2[1]:u2[3],
|
||||
u2[0]:u2[2]
|
||||
]
|
||||
|
||||
# copy v1
|
||||
yuv_cropped_frame[
|
||||
size+size//4 + uv_channel_y_offset:size+size//4 + uv_channel_y_offset + uv_crop_height,
|
||||
0 + uv_channel_x_offset:0 + uv_channel_x_offset + uv_crop_width
|
||||
] = frame[
|
||||
v1[1]:v1[3],
|
||||
v1[0]:v1[2]
|
||||
]
|
||||
|
||||
# copy v2
|
||||
yuv_cropped_frame[
|
||||
size+size//4 + uv_channel_y_offset:size+size//4 + uv_channel_y_offset + uv_crop_height,
|
||||
size//2 + uv_channel_x_offset:size//2 + uv_channel_x_offset + uv_crop_width
|
||||
] = frame[
|
||||
v2[1]:v2[3],
|
||||
v2[0]:v2[2]
|
||||
]
|
||||
|
||||
return cv2.cvtColor(yuv_cropped_frame, cv2.COLOR_YUV2RGB_I420)
|
||||
except:
|
||||
print(f"frame.shape: {frame.shape}")
|
||||
print(f"region: {region}")
|
||||
raise
|
||||
|
||||
def intersection(box_a, box_b):
|
||||
return (
|
||||
@@ -179,6 +291,24 @@ def print_stack(sig, frame):
|
||||
def listen():
|
||||
signal.signal(signal.SIGUSR1, print_stack)
|
||||
|
||||
def create_mask(frame_shape, mask):
|
||||
mask_img = np.zeros(frame_shape, np.uint8)
|
||||
mask_img[:] = 255
|
||||
|
||||
if isinstance(mask, list):
|
||||
for m in mask:
|
||||
add_mask(m, mask_img)
|
||||
|
||||
elif isinstance(mask, str):
|
||||
add_mask(mask, mask_img)
|
||||
|
||||
return mask_img
|
||||
|
||||
def add_mask(mask, mask_img):
|
||||
points = mask.split(',')
|
||||
contour = np.array([[int(points[i]), int(points[i+1])] for i in range(0, len(points), 2)])
|
||||
cv2.fillPoly(mask_img, pts=[contour], color=(0))
|
||||
|
||||
class FrameManager(ABC):
|
||||
@abstractmethod
|
||||
def create(self, name, size) -> AnyStr:
|
||||
@@ -241,4 +371,4 @@ class SharedMemoryFrameManager(FrameManager):
|
||||
if name in self.shm_store:
|
||||
self.shm_store[name].close()
|
||||
self.shm_store[name].unlink()
|
||||
del self.shm_store[name]
|
||||
del self.shm_store[name]
|
||||
|
364
frigate/video.py
@@ -1,59 +1,37 @@
|
||||
import os
|
||||
import time
|
||||
import datetime
|
||||
import cv2
|
||||
import queue
|
||||
import threading
|
||||
import ctypes
|
||||
import multiprocessing as mp
|
||||
import subprocess as sp
|
||||
import numpy as np
|
||||
import base64
|
||||
import copy
|
||||
import ctypes
|
||||
import datetime
|
||||
import itertools
|
||||
import json
|
||||
import base64
|
||||
from typing import Dict, List
|
||||
import logging
|
||||
import multiprocessing as mp
|
||||
import os
|
||||
import queue
|
||||
import subprocess as sp
|
||||
import signal
|
||||
import threading
|
||||
import time
|
||||
from collections import defaultdict
|
||||
from frigate.util import draw_box_with_label, yuv_region_2_rgb, area, calculate_region, clipped, intersection_over_union, intersection, EventsPerSecond, listen, FrameManager, SharedMemoryFrameManager
|
||||
from frigate.objects import ObjectTracker
|
||||
from setproctitle import setproctitle
|
||||
from typing import Dict, List
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from frigate.config import CameraConfig
|
||||
from frigate.edgetpu import RemoteObjectDetector
|
||||
from frigate.log import LogPipe
|
||||
from frigate.motion import MotionDetector
|
||||
from frigate.objects import ObjectTracker
|
||||
from frigate.util import (EventsPerSecond, FrameManager,
|
||||
SharedMemoryFrameManager, area, calculate_region,
|
||||
clipped, draw_box_with_label, intersection,
|
||||
intersection_over_union, listen, yuv_region_2_rgb)
|
||||
|
||||
def get_frame_shape(source):
|
||||
ffprobe_cmd = " ".join([
|
||||
'ffprobe',
|
||||
'-v',
|
||||
'panic',
|
||||
'-show_error',
|
||||
'-show_streams',
|
||||
'-of',
|
||||
'json',
|
||||
'"'+source+'"'
|
||||
])
|
||||
print(ffprobe_cmd)
|
||||
p = sp.Popen(ffprobe_cmd, stdout=sp.PIPE, shell=True)
|
||||
(output, err) = p.communicate()
|
||||
p_status = p.wait()
|
||||
info = json.loads(output)
|
||||
print(info)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
video_info = [s for s in info['streams'] if s['codec_type'] == 'video'][0]
|
||||
|
||||
if video_info['height'] != 0 and video_info['width'] != 0:
|
||||
return (video_info['height'], video_info['width'], 3)
|
||||
|
||||
# fallback to using opencv if ffprobe didnt succeed
|
||||
video = cv2.VideoCapture(source)
|
||||
ret, frame = video.read()
|
||||
frame_shape = frame.shape
|
||||
video.release()
|
||||
return frame_shape
|
||||
|
||||
def get_ffmpeg_input(ffmpeg_input):
|
||||
frigate_vars = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')}
|
||||
return ffmpeg_input.format(**frigate_vars)
|
||||
|
||||
def filtered(obj, objects_to_track, object_filters, mask=None):
|
||||
def filtered(obj, objects_to_track, object_filters):
|
||||
object_name = obj[0]
|
||||
|
||||
if not object_name in objects_to_track:
|
||||
@@ -64,63 +42,66 @@ def filtered(obj, objects_to_track, object_filters, mask=None):
|
||||
|
||||
# if the min area is larger than the
|
||||
# detected object, don't add it to detected objects
|
||||
if obj_settings.get('min_area',-1) > obj[3]:
|
||||
if obj_settings.min_area > obj[3]:
|
||||
return True
|
||||
|
||||
# if the detected object is larger than the
|
||||
# max area, don't add it to detected objects
|
||||
if obj_settings.get('max_area', 24000000) < obj[3]:
|
||||
if obj_settings.max_area < obj[3]:
|
||||
return True
|
||||
|
||||
# if the score is lower than the min_score, skip
|
||||
if obj_settings.get('min_score', 0) > obj[1]:
|
||||
if obj_settings.min_score > obj[1]:
|
||||
return True
|
||||
|
||||
# compute the coordinates of the object and make sure
|
||||
# the location isnt outside the bounds of the image (can happen from rounding)
|
||||
y_location = min(int(obj[2][3]), len(mask)-1)
|
||||
x_location = min(int((obj[2][2]-obj[2][0])/2.0)+obj[2][0], len(mask[0])-1)
|
||||
if not obj_settings.mask is None:
|
||||
# compute the coordinates of the object and make sure
|
||||
# the location isnt outside the bounds of the image (can happen from rounding)
|
||||
y_location = min(int(obj[2][3]), len(obj_settings.mask)-1)
|
||||
x_location = min(int((obj[2][2]-obj[2][0])/2.0)+obj[2][0], len(obj_settings.mask[0])-1)
|
||||
|
||||
# if the object is in a masked location, don't add it to detected objects
|
||||
if (not mask is None) and (mask[y_location][x_location] == 0):
|
||||
return True
|
||||
# if the object is in a masked location, don't add it to detected objects
|
||||
if obj_settings.mask[y_location][x_location] == 0:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
def create_tensor_input(frame, region):
|
||||
def create_tensor_input(frame, model_shape, region):
|
||||
cropped_frame = yuv_region_2_rgb(frame, region)
|
||||
|
||||
# Resize to 300x300 if needed
|
||||
if cropped_frame.shape != (300, 300, 3):
|
||||
cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
|
||||
if cropped_frame.shape != (model_shape[0], model_shape[1], 3):
|
||||
cropped_frame = cv2.resize(cropped_frame, dsize=model_shape, interpolation=cv2.INTER_LINEAR)
|
||||
|
||||
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
|
||||
# Expand dimensions since the model expects images to have shape: [1, height, width, 3]
|
||||
return np.expand_dims(cropped_frame, axis=0)
|
||||
|
||||
def start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_process=None):
|
||||
if not ffmpeg_process is None:
|
||||
print("Terminating the existing ffmpeg process...")
|
||||
ffmpeg_process.terminate()
|
||||
try:
|
||||
print("Waiting for ffmpeg to exit gracefully...")
|
||||
ffmpeg_process.communicate(timeout=30)
|
||||
except sp.TimeoutExpired:
|
||||
print("FFmpeg didnt exit. Force killing...")
|
||||
ffmpeg_process.kill()
|
||||
ffmpeg_process.communicate()
|
||||
ffmpeg_process = None
|
||||
def stop_ffmpeg(ffmpeg_process, logger):
|
||||
logger.info("Terminating the existing ffmpeg process...")
|
||||
ffmpeg_process.terminate()
|
||||
try:
|
||||
logger.info("Waiting for ffmpeg to exit gracefully...")
|
||||
ffmpeg_process.communicate(timeout=30)
|
||||
except sp.TimeoutExpired:
|
||||
logger.info("FFmpeg didnt exit. Force killing...")
|
||||
ffmpeg_process.kill()
|
||||
ffmpeg_process.communicate()
|
||||
ffmpeg_process = None
|
||||
|
||||
print("Creating ffmpeg process...")
|
||||
print(" ".join(ffmpeg_cmd))
|
||||
process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, stdin = sp.DEVNULL, bufsize=frame_size*10, start_new_session=True)
|
||||
def start_or_restart_ffmpeg(ffmpeg_cmd, logger, logpipe: LogPipe, frame_size=None, ffmpeg_process=None):
|
||||
if not ffmpeg_process is None:
|
||||
stop_ffmpeg(ffmpeg_process, logger)
|
||||
|
||||
if frame_size is None:
|
||||
process = sp.Popen(ffmpeg_cmd, stdout = sp.DEVNULL, stderr=logpipe, stdin = sp.DEVNULL, start_new_session=True)
|
||||
else:
|
||||
process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, stderr=logpipe, stdin = sp.DEVNULL, bufsize=frame_size*10, start_new_session=True)
|
||||
return process
|
||||
|
||||
def capture_frames(ffmpeg_process, camera_name, frame_shape, frame_manager: FrameManager,
|
||||
frame_queue, take_frame: int, fps:mp.Value, skipped_fps: mp.Value,
|
||||
stop_event: mp.Event, current_frame: mp.Value):
|
||||
frame_queue, fps:mp.Value, skipped_fps: mp.Value, current_frame: mp.Value):
|
||||
|
||||
frame_num = 0
|
||||
frame_size = frame_shape[0] * frame_shape[1] * 3 // 2
|
||||
frame_size = frame_shape[0] * frame_shape[1]
|
||||
frame_rate = EventsPerSecond()
|
||||
frame_rate.start()
|
||||
skipped_eps = EventsPerSecond()
|
||||
@@ -128,33 +109,23 @@ def capture_frames(ffmpeg_process, camera_name, frame_shape, frame_manager: Fram
|
||||
while True:
|
||||
fps.value = frame_rate.eps()
|
||||
skipped_fps = skipped_eps.eps()
|
||||
if stop_event.is_set():
|
||||
print(f"{camera_name}: stop event set. exiting capture thread...")
|
||||
break
|
||||
|
||||
current_frame.value = datetime.datetime.now().timestamp()
|
||||
frame_name = f"{camera_name}{current_frame.value}"
|
||||
frame_buffer = frame_manager.create(frame_name, frame_size)
|
||||
try:
|
||||
frame_buffer[:] = ffmpeg_process.stdout.read(frame_size)
|
||||
except:
|
||||
print(f"{camera_name}: ffmpeg sent a broken frame. something is wrong.")
|
||||
frame_buffer[:] = ffmpeg_process.stdout.read(frame_size)
|
||||
except Exception as e:
|
||||
logger.info(f"{camera_name}: ffmpeg sent a broken frame. {e}")
|
||||
|
||||
if ffmpeg_process.poll() != None:
|
||||
print(f"{camera_name}: ffmpeg process is not running. exiting capture thread...")
|
||||
frame_manager.delete(frame_name)
|
||||
break
|
||||
|
||||
continue
|
||||
if ffmpeg_process.poll() != None:
|
||||
logger.info(f"{camera_name}: ffmpeg process is not running. exiting capture thread...")
|
||||
frame_manager.delete(frame_name)
|
||||
break
|
||||
continue
|
||||
|
||||
frame_rate.update()
|
||||
|
||||
frame_num += 1
|
||||
if (frame_num % take_frame) != 0:
|
||||
skipped_eps.update()
|
||||
frame_manager.delete(frame_name)
|
||||
continue
|
||||
|
||||
# if the queue is full, skip this frame
|
||||
if frame_queue.full():
|
||||
skipped_eps.update()
|
||||
@@ -168,123 +139,139 @@ def capture_frames(ffmpeg_process, camera_name, frame_shape, frame_manager: Fram
|
||||
frame_queue.put(current_frame.value)
|
||||
|
||||
class CameraWatchdog(threading.Thread):
|
||||
def __init__(self, name, config, frame_queue, camera_fps, ffmpeg_pid, stop_event):
|
||||
def __init__(self, camera_name, config, frame_queue, camera_fps, ffmpeg_pid, stop_event):
|
||||
threading.Thread.__init__(self)
|
||||
self.name = name
|
||||
self.logger = logging.getLogger(f"watchdog.{camera_name}")
|
||||
self.camera_name = camera_name
|
||||
self.config = config
|
||||
self.capture_thread = None
|
||||
self.ffmpeg_process = None
|
||||
self.stop_event = stop_event
|
||||
self.ffmpeg_detect_process = None
|
||||
self.logpipe = LogPipe(f"ffmpeg.{self.camera_name}.detect", logging.ERROR)
|
||||
self.ffmpeg_other_processes = []
|
||||
self.camera_fps = camera_fps
|
||||
self.ffmpeg_pid = ffmpeg_pid
|
||||
self.frame_queue = frame_queue
|
||||
self.frame_shape = self.config['frame_shape']
|
||||
self.frame_size = self.frame_shape[0] * self.frame_shape[1] * 3 // 2
|
||||
self.frame_shape = self.config.frame_shape_yuv
|
||||
self.frame_size = self.frame_shape[0] * self.frame_shape[1]
|
||||
self.stop_event = stop_event
|
||||
|
||||
def run(self):
|
||||
self.start_ffmpeg()
|
||||
self.start_ffmpeg_detect()
|
||||
|
||||
for c in self.config.ffmpeg_cmds:
|
||||
if 'detect' in c['roles']:
|
||||
continue
|
||||
logpipe = LogPipe(f"ffmpeg.{self.camera_name}.{'_'.join(sorted(c['roles']))}", logging.ERROR)
|
||||
self.ffmpeg_other_processes.append({
|
||||
'cmd': c['cmd'],
|
||||
'logpipe': logpipe,
|
||||
'process': start_or_restart_ffmpeg(c['cmd'], self.logger, logpipe)
|
||||
})
|
||||
|
||||
time.sleep(10)
|
||||
while True:
|
||||
if self.stop_event.is_set():
|
||||
print(f"Exiting watchdog...")
|
||||
stop_ffmpeg(self.ffmpeg_detect_process, self.logger)
|
||||
for p in self.ffmpeg_other_processes:
|
||||
stop_ffmpeg(p['process'], self.logger)
|
||||
p['logpipe'].close()
|
||||
self.logpipe.close()
|
||||
break
|
||||
|
||||
now = datetime.datetime.now().timestamp()
|
||||
|
||||
if not self.capture_thread.is_alive():
|
||||
self.start_ffmpeg()
|
||||
elif now - self.capture_thread.current_frame.value > 5:
|
||||
print(f"No frames received from {self.name} in 5 seconds. Exiting ffmpeg...")
|
||||
self.ffmpeg_process.terminate()
|
||||
self.start_ffmpeg_detect()
|
||||
elif now - self.capture_thread.current_frame.value > 20:
|
||||
self.logger.info(f"No frames received from {self.camera_name} in 20 seconds. Exiting ffmpeg...")
|
||||
self.ffmpeg_detect_process.terminate()
|
||||
try:
|
||||
print("Waiting for ffmpeg to exit gracefully...")
|
||||
self.ffmpeg_process.communicate(timeout=30)
|
||||
self.logger.info("Waiting for ffmpeg to exit gracefully...")
|
||||
self.ffmpeg_detect_process.communicate(timeout=30)
|
||||
except sp.TimeoutExpired:
|
||||
print("FFmpeg didnt exit. Force killing...")
|
||||
self.ffmpeg_process.kill()
|
||||
self.ffmpeg_process.communicate()
|
||||
self.logger.info("FFmpeg didnt exit. Force killing...")
|
||||
self.ffmpeg_detect_process.kill()
|
||||
self.ffmpeg_detect_process.communicate()
|
||||
|
||||
for p in self.ffmpeg_other_processes:
|
||||
poll = p['process'].poll()
|
||||
if poll == None:
|
||||
continue
|
||||
p['process'] = start_or_restart_ffmpeg(p['cmd'], self.logger, p['logpipe'], ffmpeg_process=p['process'])
|
||||
|
||||
# wait a bit before checking again
|
||||
time.sleep(10)
|
||||
|
||||
def start_ffmpeg(self):
|
||||
self.ffmpeg_process = start_or_restart_ffmpeg(self.config['ffmpeg_cmd'], self.frame_size)
|
||||
self.ffmpeg_pid.value = self.ffmpeg_process.pid
|
||||
self.capture_thread = CameraCapture(self.name, self.ffmpeg_process, self.frame_shape, self.frame_queue,
|
||||
self.config['take_frame'], self.camera_fps, self.stop_event)
|
||||
self.capture_thread.start()
|
||||
def start_ffmpeg_detect(self):
|
||||
ffmpeg_cmd = [c['cmd'] for c in self.config.ffmpeg_cmds if 'detect' in c['roles']][0]
|
||||
self.ffmpeg_detect_process = start_or_restart_ffmpeg(ffmpeg_cmd, self.logger, self.logpipe, self.frame_size)
|
||||
self.ffmpeg_pid.value = self.ffmpeg_detect_process.pid
|
||||
self.capture_thread = CameraCapture(self.camera_name, self.ffmpeg_detect_process, self.frame_shape, self.frame_queue,
|
||||
self.camera_fps)
|
||||
self.capture_thread.start()
|
||||
|
||||
class CameraCapture(threading.Thread):
|
||||
def __init__(self, name, ffmpeg_process, frame_shape, frame_queue, take_frame, fps, stop_event):
|
||||
def __init__(self, camera_name, ffmpeg_process, frame_shape, frame_queue, fps):
|
||||
threading.Thread.__init__(self)
|
||||
self.name = name
|
||||
self.name = f"capture:{camera_name}"
|
||||
self.camera_name = camera_name
|
||||
self.frame_shape = frame_shape
|
||||
self.frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2]
|
||||
self.frame_queue = frame_queue
|
||||
self.take_frame = take_frame
|
||||
self.fps = fps
|
||||
self.skipped_fps = EventsPerSecond()
|
||||
self.frame_manager = SharedMemoryFrameManager()
|
||||
self.ffmpeg_process = ffmpeg_process
|
||||
self.current_frame = mp.Value('d', 0.0)
|
||||
self.last_frame = 0
|
||||
self.stop_event = stop_event
|
||||
|
||||
def run(self):
|
||||
self.skipped_fps.start()
|
||||
capture_frames(self.ffmpeg_process, self.name, self.frame_shape, self.frame_manager, self.frame_queue, self.take_frame,
|
||||
self.fps, self.skipped_fps, self.stop_event, self.current_frame)
|
||||
capture_frames(self.ffmpeg_process, self.camera_name, self.frame_shape, self.frame_manager, self.frame_queue,
|
||||
self.fps, self.skipped_fps, self.current_frame)
|
||||
|
||||
def capture_camera(name, config: CameraConfig, process_info):
|
||||
stop_event = mp.Event()
|
||||
def receiveSignal(signalNumber, frame):
|
||||
stop_event.set()
|
||||
|
||||
signal.signal(signal.SIGTERM, receiveSignal)
|
||||
signal.signal(signal.SIGINT, receiveSignal)
|
||||
|
||||
def capture_camera(name, config, process_info, stop_event):
|
||||
frame_queue = process_info['frame_queue']
|
||||
camera_watchdog = CameraWatchdog(name, config, frame_queue, process_info['camera_fps'], process_info['ffmpeg_pid'], stop_event)
|
||||
camera_watchdog.start()
|
||||
camera_watchdog.join()
|
||||
|
||||
def track_camera(name, config, detection_queue, result_connection, detected_objects_queue, process_info, stop_event):
|
||||
def track_camera(name, config: CameraConfig, model_shape, detection_queue, result_connection, detected_objects_queue, process_info):
|
||||
stop_event = mp.Event()
|
||||
def receiveSignal(signalNumber, frame):
|
||||
stop_event.set()
|
||||
|
||||
signal.signal(signal.SIGTERM, receiveSignal)
|
||||
signal.signal(signal.SIGINT, receiveSignal)
|
||||
|
||||
threading.current_thread().name = f"process:{name}"
|
||||
setproctitle(f"frigate.process:{name}")
|
||||
listen()
|
||||
|
||||
frame_queue = process_info['frame_queue']
|
||||
detection_enabled = process_info['detection_enabled']
|
||||
|
||||
frame_shape = config['frame_shape']
|
||||
frame_shape = config.frame_shape
|
||||
objects_to_track = config.objects.track
|
||||
object_filters = config.objects.filters
|
||||
|
||||
# Merge the tracked object config with the global config
|
||||
camera_objects_config = config.get('objects', {})
|
||||
objects_to_track = camera_objects_config.get('track', [])
|
||||
object_filters = camera_objects_config.get('filters', {})
|
||||
motion_detector = MotionDetector(frame_shape, config.motion)
|
||||
object_detector = RemoteObjectDetector(name, '/labelmap.txt', detection_queue, result_connection, model_shape)
|
||||
|
||||
# load in the mask for object detection
|
||||
if 'mask' in config:
|
||||
if config['mask'].startswith('base64,'):
|
||||
img = base64.b64decode(config['mask'][7:])
|
||||
npimg = np.fromstring(img, dtype=np.uint8)
|
||||
mask = cv2.imdecode(npimg, cv2.IMREAD_GRAYSCALE)
|
||||
elif config['mask'].startswith('poly,'):
|
||||
points = config['mask'].split(',')[1:]
|
||||
contour = np.array([[int(points[i]), int(points[i+1])] for i in range(0, len(points), 2)])
|
||||
mask = np.zeros((frame_shape[0], frame_shape[1]), np.uint8)
|
||||
mask[:] = 255
|
||||
cv2.fillPoly(mask, pts=[contour], color=(0))
|
||||
else:
|
||||
mask = cv2.imread("/config/{}".format(config['mask']), cv2.IMREAD_GRAYSCALE)
|
||||
else:
|
||||
mask = None
|
||||
|
||||
if mask is None or mask.size == 0:
|
||||
mask = np.zeros((frame_shape[0], frame_shape[1]), np.uint8)
|
||||
mask[:] = 255
|
||||
|
||||
motion_detector = MotionDetector(frame_shape, mask, resize_factor=6)
|
||||
object_detector = RemoteObjectDetector(name, '/labelmap.txt', detection_queue, result_connection)
|
||||
|
||||
object_tracker = ObjectTracker(10)
|
||||
object_tracker = ObjectTracker(config.detect)
|
||||
|
||||
frame_manager = SharedMemoryFrameManager()
|
||||
|
||||
process_frames(name, frame_queue, frame_shape, frame_manager, motion_detector, object_detector,
|
||||
object_tracker, detected_objects_queue, process_info, objects_to_track, object_filters, mask, stop_event)
|
||||
process_frames(name, frame_queue, frame_shape, model_shape, frame_manager, motion_detector, object_detector,
|
||||
object_tracker, detected_objects_queue, process_info, objects_to_track, object_filters, detection_enabled, stop_event)
|
||||
|
||||
print(f"{name}: exiting subprocess")
|
||||
logger.info(f"{name}: exiting subprocess")
|
||||
|
||||
def reduce_boxes(boxes):
|
||||
if len(boxes) == 0:
|
||||
@@ -292,8 +279,8 @@ def reduce_boxes(boxes):
|
||||
reduced_boxes = cv2.groupRectangles([list(b) for b in itertools.chain(boxes, boxes)], 1, 0.2)[0]
|
||||
return [tuple(b) for b in reduced_boxes]
|
||||
|
||||
def detect(object_detector, frame, region, objects_to_track, object_filters, mask):
|
||||
tensor_input = create_tensor_input(frame, region)
|
||||
def detect(object_detector, frame, model_shape, region, objects_to_track, object_filters):
|
||||
tensor_input = create_tensor_input(frame, model_shape, region)
|
||||
|
||||
detections = []
|
||||
region_detections = object_detector.detect(tensor_input)
|
||||
@@ -310,16 +297,16 @@ def detect(object_detector, frame, region, objects_to_track, object_filters, mas
|
||||
(x_max-x_min)*(y_max-y_min),
|
||||
region)
|
||||
# apply object filters
|
||||
if filtered(det, objects_to_track, object_filters, mask):
|
||||
if filtered(det, objects_to_track, object_filters):
|
||||
continue
|
||||
detections.append(det)
|
||||
return detections
|
||||
|
||||
def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape,
|
||||
def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape, model_shape,
|
||||
frame_manager: FrameManager, motion_detector: MotionDetector,
|
||||
object_detector: RemoteObjectDetector, object_tracker: ObjectTracker,
|
||||
detected_objects_queue: mp.Queue, process_info: Dict,
|
||||
objects_to_track: List[str], object_filters: Dict, mask, stop_event: mp.Event,
|
||||
objects_to_track: List[str], object_filters, detection_enabled: mp.Value, stop_event,
|
||||
exit_on_empty: bool = False):
|
||||
|
||||
fps = process_info['process_fps']
|
||||
@@ -330,9 +317,12 @@ def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape,
|
||||
fps_tracker.start()
|
||||
|
||||
while True:
|
||||
if stop_event.is_set() or (exit_on_empty and frame_queue.empty()):
|
||||
print(f"Exiting track_objects...")
|
||||
break
|
||||
if stop_event.is_set():
|
||||
break
|
||||
|
||||
if exit_on_empty and frame_queue.empty():
|
||||
logger.info(f"Exiting track_objects...")
|
||||
break
|
||||
|
||||
try:
|
||||
frame_time = frame_queue.get(True, 10)
|
||||
@@ -344,7 +334,15 @@ def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape,
|
||||
frame = frame_manager.get(f"{camera_name}{frame_time}", (frame_shape[0]*3//2, frame_shape[1]))
|
||||
|
||||
if frame is None:
|
||||
print(f"{camera_name}: frame {frame_time} is not in memory store.")
|
||||
logger.info(f"{camera_name}: frame {frame_time} is not in memory store.")
|
||||
continue
|
||||
|
||||
if not detection_enabled.value:
|
||||
fps.value = fps_tracker.eps()
|
||||
object_tracker.match_and_update(frame_time, [])
|
||||
detected_objects_queue.put((camera_name, frame_time, object_tracker.tracked_objects, [], []))
|
||||
detection_fps.value = object_detector.fps.eps()
|
||||
frame_manager.close(f"{camera_name}{frame_time}")
|
||||
continue
|
||||
|
||||
# look for motion
|
||||
@@ -369,7 +367,7 @@ def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape,
|
||||
# resize regions and detect
|
||||
detections = []
|
||||
for region in regions:
|
||||
detections.extend(detect(object_detector, frame, region, objects_to_track, object_filters, mask))
|
||||
detections.extend(detect(object_detector, frame, model_shape, region, objects_to_track, object_filters))
|
||||
|
||||
#########
|
||||
# merge objects, check for clipped objects and look again up to 4 times
|
||||
@@ -401,8 +399,10 @@ def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape,
|
||||
region = calculate_region(frame_shape,
|
||||
box[0], box[1],
|
||||
box[2], box[3])
|
||||
|
||||
regions.append(region)
|
||||
|
||||
selected_objects.extend(detect(object_detector, frame, region, objects_to_track, object_filters, mask))
|
||||
selected_objects.extend(detect(object_detector, frame, model_shape, region, objects_to_track, object_filters))
|
||||
|
||||
refining = True
|
||||
else:
|
||||
@@ -419,11 +419,11 @@ def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape,
|
||||
|
||||
# add to the queue if not full
|
||||
if(detected_objects_queue.full()):
|
||||
frame_manager.delete(f"{camera_name}{frame_time}")
|
||||
continue
|
||||
frame_manager.delete(f"{camera_name}{frame_time}")
|
||||
continue
|
||||
else:
|
||||
fps_tracker.update()
|
||||
fps.value = fps_tracker.eps()
|
||||
detected_objects_queue.put((camera_name, frame_time, object_tracker.tracked_objects))
|
||||
detection_fps.value = object_detector.fps.eps()
|
||||
frame_manager.close(f"{camera_name}{frame_time}")
|
||||
fps_tracker.update()
|
||||
fps.value = fps_tracker.eps()
|
||||
detected_objects_queue.put((camera_name, frame_time, object_tracker.tracked_objects, motion_boxes, regions))
|
||||
detection_fps.value = object_detector.fps.eps()
|
||||
frame_manager.close(f"{camera_name}{frame_time}")
|
||||
|
38
frigate/watchdog.py
Normal file
@@ -0,0 +1,38 @@
|
||||
import datetime
|
||||
import logging
|
||||
import threading
|
||||
import time
|
||||
import os
|
||||
import signal
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
class FrigateWatchdog(threading.Thread):
|
||||
def __init__(self, detectors, stop_event):
|
||||
threading.Thread.__init__(self)
|
||||
self.name = 'frigate_watchdog'
|
||||
self.detectors = detectors
|
||||
self.stop_event = stop_event
|
||||
|
||||
def run(self):
|
||||
time.sleep(10)
|
||||
while True:
|
||||
# wait a bit before checking
|
||||
time.sleep(10)
|
||||
|
||||
if self.stop_event.is_set():
|
||||
logger.info(f"Exiting watchdog...")
|
||||
break
|
||||
|
||||
now = datetime.datetime.now().timestamp()
|
||||
|
||||
# check the detection processes
|
||||
for detector in self.detectors.values():
|
||||
detection_start = detector.detection_start.value
|
||||
if (detection_start > 0.0 and
|
||||
now - detection_start > 10):
|
||||
logger.info("Detection appears to be stuck. Restarting detection process")
|
||||
detector.start_or_restart()
|
||||
elif not detector.detect_process.is_alive():
|
||||
logger.info("Detection appears to have stopped. Restarting frigate")
|
||||
os.kill(os.getpid(), signal.SIGTERM)
|
58
frigate/zeroconf.py
Normal file
@@ -0,0 +1,58 @@
|
||||
import logging
|
||||
import socket
|
||||
|
||||
from zeroconf import (
|
||||
ServiceInfo,
|
||||
NonUniqueNameException,
|
||||
InterfaceChoice,
|
||||
IPVersion,
|
||||
Zeroconf,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
ZEROCONF_TYPE = "_frigate._tcp.local."
|
||||
|
||||
# Taken from: http://stackoverflow.com/a/11735897
|
||||
def get_local_ip() -> str:
|
||||
"""Try to determine the local IP address of the machine."""
|
||||
try:
|
||||
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
|
||||
|
||||
# Use Google Public DNS server to determine own IP
|
||||
sock.connect(("8.8.8.8", 80))
|
||||
|
||||
return sock.getsockname()[0] # type: ignore
|
||||
except OSError:
|
||||
try:
|
||||
return socket.gethostbyname(socket.gethostname())
|
||||
except socket.gaierror:
|
||||
return "127.0.0.1"
|
||||
finally:
|
||||
sock.close()
|
||||
|
||||
def broadcast_zeroconf(frigate_id):
|
||||
zeroconf = Zeroconf(interfaces=InterfaceChoice.Default, ip_version=IPVersion.V4Only)
|
||||
|
||||
host_ip = get_local_ip()
|
||||
|
||||
try:
|
||||
host_ip_pton = socket.inet_pton(socket.AF_INET, host_ip)
|
||||
except OSError:
|
||||
host_ip_pton = socket.inet_pton(socket.AF_INET6, host_ip)
|
||||
|
||||
info = ServiceInfo(
|
||||
ZEROCONF_TYPE,
|
||||
name=f"{frigate_id}.{ZEROCONF_TYPE}",
|
||||
addresses=[host_ip_pton],
|
||||
port=5000,
|
||||
)
|
||||
|
||||
logger.info("Starting Zeroconf broadcast")
|
||||
try:
|
||||
zeroconf.register_service(info)
|
||||
except NonUniqueNameException:
|
||||
logger.error(
|
||||
"Frigate instance with identical name present in the local network"
|
||||
)
|
||||
return zeroconf
|
41
migrations/001_create_events_table.py
Normal file
@@ -0,0 +1,41 @@
|
||||
"""Peewee migrations -- 001_create_events_table.py.
|
||||
|
||||
Some examples (model - class or model name)::
|
||||
|
||||
> Model = migrator.orm['model_name'] # Return model in current state by name
|
||||
|
||||
> migrator.sql(sql) # Run custom SQL
|
||||
> migrator.python(func, *args, **kwargs) # Run python code
|
||||
> migrator.create_model(Model) # Create a model (could be used as decorator)
|
||||
> migrator.remove_model(model, cascade=True) # Remove a model
|
||||
> migrator.add_fields(model, **fields) # Add fields to a model
|
||||
> migrator.change_fields(model, **fields) # Change fields
|
||||
> migrator.remove_fields(model, *field_names, cascade=True)
|
||||
> migrator.rename_field(model, old_field_name, new_field_name)
|
||||
> migrator.rename_table(model, new_table_name)
|
||||
> migrator.add_index(model, *col_names, unique=False)
|
||||
> migrator.drop_index(model, *col_names)
|
||||
> migrator.add_not_null(model, *field_names)
|
||||
> migrator.drop_not_null(model, *field_names)
|
||||
> migrator.add_default(model, field_name, default)
|
||||
|
||||
"""
|
||||
|
||||
import datetime as dt
|
||||
import peewee as pw
|
||||
from decimal import ROUND_HALF_EVEN
|
||||
|
||||
try:
|
||||
import playhouse.postgres_ext as pw_pext
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
SQL = pw.SQL
|
||||
|
||||
def migrate(migrator, database, fake=False, **kwargs):
|
||||
migrator.sql('CREATE TABLE IF NOT EXISTS "event" ("id" VARCHAR(30) NOT NULL PRIMARY KEY, "label" VARCHAR(20) NOT NULL, "camera" VARCHAR(20) NOT NULL, "start_time" DATETIME NOT NULL, "end_time" DATETIME NOT NULL, "top_score" REAL NOT NULL, "false_positive" INTEGER NOT NULL, "zones" JSON NOT NULL, "thumbnail" TEXT NOT NULL)')
|
||||
migrator.sql('CREATE INDEX IF NOT EXISTS "event_label" ON "event" ("label")')
|
||||
migrator.sql('CREATE INDEX IF NOT EXISTS "event_camera" ON "event" ("camera")')
|
||||
|
||||
def rollback(migrator, database, fake=False, **kwargs):
|
||||
pass
|
41
migrations/002_add_clip_snapshot.py
Normal file
@@ -0,0 +1,41 @@
|
||||
"""Peewee migrations -- 002_add_clip_snapshot.py.
|
||||
|
||||
Some examples (model - class or model name)::
|
||||
|
||||
> Model = migrator.orm['model_name'] # Return model in current state by name
|
||||
|
||||
> migrator.sql(sql) # Run custom SQL
|
||||
> migrator.python(func, *args, **kwargs) # Run python code
|
||||
> migrator.create_model(Model) # Create a model (could be used as decorator)
|
||||
> migrator.remove_model(model, cascade=True) # Remove a model
|
||||
> migrator.add_fields(model, **fields) # Add fields to a model
|
||||
> migrator.change_fields(model, **fields) # Change fields
|
||||
> migrator.remove_fields(model, *field_names, cascade=True)
|
||||
> migrator.rename_field(model, old_field_name, new_field_name)
|
||||
> migrator.rename_table(model, new_table_name)
|
||||
> migrator.add_index(model, *col_names, unique=False)
|
||||
> migrator.drop_index(model, *col_names)
|
||||
> migrator.add_not_null(model, *field_names)
|
||||
> migrator.drop_not_null(model, *field_names)
|
||||
> migrator.add_default(model, field_name, default)
|
||||
|
||||
"""
|
||||
|
||||
import datetime as dt
|
||||
import peewee as pw
|
||||
from decimal import ROUND_HALF_EVEN
|
||||
from frigate.models import Event
|
||||
|
||||
try:
|
||||
import playhouse.postgres_ext as pw_pext
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
SQL = pw.SQL
|
||||
|
||||
|
||||
def migrate(migrator, database, fake=False, **kwargs):
|
||||
migrator.add_fields(Event, has_clip=pw.BooleanField(default=True), has_snapshot=pw.BooleanField(default=True))
|
||||
|
||||
def rollback(migrator, database, fake=False, **kwargs):
|
||||
migrator.remove_fields(Event, ['has_clip', 'has_snapshot'])
|
134
nginx/nginx.conf
Normal file
@@ -0,0 +1,134 @@
|
||||
worker_processes 1;
|
||||
|
||||
error_log /var/log/nginx/error.log warn;
|
||||
pid /var/run/nginx.pid;
|
||||
|
||||
load_module "modules/ngx_rtmp_module.so";
|
||||
|
||||
events {
|
||||
worker_connections 1024;
|
||||
}
|
||||
|
||||
http {
|
||||
include /etc/nginx/mime.types;
|
||||
default_type application/octet-stream;
|
||||
|
||||
log_format main '$remote_addr - $remote_user [$time_local] "$request" '
|
||||
'$status $body_bytes_sent "$http_referer" '
|
||||
'"$http_user_agent" "$http_x_forwarded_for"';
|
||||
|
||||
access_log /var/log/nginx/access.log main;
|
||||
|
||||
sendfile on;
|
||||
|
||||
keepalive_timeout 65;
|
||||
|
||||
upstream frigate_api {
|
||||
server localhost:5001;
|
||||
keepalive 1024;
|
||||
}
|
||||
|
||||
server {
|
||||
listen 5000;
|
||||
|
||||
location /stream/ {
|
||||
add_header 'Cache-Control' 'no-cache';
|
||||
add_header 'Access-Control-Allow-Origin' "$http_origin" always;
|
||||
add_header 'Access-Control-Allow-Credentials' 'true';
|
||||
add_header 'Access-Control-Expose-Headers' 'Content-Length';
|
||||
if ($request_method = 'OPTIONS') {
|
||||
add_header 'Access-Control-Allow-Origin' "$http_origin";
|
||||
add_header 'Access-Control-Max-Age' 1728000;
|
||||
add_header 'Content-Type' 'text/plain charset=UTF-8';
|
||||
add_header 'Content-Length' 0;
|
||||
return 204;
|
||||
}
|
||||
|
||||
types {
|
||||
application/dash+xml mpd;
|
||||
application/vnd.apple.mpegurl m3u8;
|
||||
video/mp2t ts;
|
||||
image/jpeg jpg;
|
||||
}
|
||||
|
||||
root /tmp;
|
||||
}
|
||||
|
||||
location /clips/ {
|
||||
add_header 'Access-Control-Allow-Origin' "$http_origin" always;
|
||||
add_header 'Access-Control-Allow-Credentials' 'true';
|
||||
add_header 'Access-Control-Expose-Headers' 'Content-Length';
|
||||
if ($request_method = 'OPTIONS') {
|
||||
add_header 'Access-Control-Allow-Origin' "$http_origin";
|
||||
add_header 'Access-Control-Max-Age' 1728000;
|
||||
add_header 'Content-Type' 'text/plain charset=UTF-8';
|
||||
add_header 'Content-Length' 0;
|
||||
return 204;
|
||||
}
|
||||
|
||||
types {
|
||||
video/mp4 mp4;
|
||||
image/jpeg jpg;
|
||||
}
|
||||
|
||||
autoindex on;
|
||||
root /media/frigate;
|
||||
}
|
||||
|
||||
location /recordings/ {
|
||||
add_header 'Access-Control-Allow-Origin' "$http_origin" always;
|
||||
add_header 'Access-Control-Allow-Credentials' 'true';
|
||||
add_header 'Access-Control-Expose-Headers' 'Content-Length';
|
||||
if ($request_method = 'OPTIONS') {
|
||||
add_header 'Access-Control-Allow-Origin' "$http_origin";
|
||||
add_header 'Access-Control-Max-Age' 1728000;
|
||||
add_header 'Content-Type' 'text/plain charset=UTF-8';
|
||||
add_header 'Content-Length' 0;
|
||||
return 204;
|
||||
}
|
||||
|
||||
types {
|
||||
video/mp4 mp4;
|
||||
}
|
||||
|
||||
autoindex on;
|
||||
autoindex_format json;
|
||||
root /media/frigate;
|
||||
}
|
||||
|
||||
location /api/ {
|
||||
add_header 'Access-Control-Allow-Origin' '*';
|
||||
proxy_pass http://frigate_api/;
|
||||
proxy_pass_request_headers on;
|
||||
proxy_set_header Host $host;
|
||||
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
|
||||
proxy_set_header X-Forwarded-Proto $scheme;
|
||||
}
|
||||
|
||||
location / {
|
||||
sub_filter 'href="/' 'href="$http_x_ingress_path/';
|
||||
sub_filter 'url(/' 'url($http_x_ingress_path/';
|
||||
sub_filter '"/js/' '"$http_x_ingress_path/js/';
|
||||
sub_filter '<body>' '<body><script>window.baseUrl="$http_x_ingress_path";</script>';
|
||||
sub_filter_types text/css application/javascript;
|
||||
sub_filter_once off;
|
||||
root /opt/frigate/web;
|
||||
try_files $uri $uri/ /index.html;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
rtmp {
|
||||
server {
|
||||
listen 1935;
|
||||
chunk_size 4096;
|
||||
allow publish 127.0.0.1;
|
||||
deny publish all;
|
||||
allow play all;
|
||||
application live {
|
||||
live on;
|
||||
record off;
|
||||
meta copy;
|
||||
}
|
||||
}
|
||||
}
|
152
process_clip.py
@@ -1,152 +0,0 @@
|
||||
import sys
|
||||
import click
|
||||
import os
|
||||
import datetime
|
||||
from unittest import TestCase, main
|
||||
from frigate.video import process_frames, start_or_restart_ffmpeg, capture_frames, get_frame_shape
|
||||
from frigate.util import DictFrameManager, SharedMemoryFrameManager, EventsPerSecond, draw_box_with_label
|
||||
from frigate.motion import MotionDetector
|
||||
from frigate.edgetpu import LocalObjectDetector
|
||||
from frigate.objects import ObjectTracker
|
||||
import multiprocessing as mp
|
||||
import numpy as np
|
||||
import cv2
|
||||
from frigate.object_processing import COLOR_MAP, CameraState
|
||||
|
||||
class ProcessClip():
|
||||
def __init__(self, clip_path, frame_shape, config):
|
||||
self.clip_path = clip_path
|
||||
self.frame_shape = frame_shape
|
||||
self.camera_name = 'camera'
|
||||
self.frame_manager = DictFrameManager()
|
||||
# self.frame_manager = SharedMemoryFrameManager()
|
||||
self.frame_queue = mp.Queue()
|
||||
self.detected_objects_queue = mp.Queue()
|
||||
self.camera_state = CameraState(self.camera_name, config, self.frame_manager)
|
||||
|
||||
def load_frames(self):
|
||||
fps = EventsPerSecond()
|
||||
skipped_fps = EventsPerSecond()
|
||||
stop_event = mp.Event()
|
||||
detection_frame = mp.Value('d', datetime.datetime.now().timestamp()+100000)
|
||||
current_frame = mp.Value('d', 0.0)
|
||||
ffmpeg_cmd = f"ffmpeg -hide_banner -loglevel panic -i {self.clip_path} -f rawvideo -pix_fmt rgb24 pipe:".split(" ")
|
||||
ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, self.frame_shape[0]*self.frame_shape[1]*self.frame_shape[2])
|
||||
capture_frames(ffmpeg_process, self.camera_name, self.frame_shape, self.frame_manager, self.frame_queue, 1, fps, skipped_fps, stop_event, detection_frame, current_frame)
|
||||
ffmpeg_process.wait()
|
||||
ffmpeg_process.communicate()
|
||||
|
||||
def process_frames(self, objects_to_track=['person'], object_filters={}):
|
||||
mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
|
||||
mask[:] = 255
|
||||
motion_detector = MotionDetector(self.frame_shape, mask)
|
||||
|
||||
object_detector = LocalObjectDetector(labels='/labelmap.txt')
|
||||
object_tracker = ObjectTracker(10)
|
||||
process_fps = mp.Value('d', 0.0)
|
||||
detection_fps = mp.Value('d', 0.0)
|
||||
current_frame = mp.Value('d', 0.0)
|
||||
stop_event = mp.Event()
|
||||
|
||||
process_frames(self.camera_name, self.frame_queue, self.frame_shape, self.frame_manager, motion_detector, object_detector, object_tracker, self.detected_objects_queue,
|
||||
process_fps, detection_fps, current_frame, objects_to_track, object_filters, mask, stop_event, exit_on_empty=True)
|
||||
|
||||
def objects_found(self, debug_path=None):
|
||||
obj_detected = False
|
||||
top_computed_score = 0.0
|
||||
def handle_event(name, obj):
|
||||
nonlocal obj_detected
|
||||
nonlocal top_computed_score
|
||||
if obj['computed_score'] > top_computed_score:
|
||||
top_computed_score = obj['computed_score']
|
||||
if not obj['false_positive']:
|
||||
obj_detected = True
|
||||
self.camera_state.on('new', handle_event)
|
||||
self.camera_state.on('update', handle_event)
|
||||
|
||||
while(not self.detected_objects_queue.empty()):
|
||||
camera_name, frame_time, current_tracked_objects = self.detected_objects_queue.get()
|
||||
if not debug_path is None:
|
||||
self.save_debug_frame(debug_path, frame_time, current_tracked_objects.values())
|
||||
|
||||
self.camera_state.update(frame_time, current_tracked_objects)
|
||||
for obj in self.camera_state.tracked_objects.values():
|
||||
print(f"{frame_time}: {obj['id']} - {obj['computed_score']} - {obj['score_history']}")
|
||||
|
||||
self.frame_manager.delete(self.camera_state.previous_frame_id)
|
||||
|
||||
return {
|
||||
'object_detected': obj_detected,
|
||||
'top_score': top_computed_score
|
||||
}
|
||||
|
||||
def save_debug_frame(self, debug_path, frame_time, tracked_objects):
|
||||
current_frame = self.frame_manager.get(f"{self.camera_name}{frame_time}", self.frame_shape)
|
||||
# draw the bounding boxes on the frame
|
||||
for obj in tracked_objects:
|
||||
thickness = 2
|
||||
color = (0,0,175)
|
||||
|
||||
if obj['frame_time'] != frame_time:
|
||||
thickness = 1
|
||||
color = (255,0,0)
|
||||
else:
|
||||
color = (255,255,0)
|
||||
|
||||
# draw the bounding boxes on the frame
|
||||
box = obj['box']
|
||||
draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
|
||||
# draw the regions on the frame
|
||||
region = obj['region']
|
||||
draw_box_with_label(current_frame, region[0], region[1], region[2], region[3], 'region', "", thickness=1, color=(0,255,0))
|
||||
|
||||
cv2.imwrite(f"{os.path.join(debug_path, os.path.basename(self.clip_path))}.{int(frame_time*1000000)}.jpg", cv2.cvtColor(current_frame, cv2.COLOR_RGB2BGR))
|
||||
|
||||
@click.command()
|
||||
@click.option("-p", "--path", required=True, help="Path to clip or directory to test.")
|
||||
@click.option("-l", "--label", default='person', help="Label name to detect.")
|
||||
@click.option("-t", "--threshold", default=0.85, help="Threshold value for objects.")
|
||||
@click.option("--debug-path", default=None, help="Path to output frames for debugging.")
|
||||
def process(path, label, threshold, debug_path):
|
||||
clips = []
|
||||
if os.path.isdir(path):
|
||||
files = os.listdir(path)
|
||||
files.sort()
|
||||
clips = [os.path.join(path, file) for file in files]
|
||||
elif os.path.isfile(path):
|
||||
clips.append(path)
|
||||
|
||||
config = {
|
||||
'snapshots': {
|
||||
'show_timestamp': False,
|
||||
'draw_zones': False
|
||||
},
|
||||
'zones': {},
|
||||
'objects': {
|
||||
'track': [label],
|
||||
'filters': {
|
||||
'person': {
|
||||
'threshold': threshold
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
results = []
|
||||
for c in clips:
|
||||
frame_shape = get_frame_shape(c)
|
||||
config['frame_shape'] = frame_shape
|
||||
process_clip = ProcessClip(c, frame_shape, config)
|
||||
process_clip.load_frames()
|
||||
process_clip.process_frames(objects_to_track=config['objects']['track'])
|
||||
|
||||
results.append((c, process_clip.objects_found(debug_path)))
|
||||
|
||||
for result in results:
|
||||
print(f"{result[0]}: {result[1]}")
|
||||
|
||||
positive_count = sum(1 for result in results if result[1]['object_detected'])
|
||||
print(f"Objects were detected in {positive_count}/{len(results)}({positive_count/len(results)*100:.2f}%) clip(s).")
|
||||
|
||||
if __name__ == '__main__':
|
||||
process()
|
4
run.sh
Normal file
@@ -0,0 +1,4 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
service nginx start
|
||||
exec python3 -u -m frigate
|
1
web/.dockerignore
Normal file
@@ -0,0 +1 @@
|
||||
node_modules
|
8
web/README.md
Normal file
@@ -0,0 +1,8 @@
|
||||
# Frigate Web UI
|
||||
|
||||
## Development
|
||||
|
||||
1. Build the docker images in the root of the repository `make amd64_all` (or appropriate for your system)
|
||||
2. Create a config file in `config/`
|
||||
3. Run the container: `docker run --rm --name frigate --privileged -v $PWD/config:/config:ro -v /etc/localtime:/etc/localtime:ro -p 5000:5000 frigate`
|
||||
4. Run the dev ui: `cd web && npm run start`
|
8497
web/package-lock.json
generated
Normal file
24
web/package.json
Normal file
@@ -0,0 +1,24 @@
|
||||
{
|
||||
"name": "frigate",
|
||||
"private": true,
|
||||
"scripts": {
|
||||
"start": "cross-env SNOWPACK_PUBLIC_API_HOST=http://localhost:5000 snowpack dev",
|
||||
"prebuild": "rimraf build",
|
||||
"build": "snowpack build"
|
||||
},
|
||||
"dependencies": {
|
||||
"@prefresh/snowpack": "^3.0.1",
|
||||
"@snowpack/plugin-optimize": "^0.2.13",
|
||||
"@snowpack/plugin-postcss": "^1.1.0",
|
||||
"@snowpack/plugin-webpack": "^2.3.0",
|
||||
"autoprefixer": "^10.2.1",
|
||||
"cross-env": "^7.0.3",
|
||||
"postcss": "^8.2.2",
|
||||
"postcss-cli": "^8.3.1",
|
||||
"preact": "^10.5.9",
|
||||
"preact-router": "^3.2.1",
|
||||
"rimraf": "^3.0.2",
|
||||
"snowpack": "^3.0.0",
|
||||
"tailwindcss": "^2.0.2"
|
||||
}
|
||||
}
|
8
web/postcss.config.js
Normal file
@@ -0,0 +1,8 @@
|
||||
'use strict';
|
||||
|
||||
module.exports = {
|
||||
plugins: [
|
||||
require('tailwindcss'),
|
||||
require('autoprefixer'),
|
||||
],
|
||||
};
|
BIN
web/public/android-chrome-192x192.png
Normal file
After Width: | Height: | Size: 3.1 KiB |
BIN
web/public/android-chrome-512x512.png
Normal file
After Width: | Height: | Size: 6.9 KiB |
BIN
web/public/apple-touch-icon.png
Normal file
After Width: | Height: | Size: 3.3 KiB |
BIN
web/public/favicon-16x16.png
Normal file
After Width: | Height: | Size: 558 B |
BIN
web/public/favicon-32x32.png
Normal file
After Width: | Height: | Size: 800 B |
BIN
web/public/favicon.ico
Normal file
After Width: | Height: | Size: 15 KiB |
BIN
web/public/favicon.png
Normal file
After Width: | Height: | Size: 12 KiB |
21
web/public/index.html
Normal file
@@ -0,0 +1,21 @@
|
||||
<!DOCTYPE html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
<meta charset="utf-8" />
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
||||
<link rel="icon" href="/favicon.ico" />
|
||||
<title>Frigate</title>
|
||||
<link rel="apple-touch-icon" sizes="180x180" href="/apple-touch-icon.png" />
|
||||
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png" />
|
||||
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png" />
|
||||
<link rel="manifest" href="/site.webmanifest" />
|
||||
<link rel="mask-icon" href="/safari-pinned-tab.svg" color="#3b82f7" />
|
||||
<meta name="msapplication-TileColor" content="#3b82f7" />
|
||||
<meta name="theme-color" content="#ff0000" />
|
||||
</head>
|
||||
<body>
|
||||
<div id="root"></div>
|
||||
<noscript>You need to enable JavaScript to run this app.</noscript>
|
||||
<script type="module" src="/dist/index.js"></script>
|
||||
</body>
|
||||
</html>
|
BIN
web/public/mstile-150x150.png
Normal file
After Width: | Height: | Size: 2.6 KiB |