mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-10-04 15:13:22 +08:00
Compare commits
38 Commits
live-view-
...
v0.5.0-rc6
Author | SHA1 | Date | |
---|---|---|---|
![]() |
0f66a8cb41 | ||
![]() |
04ef6ac30e | ||
![]() |
ab42a9625d | ||
![]() |
30ad0e30f8 | ||
![]() |
7bad89c9bf | ||
![]() |
f077c397f4 | ||
![]() |
cc729d83a8 | ||
![]() |
c520b81e49 | ||
![]() |
9c304391c0 | ||
![]() |
9a12b02d22 | ||
![]() |
7686c510b3 | ||
![]() |
2f5e322d3c | ||
![]() |
1cd4c12104 | ||
![]() |
1a8b034685 | ||
![]() |
da6dc03a57 | ||
![]() |
7fa3b70d2d | ||
![]() |
1fc5a2bfd4 | ||
![]() |
7e84da7dad | ||
![]() |
128be72e28 | ||
![]() |
aaddedc95c | ||
![]() |
ba919fb439 | ||
![]() |
b1d563f3c4 | ||
![]() |
204d8af5df | ||
![]() |
b507a73d79 | ||
![]() |
66eeb8b5cb | ||
![]() |
efa67067c6 | ||
![]() |
aeb036f1a4 | ||
![]() |
74c528f9dc | ||
![]() |
f2d54bec43 | ||
![]() |
f07d57741e | ||
![]() |
2c1ec19f98 | ||
![]() |
6a9027c002 | ||
![]() |
60c15e4419 | ||
![]() |
03dbf600aa | ||
![]() |
fbbb79b31b | ||
![]() |
496c6bc6c4 | ||
![]() |
869a81c944 | ||
![]() |
5b1884cfb3 |
73
Dockerfile
Normal file → Executable file
73
Dockerfile
Normal file → Executable file
@@ -4,50 +4,57 @@ LABEL maintainer "blakeb@blakeshome.com"
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
# Install packages for apt repo
|
||||
RUN apt -qq update && apt -qq install --no-install-recommends -y \
|
||||
apt-transport-https ca-certificates \
|
||||
gnupg wget \
|
||||
ffmpeg \
|
||||
python3 \
|
||||
python3-pip \
|
||||
python3-dev \
|
||||
python3-numpy \
|
||||
# python-prctl
|
||||
build-essential libcap-dev \
|
||||
# pillow-simd
|
||||
# zlib1g-dev libjpeg-dev \
|
||||
# VAAPI drivers for Intel hardware accel
|
||||
libva-drm2 libva2 i965-va-driver vainfo \
|
||||
software-properties-common \
|
||||
# apt-transport-https ca-certificates \
|
||||
build-essential \
|
||||
gnupg wget unzip \
|
||||
# libcap-dev \
|
||||
&& add-apt-repository ppa:deadsnakes/ppa -y \
|
||||
&& apt -qq install --no-install-recommends -y \
|
||||
python3.7 \
|
||||
python3.7-dev \
|
||||
python3-pip \
|
||||
ffmpeg \
|
||||
# VAAPI drivers for Intel hardware accel
|
||||
libva-drm2 libva2 i965-va-driver vainfo \
|
||||
&& python3.7 -m pip install -U wheel setuptools \
|
||||
&& python3.7 -m pip install -U \
|
||||
opencv-python-headless \
|
||||
# python-prctl \
|
||||
numpy \
|
||||
imutils \
|
||||
scipy \
|
||||
&& python3.7 -m pip install -U \
|
||||
SharedArray \
|
||||
Flask \
|
||||
paho-mqtt \
|
||||
PyYAML \
|
||||
matplotlib \
|
||||
pyarrow \
|
||||
&& echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" > /etc/apt/sources.list.d/coral-edgetpu.list \
|
||||
&& wget -q -O - https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add - \
|
||||
&& apt -qq update \
|
||||
&& echo "libedgetpu1-max libedgetpu/accepted-eula boolean true" | debconf-set-selections \
|
||||
&& apt -qq install --no-install-recommends -y \
|
||||
libedgetpu1-max \
|
||||
python3-edgetpu \
|
||||
libedgetpu1-max \
|
||||
## Tensorflow lite (python 3.7 only)
|
||||
&& wget -q https://dl.google.com/coral/python/tflite_runtime-2.1.0-cp37-cp37m-linux_x86_64.whl \
|
||||
&& python3.7 -m pip install tflite_runtime-2.1.0-cp37-cp37m-linux_x86_64.whl \
|
||||
&& rm tflite_runtime-2.1.0-cp37-cp37m-linux_x86_64.whl \
|
||||
&& rm -rf /var/lib/apt/lists/* \
|
||||
&& (apt-get autoremove -y; apt-get autoclean -y)
|
||||
|
||||
# needs to be installed before others
|
||||
RUN pip3 install -U wheel setuptools
|
||||
|
||||
RUN pip3 install -U \
|
||||
opencv-python-headless \
|
||||
python-prctl \
|
||||
Flask \
|
||||
paho-mqtt \
|
||||
PyYAML \
|
||||
matplotlib \
|
||||
scipy
|
||||
|
||||
# symlink the model and labels
|
||||
RUN wget -q https://github.com/google-coral/edgetpu/raw/master/test_data/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite -O mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite --trust-server-names
|
||||
RUN wget -q https://dl.google.com/coral/canned_models/coco_labels.txt -O coco_labels.txt --trust-server-names
|
||||
RUN ln -s mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite /frozen_inference_graph.pb
|
||||
RUN ln -s /coco_labels.txt /label_map.pbtext
|
||||
# get model and labels
|
||||
RUN wget -q https://github.com/google-coral/edgetpu/raw/master/test_data/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite -O /edgetpu_model.tflite --trust-server-names
|
||||
RUN wget -q https://dl.google.com/coral/canned_models/coco_labels.txt -O /labelmap.txt --trust-server-names
|
||||
RUN wget -q https://storage.googleapis.com/download.tensorflow.org/models/tflite/coco_ssd_mobilenet_v1_1.0_quant_2018_06_29.zip -O /cpu_model.zip && \
|
||||
unzip /cpu_model.zip detect.tflite -d / && \
|
||||
mv /detect.tflite /cpu_model.tflite && \
|
||||
rm /cpu_model.zip
|
||||
|
||||
WORKDIR /opt/frigate/
|
||||
ADD frigate frigate/
|
||||
COPY detect_objects.py .
|
||||
COPY benchmark.py .
|
||||
|
||||
CMD ["python3", "-u", "detect_objects.py"]
|
||||
CMD ["python3.7", "-u", "detect_objects.py"]
|
||||
|
87
README.md
87
README.md
@@ -1,14 +1,13 @@
|
||||
# Frigate - Realtime Object Detection for IP Cameras
|
||||
**Note:** This version requires the use of a [Google Coral USB Accelerator](https://coral.withgoogle.com/products/accelerator/)
|
||||
|
||||
Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras. Designed for integration with HomeAssistant or others via MQTT.
|
||||
|
||||
- Leverages multiprocessing and threads heavily with an emphasis on realtime over processing every frame
|
||||
- Allows you to define specific regions (squares) in the image to look for objects
|
||||
- No motion detection (for now)
|
||||
- Object detection with Tensorflow runs in a separate thread
|
||||
Use of a [Google Coral USB Accelerator](https://coral.withgoogle.com/products/accelerator/) is optional, but highly recommended. On my Intel i7 processor, I can process 2-3 FPS with the CPU. The Coral can process 100+ FPS with very low CPU load.
|
||||
|
||||
- Leverages multiprocessing heavily with an emphasis on realtime over processing every frame
|
||||
- Uses a very low overhead motion detection to determine where to run object detection
|
||||
- Object detection with Tensorflow runs in a separate process
|
||||
- Object info is published over MQTT for integration into HomeAssistant as a binary sensor
|
||||
- An endpoint is available to view an MJPEG stream for debugging
|
||||
- An endpoint is available to view an MJPEG stream for debugging, but should not be used continuously
|
||||
|
||||

|
||||
|
||||
@@ -17,32 +16,27 @@ You see multiple bounding boxes because it draws bounding boxes from all frames
|
||||
[](http://www.youtube.com/watch?v=nqHbCtyo4dY "Frigate")
|
||||
|
||||
## Getting Started
|
||||
Build the container with
|
||||
```
|
||||
docker build -t frigate .
|
||||
```
|
||||
|
||||
The `mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite` model is included and used by default. You can use your own model and labels by mounting files in the container at `/frozen_inference_graph.pb` and `/label_map.pbtext`. Models must be compatible with the Coral according to [this](https://coral.withgoogle.com/models/).
|
||||
|
||||
Run the container with
|
||||
```
|
||||
```bash
|
||||
docker run --rm \
|
||||
--privileged \
|
||||
--shm-size=512m \ # should work for a 2-3 cameras
|
||||
-v /dev/bus/usb:/dev/bus/usb \
|
||||
-v <path_to_config_dir>:/config:ro \
|
||||
-v /etc/localtime:/etc/localtime:ro \
|
||||
-p 5000:5000 \
|
||||
-e FRIGATE_RTSP_PASSWORD='password' \
|
||||
frigate:latest
|
||||
blakeblackshear/frigate:stable
|
||||
```
|
||||
|
||||
Example docker-compose:
|
||||
```
|
||||
```yaml
|
||||
frigate:
|
||||
container_name: frigate
|
||||
restart: unless-stopped
|
||||
privileged: true
|
||||
image: frigate:latest
|
||||
shm_size: '1g' # should work for 5-7 cameras
|
||||
image: blakeblackshear/frigate:stable
|
||||
volumes:
|
||||
- /dev/bus/usb:/dev/bus/usb
|
||||
- /etc/localtime:/etc/localtime:ro
|
||||
@@ -57,6 +51,8 @@ A `config.yml` file must exist in the `config` directory. See example [here](con
|
||||
|
||||
Access the mjpeg stream at `http://localhost:5000/<camera_name>` and the best snapshot for any object type with at `http://localhost:5000/<camera_name>/<object_name>/best.jpg`
|
||||
|
||||
Debug info is available at `http://localhost:5000/debug/stats`
|
||||
|
||||
## Integration with HomeAssistant
|
||||
```
|
||||
camera:
|
||||
@@ -93,30 +89,39 @@ automation:
|
||||
photo:
|
||||
- url: http://<ip>:5000/<camera_name>/person/best.jpg
|
||||
caption: A person was detected.
|
||||
|
||||
sensor:
|
||||
- platform: rest
|
||||
name: Frigate Debug
|
||||
resource: http://localhost:5000/debug/stats
|
||||
scan_interval: 5
|
||||
json_attributes:
|
||||
- back
|
||||
- coral
|
||||
value_template: 'OK'
|
||||
- platform: template
|
||||
sensors:
|
||||
back_fps:
|
||||
value_template: '{{ states.sensor.frigate_debug.attributes["back"]["fps"] }}'
|
||||
unit_of_measurement: 'FPS'
|
||||
back_skipped_fps:
|
||||
value_template: '{{ states.sensor.frigate_debug.attributes["back"]["skipped_fps"] }}'
|
||||
unit_of_measurement: 'FPS'
|
||||
back_detection_fps:
|
||||
value_template: '{{ states.sensor.frigate_debug.attributes["back"]["detection_fps"] }}'
|
||||
unit_of_measurement: 'FPS'
|
||||
frigate_coral_fps:
|
||||
value_template: '{{ states.sensor.frigate_debug.attributes["coral"]["fps"] }}'
|
||||
unit_of_measurement: 'FPS'
|
||||
frigate_coral_inference:
|
||||
value_template: '{{ states.sensor.frigate_debug.attributes["coral"]["inference_speed"] }}'
|
||||
unit_of_measurement: 'ms'
|
||||
```
|
||||
## Using a custom model
|
||||
Models for both CPU and EdgeTPU (Coral) are bundled in the image. You can use your own models with volume mounts:
|
||||
- CPU Model: `/cpu_model.tflite`
|
||||
- EdgeTPU Model: `/edgetpu_model.tflite`
|
||||
- Labels: `/labelmap.txt`
|
||||
|
||||
## Tips
|
||||
- Lower the framerate of the video feed on the camera to reduce the CPU usage for capturing the feed
|
||||
|
||||
## Future improvements
|
||||
- [x] Remove motion detection for now
|
||||
- [x] Try running object detection in a thread rather than a process
|
||||
- [x] Implement min person size again
|
||||
- [x] Switch to a config file
|
||||
- [x] Handle multiple cameras in the same container
|
||||
- [ ] Attempt to figure out coral symlinking
|
||||
- [ ] Add object list to config with min scores for mqtt
|
||||
- [ ] Move mjpeg encoding to a separate process
|
||||
- [ ] Simplify motion detection (check entire image against mask, resize instead of gaussian blur)
|
||||
- [ ] See if motion detection is even worth running
|
||||
- [ ] Scan for people across entire image rather than specfic regions
|
||||
- [ ] Dynamically resize detection area and follow people
|
||||
- [ ] Add ability to turn detection on and off via MQTT
|
||||
- [ ] Output movie clips of people for notifications, etc.
|
||||
- [ ] Integrate with homeassistant push camera
|
||||
- [ ] Merge bounding boxes that span multiple regions
|
||||
- [ ] Implement mode to save labeled objects for training
|
||||
- [ ] Try and reduce CPU usage by simplifying the tensorflow model to just include the objects we care about
|
||||
- [ ] Look into GPU accelerated decoding of RTSP stream
|
||||
- [ ] Send video over a socket and use JSMPEG
|
||||
- [x] Look into neural compute stick
|
||||
|
85
benchmark.py
Normal file → Executable file
85
benchmark.py
Normal file → Executable file
@@ -1,20 +1,79 @@
|
||||
import statistics
|
||||
import os
|
||||
from statistics import mean
|
||||
import multiprocessing as mp
|
||||
import numpy as np
|
||||
from edgetpu.detection.engine import DetectionEngine
|
||||
import datetime
|
||||
from frigate.edgetpu import ObjectDetector, EdgeTPUProcess, RemoteObjectDetector, load_labels
|
||||
|
||||
# Path to frozen detection graph. This is the actual model that is used for the object detection.
|
||||
PATH_TO_CKPT = '/frozen_inference_graph.pb'
|
||||
my_frame = np.expand_dims(np.full((300,300,3), 1, np.uint8), axis=0)
|
||||
labels = load_labels('/labelmap.txt')
|
||||
|
||||
# Load the edgetpu engine and labels
|
||||
engine = DetectionEngine(PATH_TO_CKPT)
|
||||
######
|
||||
# Minimal same process runner
|
||||
######
|
||||
# object_detector = ObjectDetector()
|
||||
# tensor_input = np.expand_dims(np.full((300,300,3), 0, np.uint8), axis=0)
|
||||
|
||||
frame = np.zeros((300,300,3), np.uint8)
|
||||
flattened_frame = np.expand_dims(frame, axis=0).flatten()
|
||||
# start = datetime.datetime.now().timestamp()
|
||||
|
||||
detection_times = []
|
||||
# frame_times = []
|
||||
# for x in range(0, 1000):
|
||||
# start_frame = datetime.datetime.now().timestamp()
|
||||
|
||||
for x in range(0, 1000):
|
||||
objects = engine.detect_with_input_tensor(flattened_frame, threshold=0.1, top_k=3)
|
||||
detection_times.append(engine.get_inference_time())
|
||||
# tensor_input[:] = my_frame
|
||||
# detections = object_detector.detect_raw(tensor_input)
|
||||
# parsed_detections = []
|
||||
# for d in detections:
|
||||
# if d[1] < 0.4:
|
||||
# break
|
||||
# parsed_detections.append((
|
||||
# labels[int(d[0])],
|
||||
# float(d[1]),
|
||||
# (d[2], d[3], d[4], d[5])
|
||||
# ))
|
||||
# frame_times.append(datetime.datetime.now().timestamp()-start_frame)
|
||||
|
||||
print("Average inference time: " + str(statistics.mean(detection_times)))
|
||||
# duration = datetime.datetime.now().timestamp()-start
|
||||
# print(f"Processed for {duration:.2f} seconds.")
|
||||
# print(f"Average frame processing time: {mean(frame_times)*1000:.2f}ms")
|
||||
|
||||
######
|
||||
# Separate process runner
|
||||
######
|
||||
def start(id, num_detections, detection_queue):
|
||||
object_detector = RemoteObjectDetector(str(id), '/labelmap.txt', detection_queue)
|
||||
start = datetime.datetime.now().timestamp()
|
||||
|
||||
frame_times = []
|
||||
for x in range(0, num_detections):
|
||||
start_frame = datetime.datetime.now().timestamp()
|
||||
detections = object_detector.detect(my_frame)
|
||||
frame_times.append(datetime.datetime.now().timestamp()-start_frame)
|
||||
|
||||
duration = datetime.datetime.now().timestamp()-start
|
||||
print(f"{id} - Processed for {duration:.2f} seconds.")
|
||||
print(f"{id} - Average frame processing time: {mean(frame_times)*1000:.2f}ms")
|
||||
|
||||
edgetpu_process = EdgeTPUProcess()
|
||||
|
||||
# start(1, 1000, edgetpu_process.detect_lock, edgetpu_process.detect_ready, edgetpu_process.frame_ready)
|
||||
|
||||
####
|
||||
# Multiple camera processes
|
||||
####
|
||||
camera_processes = []
|
||||
for x in range(0, 10):
|
||||
camera_process = mp.Process(target=start, args=(x, 100, edgetpu_process.detection_queue))
|
||||
camera_process.daemon = True
|
||||
camera_processes.append(camera_process)
|
||||
|
||||
start = datetime.datetime.now().timestamp()
|
||||
|
||||
for p in camera_processes:
|
||||
p.start()
|
||||
|
||||
for p in camera_processes:
|
||||
p.join()
|
||||
|
||||
duration = datetime.datetime.now().timestamp()-start
|
||||
print(f"Total - Processed for {duration:.2f} seconds.")
|
@@ -3,9 +3,13 @@ web_port: 5000
|
||||
mqtt:
|
||||
host: mqtt.server.com
|
||||
topic_prefix: frigate
|
||||
# client_id: frigate # Optional -- set to override default client id of 'frigate' if running multiple instances
|
||||
# user: username # Optional -- Uncomment for use
|
||||
# password: password # Optional -- Uncomment for use
|
||||
# client_id: frigate # Optional -- set to override default client id of 'frigate' if running multiple instances
|
||||
# user: username # Optional
|
||||
#################
|
||||
## Environment variables that begin with 'FRIGATE_' may be referenced in {}.
|
||||
## password: '{FRIGATE_MQTT_PASSWORD}'
|
||||
#################
|
||||
# password: password # Optional
|
||||
|
||||
#################
|
||||
# Default ffmpeg args. Optional and can be overwritten per camera.
|
||||
@@ -39,8 +43,6 @@ mqtt:
|
||||
# - -use_wallclock_as_timestamps
|
||||
# - '1'
|
||||
# output_args:
|
||||
# - -vf
|
||||
# - mpdecimate
|
||||
# - -f
|
||||
# - rawvideo
|
||||
# - -pix_fmt
|
||||
@@ -89,12 +91,15 @@ cameras:
|
||||
# width: 720
|
||||
|
||||
################
|
||||
## Optional mask. Must be the same dimensions as your video feed.
|
||||
## Optional mask. Must be the same aspect ratio as your video feed.
|
||||
##
|
||||
## The mask works by looking at the bottom center of the bounding box for the detected
|
||||
## person in the image. If that pixel in the mask is a black pixel, it ignores it as a
|
||||
## false positive. In my mask, the grass and driveway visible from my backdoor camera
|
||||
## are white. The garage doors, sky, and trees (anywhere it would be impossible for a
|
||||
## person to stand) are black.
|
||||
##
|
||||
## Masked areas are also ignored for motion detection.
|
||||
################
|
||||
# mask: back-mask.bmp
|
||||
|
||||
@@ -106,13 +111,14 @@ cameras:
|
||||
take_frame: 1
|
||||
|
||||
################
|
||||
# The number of seconds frigate will allow a camera to go without sending a frame before
|
||||
# assuming the ffmpeg process has a problem and restarting.
|
||||
# The expected framerate for the camera. Frigate will try and ensure it maintains this framerate
|
||||
# by dropping frames as necessary. Setting this lower than the actual framerate will allow frigate
|
||||
# to process every frame at the expense of realtime processing.
|
||||
################
|
||||
# watchdog_timeout: 300
|
||||
fps: 5
|
||||
|
||||
################
|
||||
# Configuration for the snapshot sent over mqtt
|
||||
# Configuration for the snapshots in the debug view and mqtt
|
||||
################
|
||||
snapshots:
|
||||
show_timestamp: True
|
||||
@@ -128,21 +134,3 @@ cameras:
|
||||
min_area: 5000
|
||||
max_area: 100000
|
||||
threshold: 0.5
|
||||
|
||||
################
|
||||
# size: size of the region in pixels
|
||||
# x_offset/y_offset: position of the upper left corner of your region (top left of image is 0,0)
|
||||
# Tips: All regions are resized to 300x300 before detection because the model is trained on that size.
|
||||
# Resizing regions takes CPU power. Ideally, all regions should be as close to 300x300 as possible.
|
||||
# Defining a region that goes outside the bounds of the image will result in errors.
|
||||
################
|
||||
regions:
|
||||
- size: 350
|
||||
x_offset: 0
|
||||
y_offset: 300
|
||||
- size: 400
|
||||
x_offset: 350
|
||||
y_offset: 250
|
||||
- size: 400
|
||||
x_offset: 750
|
||||
y_offset: 250
|
||||
|
@@ -1,14 +1,23 @@
|
||||
import os
|
||||
import cv2
|
||||
import time
|
||||
import datetime
|
||||
import queue
|
||||
import yaml
|
||||
import threading
|
||||
import multiprocessing as mp
|
||||
import subprocess as sp
|
||||
import numpy as np
|
||||
import logging
|
||||
from flask import Flask, Response, make_response, jsonify
|
||||
import paho.mqtt.client as mqtt
|
||||
|
||||
from frigate.video import Camera
|
||||
from frigate.object_detection import PreppedQueueProcessor
|
||||
from frigate.video import track_camera
|
||||
from frigate.object_processing import TrackedObjectProcessor
|
||||
from frigate.util import EventsPerSecond
|
||||
from frigate.edgetpu import EdgeTPUProcess
|
||||
|
||||
FRIGATE_VARS = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')}
|
||||
|
||||
with open('/config/config.yml') as f:
|
||||
CONFIG = yaml.safe_load(f)
|
||||
@@ -18,6 +27,8 @@ MQTT_PORT = CONFIG.get('mqtt', {}).get('port', 1883)
|
||||
MQTT_TOPIC_PREFIX = CONFIG.get('mqtt', {}).get('topic_prefix', 'frigate')
|
||||
MQTT_USER = CONFIG.get('mqtt', {}).get('user')
|
||||
MQTT_PASS = CONFIG.get('mqtt', {}).get('password')
|
||||
if not MQTT_PASS is None:
|
||||
MQTT_PASS = MQTT_PASS.format(**FRIGATE_VARS)
|
||||
MQTT_CLIENT_ID = CONFIG.get('mqtt', {}).get('client_id', 'frigate')
|
||||
|
||||
# Set the default FFmpeg config
|
||||
@@ -25,7 +36,7 @@ FFMPEG_CONFIG = CONFIG.get('ffmpeg', {})
|
||||
FFMPEG_DEFAULT_CONFIG = {
|
||||
'global_args': FFMPEG_CONFIG.get('global_args',
|
||||
['-hide_banner','-loglevel','panic']),
|
||||
'hwaccel_args': FFMPEG_CONFIG.get('hwaccel_args',
|
||||
'hwaccel_args': FFMPEG_CONFIG.get('hwaccel_args',
|
||||
[]),
|
||||
'input_args': FFMPEG_CONFIG.get('input_args',
|
||||
['-avoid_negative_ts', 'make_zero',
|
||||
@@ -38,8 +49,7 @@ FFMPEG_DEFAULT_CONFIG = {
|
||||
'-stimeout', '5000000',
|
||||
'-use_wallclock_as_timestamps', '1']),
|
||||
'output_args': FFMPEG_CONFIG.get('output_args',
|
||||
['-vf', 'mpdecimate',
|
||||
'-f', 'rawvideo',
|
||||
['-f', 'rawvideo',
|
||||
'-pix_fmt', 'rgb24'])
|
||||
}
|
||||
|
||||
@@ -48,6 +58,42 @@ GLOBAL_OBJECT_CONFIG = CONFIG.get('objects', {})
|
||||
WEB_PORT = CONFIG.get('web_port', 5000)
|
||||
DEBUG = (CONFIG.get('debug', '0') == '1')
|
||||
|
||||
class CameraWatchdog(threading.Thread):
|
||||
def __init__(self, camera_processes, config, tflite_process, tracked_objects_queue, object_processor):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera_processes = camera_processes
|
||||
self.config = config
|
||||
self.tflite_process = tflite_process
|
||||
self.tracked_objects_queue = tracked_objects_queue
|
||||
self.object_processor = object_processor
|
||||
|
||||
def run(self):
|
||||
time.sleep(10)
|
||||
while True:
|
||||
# wait a bit before checking
|
||||
time.sleep(30)
|
||||
|
||||
if (self.tflite_process.detection_start.value > 0.0 and
|
||||
datetime.datetime.now().timestamp() - self.tflite_process.detection_start.value > 10):
|
||||
print("Detection appears to be stuck. Restarting detection process")
|
||||
self.tflite_process.start_or_restart()
|
||||
time.sleep(30)
|
||||
|
||||
for name, camera_process in self.camera_processes.items():
|
||||
process = camera_process['process']
|
||||
if not process.is_alive():
|
||||
print(f"Process for {name} is not alive. Starting again...")
|
||||
camera_process['fps'].value = float(self.config[name]['fps'])
|
||||
camera_process['skipped_fps'].value = 0.0
|
||||
camera_process['detection_fps'].value = 0.0
|
||||
process = mp.Process(target=track_camera, args=(name, self.config[name], FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG,
|
||||
self.tflite_process.detection_queue, self.tracked_objects_queue,
|
||||
camera_process['fps'], camera_process['skipped_fps'], camera_process['detection_fps']))
|
||||
process.daemon = True
|
||||
camera_process['process'] = process
|
||||
process.start()
|
||||
print(f"Camera_process started for {name}: {process.pid}")
|
||||
|
||||
def main():
|
||||
# connect to mqtt and setup last will
|
||||
def on_connect(client, userdata, flags, rc):
|
||||
@@ -70,31 +116,58 @@ def main():
|
||||
client.username_pw_set(MQTT_USER, password=MQTT_PASS)
|
||||
client.connect(MQTT_HOST, MQTT_PORT, 60)
|
||||
client.loop_start()
|
||||
|
||||
# Queue for prepped frames, max size set to number of regions * 3
|
||||
prepped_frame_queue = queue.Queue()
|
||||
|
||||
cameras = {}
|
||||
# start plasma store
|
||||
plasma_cmd = ['plasma_store', '-m', '400000000', '-s', '/tmp/plasma']
|
||||
plasma_process = sp.Popen(plasma_cmd, stdout=sp.DEVNULL)
|
||||
time.sleep(1)
|
||||
rc = plasma_process.poll()
|
||||
if rc is not None:
|
||||
raise RuntimeError("plasma_store exited unexpectedly with "
|
||||
"code %d" % (rc,))
|
||||
|
||||
##
|
||||
# Setup config defaults for cameras
|
||||
##
|
||||
for name, config in CONFIG['cameras'].items():
|
||||
cameras[name] = Camera(name, FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG, config,
|
||||
prepped_frame_queue, client, MQTT_TOPIC_PREFIX)
|
||||
config['snapshots'] = {
|
||||
'show_timestamp': config.get('snapshots', {}).get('show_timestamp', True)
|
||||
}
|
||||
|
||||
fps_tracker = EventsPerSecond()
|
||||
# Queue for cameras to push tracked objects to
|
||||
tracked_objects_queue = mp.Queue()
|
||||
|
||||
# Start the shared tflite process
|
||||
tflite_process = EdgeTPUProcess()
|
||||
|
||||
prepped_queue_processor = PreppedQueueProcessor(
|
||||
cameras,
|
||||
prepped_frame_queue,
|
||||
fps_tracker
|
||||
)
|
||||
prepped_queue_processor.start()
|
||||
fps_tracker.start()
|
||||
# start the camera processes
|
||||
camera_processes = {}
|
||||
for name, config in CONFIG['cameras'].items():
|
||||
camera_processes[name] = {
|
||||
'fps': mp.Value('d', float(config['fps'])),
|
||||
'skipped_fps': mp.Value('d', 0.0),
|
||||
'detection_fps': mp.Value('d', 0.0)
|
||||
}
|
||||
camera_process = mp.Process(target=track_camera, args=(name, config, FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG,
|
||||
tflite_process.detection_queue, tracked_objects_queue,
|
||||
camera_processes[name]['fps'], camera_processes[name]['skipped_fps'], camera_processes[name]['detection_fps']))
|
||||
camera_process.daemon = True
|
||||
camera_processes[name]['process'] = camera_process
|
||||
|
||||
for name, camera in cameras.items():
|
||||
camera.start()
|
||||
print("Capture process for {}: {}".format(name, camera.get_capture_pid()))
|
||||
for name, camera_process in camera_processes.items():
|
||||
camera_process['process'].start()
|
||||
print(f"Camera_process started for {name}: {camera_process['process'].pid}")
|
||||
|
||||
object_processor = TrackedObjectProcessor(CONFIG['cameras'], client, MQTT_TOPIC_PREFIX, tracked_objects_queue)
|
||||
object_processor.start()
|
||||
|
||||
camera_watchdog = CameraWatchdog(camera_processes, CONFIG['cameras'], tflite_process, tracked_objects_queue, object_processor)
|
||||
camera_watchdog.start()
|
||||
|
||||
# create a flask app that encodes frames a mjpeg on demand
|
||||
app = Flask(__name__)
|
||||
log = logging.getLogger('werkzeug')
|
||||
log.setLevel(logging.ERROR)
|
||||
|
||||
@app.route('/')
|
||||
def ishealthy():
|
||||
@@ -103,23 +176,36 @@ def main():
|
||||
|
||||
@app.route('/debug/stats')
|
||||
def stats():
|
||||
stats = {
|
||||
'coral': {
|
||||
'fps': fps_tracker.eps(),
|
||||
'inference_speed': prepped_queue_processor.avg_inference_speed,
|
||||
'queue_length': prepped_frame_queue.qsize()
|
||||
stats = {}
|
||||
|
||||
total_detection_fps = 0
|
||||
|
||||
for name, camera_stats in camera_processes.items():
|
||||
total_detection_fps += camera_stats['detection_fps'].value
|
||||
stats[name] = {
|
||||
'fps': round(camera_stats['fps'].value, 2),
|
||||
'skipped_fps': round(camera_stats['skipped_fps'].value, 2),
|
||||
'detection_fps': round(camera_stats['detection_fps'].value, 2)
|
||||
}
|
||||
|
||||
stats['coral'] = {
|
||||
'fps': round(total_detection_fps, 2),
|
||||
'inference_speed': round(tflite_process.avg_inference_speed.value*1000, 2),
|
||||
'detection_queue': tflite_process.detection_queue.qsize(),
|
||||
'detection_start': tflite_process.detection_start.value
|
||||
}
|
||||
|
||||
for name, camera in cameras.items():
|
||||
stats[name] = camera.stats()
|
||||
rc = plasma_process.poll()
|
||||
stats['plasma_store_rc'] = rc
|
||||
|
||||
stats['tracked_objects_queue'] = tracked_objects_queue.qsize()
|
||||
|
||||
return jsonify(stats)
|
||||
|
||||
@app.route('/<camera_name>/<label>/best.jpg')
|
||||
def best(camera_name, label):
|
||||
if camera_name in cameras:
|
||||
best_frame = cameras[camera_name].get_best(label)
|
||||
if camera_name in CONFIG['cameras']:
|
||||
best_frame = object_processor.get_best(camera_name, label)
|
||||
if best_frame is None:
|
||||
best_frame = np.zeros((720,1280,3), np.uint8)
|
||||
best_frame = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR)
|
||||
@@ -132,7 +218,7 @@ def main():
|
||||
|
||||
@app.route('/<camera_name>')
|
||||
def mjpeg_feed(camera_name):
|
||||
if camera_name in cameras:
|
||||
if camera_name in CONFIG['cameras']:
|
||||
# return a multipart response
|
||||
return Response(imagestream(camera_name),
|
||||
mimetype='multipart/x-mixed-replace; boundary=frame')
|
||||
@@ -143,13 +229,19 @@ def main():
|
||||
while True:
|
||||
# max out at 1 FPS
|
||||
time.sleep(1)
|
||||
frame = cameras[camera_name].get_current_frame_with_objects()
|
||||
frame = object_processor.get_current_frame(camera_name)
|
||||
if frame is None:
|
||||
frame = np.zeros((720,1280,3), np.uint8)
|
||||
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
||||
ret, jpg = cv2.imencode('.jpg', frame)
|
||||
yield (b'--frame\r\n'
|
||||
b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n\r\n')
|
||||
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
|
||||
|
||||
app.run(host='0.0.0.0', port=WEB_PORT, debug=False)
|
||||
|
||||
camera.join()
|
||||
camera_watchdog.join()
|
||||
|
||||
plasma_process.terminate()
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
BIN
diagram.png
BIN
diagram.png
Binary file not shown.
Before Width: | Height: | Size: 283 KiB After Width: | Height: | Size: 132 KiB |
139
frigate/edgetpu.py
Normal file
139
frigate/edgetpu.py
Normal file
@@ -0,0 +1,139 @@
|
||||
import os
|
||||
import datetime
|
||||
import hashlib
|
||||
import multiprocessing as mp
|
||||
import numpy as np
|
||||
import SharedArray as sa
|
||||
import pyarrow.plasma as plasma
|
||||
import tflite_runtime.interpreter as tflite
|
||||
from tflite_runtime.interpreter import load_delegate
|
||||
from frigate.util import EventsPerSecond
|
||||
|
||||
def load_labels(path, encoding='utf-8'):
|
||||
"""Loads labels from file (with or without index numbers).
|
||||
Args:
|
||||
path: path to label file.
|
||||
encoding: label file encoding.
|
||||
Returns:
|
||||
Dictionary mapping indices to labels.
|
||||
"""
|
||||
with open(path, 'r', encoding=encoding) as f:
|
||||
lines = f.readlines()
|
||||
if not lines:
|
||||
return {}
|
||||
|
||||
if lines[0].split(' ', maxsplit=1)[0].isdigit():
|
||||
pairs = [line.split(' ', maxsplit=1) for line in lines]
|
||||
return {int(index): label.strip() for index, label in pairs}
|
||||
else:
|
||||
return {index: line.strip() for index, line in enumerate(lines)}
|
||||
|
||||
class ObjectDetector():
|
||||
def __init__(self):
|
||||
edge_tpu_delegate = None
|
||||
try:
|
||||
edge_tpu_delegate = load_delegate('libedgetpu.so.1.0')
|
||||
except ValueError:
|
||||
print("No EdgeTPU detected. Falling back to CPU.")
|
||||
|
||||
if edge_tpu_delegate is None:
|
||||
self.interpreter = tflite.Interpreter(
|
||||
model_path='/cpu_model.tflite')
|
||||
else:
|
||||
self.interpreter = tflite.Interpreter(
|
||||
model_path='/edgetpu_model.tflite',
|
||||
experimental_delegates=[edge_tpu_delegate])
|
||||
|
||||
self.interpreter.allocate_tensors()
|
||||
|
||||
self.tensor_input_details = self.interpreter.get_input_details()
|
||||
self.tensor_output_details = self.interpreter.get_output_details()
|
||||
|
||||
def detect_raw(self, tensor_input):
|
||||
self.interpreter.set_tensor(self.tensor_input_details[0]['index'], tensor_input)
|
||||
self.interpreter.invoke()
|
||||
boxes = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[0]['index']))
|
||||
label_codes = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[1]['index']))
|
||||
scores = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[2]['index']))
|
||||
|
||||
detections = np.zeros((20,6), np.float32)
|
||||
for i, score in enumerate(scores):
|
||||
detections[i] = [label_codes[i], score, boxes[i][0], boxes[i][1], boxes[i][2], boxes[i][3]]
|
||||
|
||||
return detections
|
||||
|
||||
def run_detector(detection_queue, avg_speed, start):
|
||||
print(f"Starting detection process: {os.getpid()}")
|
||||
plasma_client = plasma.connect("/tmp/plasma")
|
||||
object_detector = ObjectDetector()
|
||||
|
||||
while True:
|
||||
object_id_str = detection_queue.get()
|
||||
object_id_hash = hashlib.sha1(str.encode(object_id_str))
|
||||
object_id = plasma.ObjectID(object_id_hash.digest())
|
||||
object_id_out = plasma.ObjectID(hashlib.sha1(str.encode(f"out-{object_id_str}")).digest())
|
||||
input_frame = plasma_client.get(object_id, timeout_ms=0)
|
||||
|
||||
if input_frame is plasma.ObjectNotAvailable:
|
||||
plasma_client.put(np.zeros((20,6), np.float32), object_id_out)
|
||||
continue
|
||||
|
||||
# detect and put the output in the plasma store
|
||||
start.value = datetime.datetime.now().timestamp()
|
||||
plasma_client.put(object_detector.detect_raw(input_frame), object_id_out)
|
||||
duration = datetime.datetime.now().timestamp()-start.value
|
||||
start.value = 0.0
|
||||
|
||||
avg_speed.value = (avg_speed.value*9 + duration)/10
|
||||
|
||||
class EdgeTPUProcess():
|
||||
def __init__(self):
|
||||
self.detection_queue = mp.Queue()
|
||||
self.avg_inference_speed = mp.Value('d', 0.01)
|
||||
self.detection_start = mp.Value('d', 0.0)
|
||||
self.detect_process = None
|
||||
self.start_or_restart()
|
||||
|
||||
def start_or_restart(self):
|
||||
self.detection_start.value = 0.0
|
||||
if (not self.detect_process is None) and self.detect_process.is_alive():
|
||||
self.detect_process.terminate()
|
||||
print("Waiting for detection process to exit gracefully...")
|
||||
self.detect_process.join(timeout=30)
|
||||
if self.detect_process.exitcode is None:
|
||||
print("Detection process didnt exit. Force killing...")
|
||||
self.detect_process.kill()
|
||||
self.detect_process.join()
|
||||
self.detect_process = mp.Process(target=run_detector, args=(self.detection_queue, self.avg_inference_speed, self.detection_start))
|
||||
self.detect_process.daemon = True
|
||||
self.detect_process.start()
|
||||
|
||||
class RemoteObjectDetector():
|
||||
def __init__(self, name, labels, detection_queue):
|
||||
self.labels = load_labels(labels)
|
||||
self.name = name
|
||||
self.fps = EventsPerSecond()
|
||||
self.plasma_client = plasma.connect("/tmp/plasma")
|
||||
self.detection_queue = detection_queue
|
||||
|
||||
def detect(self, tensor_input, threshold=.4):
|
||||
detections = []
|
||||
|
||||
now = f"{self.name}-{str(datetime.datetime.now().timestamp())}"
|
||||
object_id_frame = plasma.ObjectID(hashlib.sha1(str.encode(now)).digest())
|
||||
object_id_detections = plasma.ObjectID(hashlib.sha1(str.encode(f"out-{now}")).digest())
|
||||
self.plasma_client.put(tensor_input, object_id_frame)
|
||||
self.detection_queue.put(now)
|
||||
raw_detections = self.plasma_client.get(object_id_detections)
|
||||
|
||||
for d in raw_detections:
|
||||
if d[1] < threshold:
|
||||
break
|
||||
detections.append((
|
||||
self.labels[int(d[0])],
|
||||
float(d[1]),
|
||||
(d[2], d[3], d[4], d[5])
|
||||
))
|
||||
self.plasma_client.delete([object_id_frame, object_id_detections])
|
||||
self.fps.update()
|
||||
return detections
|
79
frigate/motion.py
Normal file
79
frigate/motion.py
Normal file
@@ -0,0 +1,79 @@
|
||||
import cv2
|
||||
import imutils
|
||||
import numpy as np
|
||||
|
||||
class MotionDetector():
|
||||
def __init__(self, frame_shape, mask, resize_factor=4):
|
||||
self.resize_factor = resize_factor
|
||||
self.motion_frame_size = (int(frame_shape[0]/resize_factor), int(frame_shape[1]/resize_factor))
|
||||
self.avg_frame = np.zeros(self.motion_frame_size, np.float)
|
||||
self.avg_delta = np.zeros(self.motion_frame_size, np.float)
|
||||
self.motion_frame_count = 0
|
||||
self.frame_counter = 0
|
||||
resized_mask = cv2.resize(mask, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR)
|
||||
self.mask = np.where(resized_mask==[0])
|
||||
|
||||
def detect(self, frame):
|
||||
motion_boxes = []
|
||||
|
||||
# resize frame
|
||||
resized_frame = cv2.resize(frame, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR)
|
||||
|
||||
# convert to grayscale
|
||||
gray = cv2.cvtColor(resized_frame, cv2.COLOR_BGR2GRAY)
|
||||
|
||||
# mask frame
|
||||
gray[self.mask] = [255]
|
||||
|
||||
# it takes ~30 frames to establish a baseline
|
||||
# dont bother looking for motion
|
||||
if self.frame_counter < 30:
|
||||
self.frame_counter += 1
|
||||
else:
|
||||
# compare to average
|
||||
frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(self.avg_frame))
|
||||
|
||||
# compute the average delta over the past few frames
|
||||
# the alpha value can be modified to configure how sensitive the motion detection is.
|
||||
# higher values mean the current frame impacts the delta a lot, and a single raindrop may
|
||||
# register as motion, too low and a fast moving person wont be detected as motion
|
||||
# this also assumes that a person is in the same location across more than a single frame
|
||||
cv2.accumulateWeighted(frameDelta, self.avg_delta, 0.2)
|
||||
|
||||
# compute the threshold image for the current frame
|
||||
current_thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
|
||||
|
||||
# black out everything in the avg_delta where there isnt motion in the current frame
|
||||
avg_delta_image = cv2.convertScaleAbs(self.avg_delta)
|
||||
avg_delta_image[np.where(current_thresh==[0])] = [0]
|
||||
|
||||
# then look for deltas above the threshold, but only in areas where there is a delta
|
||||
# in the current frame. this prevents deltas from previous frames from being included
|
||||
thresh = cv2.threshold(avg_delta_image, 25, 255, cv2.THRESH_BINARY)[1]
|
||||
|
||||
# dilate the thresholded image to fill in holes, then find contours
|
||||
# on thresholded image
|
||||
thresh = cv2.dilate(thresh, None, iterations=2)
|
||||
cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
||||
cnts = imutils.grab_contours(cnts)
|
||||
|
||||
# loop over the contours
|
||||
for c in cnts:
|
||||
# if the contour is big enough, count it as motion
|
||||
contour_area = cv2.contourArea(c)
|
||||
if contour_area > 100:
|
||||
x, y, w, h = cv2.boundingRect(c)
|
||||
motion_boxes.append((x*self.resize_factor, y*self.resize_factor, (x+w)*self.resize_factor, (y+h)*self.resize_factor))
|
||||
|
||||
if len(motion_boxes) > 0:
|
||||
self.motion_frame_count += 1
|
||||
# TODO: this really depends on FPS
|
||||
if self.motion_frame_count >= 10:
|
||||
# only average in the current frame if the difference persists for at least 3 frames
|
||||
cv2.accumulateWeighted(gray, self.avg_frame, 0.2)
|
||||
else:
|
||||
# when no motion, just keep averaging the frames together
|
||||
cv2.accumulateWeighted(gray, self.avg_frame, 0.2)
|
||||
self.motion_frame_count = 0
|
||||
|
||||
return motion_boxes
|
@@ -1,54 +0,0 @@
|
||||
import json
|
||||
import cv2
|
||||
import threading
|
||||
import prctl
|
||||
from collections import Counter, defaultdict
|
||||
import itertools
|
||||
|
||||
class MqttObjectPublisher(threading.Thread):
|
||||
def __init__(self, client, topic_prefix, camera):
|
||||
threading.Thread.__init__(self)
|
||||
self.client = client
|
||||
self.topic_prefix = topic_prefix
|
||||
self.camera = camera
|
||||
|
||||
def run(self):
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
current_object_status = defaultdict(lambda: 'OFF')
|
||||
while True:
|
||||
# wait until objects have been tracked
|
||||
with self.camera.objects_tracked:
|
||||
self.camera.objects_tracked.wait()
|
||||
|
||||
# count objects with more than 2 entries in history by type
|
||||
obj_counter = Counter()
|
||||
for obj in self.camera.object_tracker.tracked_objects.values():
|
||||
if len(obj['history']) > 1:
|
||||
obj_counter[obj['name']] += 1
|
||||
|
||||
# report on detected objects
|
||||
for obj_name, count in obj_counter.items():
|
||||
new_status = 'ON' if count > 0 else 'OFF'
|
||||
if new_status != current_object_status[obj_name]:
|
||||
current_object_status[obj_name] = new_status
|
||||
self.client.publish(self.topic_prefix+'/'+obj_name, new_status, retain=False)
|
||||
# send the snapshot over mqtt if we have it as well
|
||||
if obj_name in self.camera.best_frames.best_frames:
|
||||
best_frame = cv2.cvtColor(self.camera.best_frames.best_frames[obj_name], cv2.COLOR_RGB2BGR)
|
||||
ret, jpg = cv2.imencode('.jpg', best_frame)
|
||||
if ret:
|
||||
jpg_bytes = jpg.tobytes()
|
||||
self.client.publish(self.topic_prefix+'/'+obj_name+'/snapshot', jpg_bytes, retain=True)
|
||||
|
||||
# expire any objects that are ON and no longer detected
|
||||
expired_objects = [obj_name for obj_name, status in current_object_status.items() if status == 'ON' and not obj_name in obj_counter]
|
||||
for obj_name in expired_objects:
|
||||
current_object_status[obj_name] = 'OFF'
|
||||
self.client.publish(self.topic_prefix+'/'+obj_name, 'OFF', retain=False)
|
||||
# send updated snapshot snapshot over mqtt if we have it as well
|
||||
if obj_name in self.camera.best_frames.best_frames:
|
||||
best_frame = cv2.cvtColor(self.camera.best_frames.best_frames[obj_name], cv2.COLOR_RGB2BGR)
|
||||
ret, jpg = cv2.imencode('.jpg', best_frame)
|
||||
if ret:
|
||||
jpg_bytes = jpg.tobytes()
|
||||
self.client.publish(self.topic_prefix+'/'+obj_name+'/snapshot', jpg_bytes, retain=True)
|
@@ -1,139 +0,0 @@
|
||||
import datetime
|
||||
import time
|
||||
import cv2
|
||||
import threading
|
||||
import copy
|
||||
import prctl
|
||||
import numpy as np
|
||||
from edgetpu.detection.engine import DetectionEngine
|
||||
|
||||
from frigate.util import tonumpyarray, LABELS, PATH_TO_CKPT, calculate_region
|
||||
|
||||
class PreppedQueueProcessor(threading.Thread):
|
||||
def __init__(self, cameras, prepped_frame_queue, fps):
|
||||
|
||||
threading.Thread.__init__(self)
|
||||
self.cameras = cameras
|
||||
self.prepped_frame_queue = prepped_frame_queue
|
||||
|
||||
# Load the edgetpu engine and labels
|
||||
self.engine = DetectionEngine(PATH_TO_CKPT)
|
||||
self.labels = LABELS
|
||||
self.fps = fps
|
||||
self.avg_inference_speed = 10
|
||||
|
||||
def run(self):
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
# process queue...
|
||||
while True:
|
||||
frame = self.prepped_frame_queue.get()
|
||||
|
||||
# Actual detection.
|
||||
frame['detected_objects'] = self.engine.detect_with_input_tensor(frame['frame'], threshold=0.2, top_k=5)
|
||||
self.fps.update()
|
||||
self.avg_inference_speed = (self.avg_inference_speed*9 + self.engine.get_inference_time())/10
|
||||
|
||||
self.cameras[frame['camera_name']].detected_objects_queue.put(frame)
|
||||
|
||||
class RegionRequester(threading.Thread):
|
||||
def __init__(self, camera):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera = camera
|
||||
|
||||
def run(self):
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
frame_time = 0.0
|
||||
while True:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
|
||||
with self.camera.frame_ready:
|
||||
# if there isnt a frame ready for processing or it is old, wait for a new frame
|
||||
if self.camera.frame_time.value == frame_time or (now - self.camera.frame_time.value) > 0.5:
|
||||
self.camera.frame_ready.wait()
|
||||
|
||||
# make a copy of the frame_time
|
||||
frame_time = self.camera.frame_time.value
|
||||
|
||||
# grab the current tracked objects
|
||||
with self.camera.object_tracker.tracked_objects_lock:
|
||||
tracked_objects = copy.deepcopy(self.camera.object_tracker.tracked_objects).values()
|
||||
|
||||
with self.camera.regions_in_process_lock:
|
||||
self.camera.regions_in_process[frame_time] = len(self.camera.config['regions'])
|
||||
self.camera.regions_in_process[frame_time] += len(tracked_objects)
|
||||
|
||||
for index, region in enumerate(self.camera.config['regions']):
|
||||
self.camera.resize_queue.put({
|
||||
'camera_name': self.camera.name,
|
||||
'frame_time': frame_time,
|
||||
'region_id': index,
|
||||
'size': region['size'],
|
||||
'x_offset': region['x_offset'],
|
||||
'y_offset': region['y_offset']
|
||||
})
|
||||
|
||||
# request a region for tracked objects
|
||||
for tracked_object in tracked_objects:
|
||||
box = tracked_object['box']
|
||||
# calculate a new region that will hopefully get the entire object
|
||||
(size, x_offset, y_offset) = calculate_region(self.camera.frame_shape,
|
||||
box['xmin'], box['ymin'],
|
||||
box['xmax'], box['ymax'])
|
||||
|
||||
self.camera.resize_queue.put({
|
||||
'camera_name': self.camera.name,
|
||||
'frame_time': frame_time,
|
||||
'region_id': -1,
|
||||
'size': size,
|
||||
'x_offset': x_offset,
|
||||
'y_offset': y_offset
|
||||
})
|
||||
|
||||
|
||||
class RegionPrepper(threading.Thread):
|
||||
def __init__(self, camera, frame_cache, resize_request_queue, prepped_frame_queue):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera = camera
|
||||
self.frame_cache = frame_cache
|
||||
self.resize_request_queue = resize_request_queue
|
||||
self.prepped_frame_queue = prepped_frame_queue
|
||||
|
||||
def run(self):
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
while True:
|
||||
|
||||
resize_request = self.resize_request_queue.get()
|
||||
|
||||
# if the queue is over 100 items long, only prep dynamic regions
|
||||
if resize_request['region_id'] != -1 and self.prepped_frame_queue.qsize() > 100:
|
||||
with self.camera.regions_in_process_lock:
|
||||
self.camera.regions_in_process[resize_request['frame_time']] -= 1
|
||||
if self.camera.regions_in_process[resize_request['frame_time']] == 0:
|
||||
del self.camera.regions_in_process[resize_request['frame_time']]
|
||||
self.camera.skipped_region_tracker.update()
|
||||
continue
|
||||
|
||||
frame = self.frame_cache.get(resize_request['frame_time'], None)
|
||||
|
||||
if frame is None:
|
||||
print("RegionPrepper: frame_time not in frame_cache")
|
||||
with self.camera.regions_in_process_lock:
|
||||
self.camera.regions_in_process[resize_request['frame_time']] -= 1
|
||||
if self.camera.regions_in_process[resize_request['frame_time']] == 0:
|
||||
del self.camera.regions_in_process[resize_request['frame_time']]
|
||||
self.camera.skipped_region_tracker.update()
|
||||
continue
|
||||
|
||||
# make a copy of the region
|
||||
cropped_frame = frame[resize_request['y_offset']:resize_request['y_offset']+resize_request['size'], resize_request['x_offset']:resize_request['x_offset']+resize_request['size']].copy()
|
||||
|
||||
# Resize to 300x300 if needed
|
||||
if cropped_frame.shape != (300, 300, 3):
|
||||
# TODO: use Pillow-SIMD?
|
||||
cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
|
||||
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
|
||||
frame_expanded = np.expand_dims(cropped_frame, axis=0)
|
||||
|
||||
# add the frame to the queue
|
||||
resize_request['frame'] = frame_expanded.flatten().copy()
|
||||
self.prepped_frame_queue.put(resize_request)
|
149
frigate/object_processing.py
Normal file
149
frigate/object_processing.py
Normal file
@@ -0,0 +1,149 @@
|
||||
import json
|
||||
import hashlib
|
||||
import datetime
|
||||
import copy
|
||||
import cv2
|
||||
import threading
|
||||
import numpy as np
|
||||
from collections import Counter, defaultdict
|
||||
import itertools
|
||||
import pyarrow.plasma as plasma
|
||||
import SharedArray as sa
|
||||
import matplotlib.pyplot as plt
|
||||
from frigate.util import draw_box_with_label
|
||||
from frigate.edgetpu import load_labels
|
||||
|
||||
PATH_TO_LABELS = '/labelmap.txt'
|
||||
|
||||
LABELS = load_labels(PATH_TO_LABELS)
|
||||
cmap = plt.cm.get_cmap('tab10', len(LABELS.keys()))
|
||||
|
||||
COLOR_MAP = {}
|
||||
for key, val in LABELS.items():
|
||||
COLOR_MAP[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3])
|
||||
|
||||
class TrackedObjectProcessor(threading.Thread):
|
||||
def __init__(self, config, client, topic_prefix, tracked_objects_queue):
|
||||
threading.Thread.__init__(self)
|
||||
self.config = config
|
||||
self.client = client
|
||||
self.topic_prefix = topic_prefix
|
||||
self.tracked_objects_queue = tracked_objects_queue
|
||||
self.plasma_client = plasma.connect("/tmp/plasma")
|
||||
self.camera_data = defaultdict(lambda: {
|
||||
'best_objects': {},
|
||||
'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')),
|
||||
'tracked_objects': {},
|
||||
'current_frame': np.zeros((720,1280,3), np.uint8),
|
||||
'object_id': None
|
||||
})
|
||||
|
||||
def get_best(self, camera, label):
|
||||
if label in self.camera_data[camera]['best_objects']:
|
||||
return self.camera_data[camera]['best_objects'][label]['frame']
|
||||
else:
|
||||
return None
|
||||
|
||||
def get_current_frame(self, camera):
|
||||
return self.camera_data[camera]['current_frame']
|
||||
|
||||
def run(self):
|
||||
while True:
|
||||
camera, frame_time, tracked_objects = self.tracked_objects_queue.get()
|
||||
|
||||
config = self.config[camera]
|
||||
best_objects = self.camera_data[camera]['best_objects']
|
||||
current_object_status = self.camera_data[camera]['object_status']
|
||||
self.camera_data[camera]['tracked_objects'] = tracked_objects
|
||||
|
||||
###
|
||||
# Draw tracked objects on the frame
|
||||
###
|
||||
object_id_hash = hashlib.sha1(str.encode(f"{camera}{frame_time}"))
|
||||
object_id_bytes = object_id_hash.digest()
|
||||
object_id = plasma.ObjectID(object_id_bytes)
|
||||
current_frame = self.plasma_client.get(object_id, timeout_ms=0)
|
||||
|
||||
if not current_frame is plasma.ObjectNotAvailable:
|
||||
# draw the bounding boxes on the frame
|
||||
for obj in tracked_objects.values():
|
||||
thickness = 2
|
||||
color = COLOR_MAP[obj['label']]
|
||||
|
||||
if obj['frame_time'] != frame_time:
|
||||
thickness = 1
|
||||
color = (255,0,0)
|
||||
|
||||
# draw the bounding boxes on the frame
|
||||
box = obj['box']
|
||||
draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
|
||||
# draw the regions on the frame
|
||||
region = obj['region']
|
||||
cv2.rectangle(current_frame, (region[0], region[1]), (region[2], region[3]), (0,255,0), 1)
|
||||
|
||||
if config['snapshots']['show_timestamp']:
|
||||
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
|
||||
cv2.putText(current_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
|
||||
|
||||
###
|
||||
# Set the current frame as ready
|
||||
###
|
||||
self.camera_data[camera]['current_frame'] = current_frame
|
||||
|
||||
# store the object id, so you can delete it at the next loop
|
||||
previous_object_id = self.camera_data[camera]['object_id']
|
||||
if not previous_object_id is None:
|
||||
self.plasma_client.delete([previous_object_id])
|
||||
self.camera_data[camera]['object_id'] = object_id
|
||||
|
||||
###
|
||||
# Maintain the highest scoring recent object and frame for each label
|
||||
###
|
||||
for obj in tracked_objects.values():
|
||||
# if the object wasn't seen on the current frame, skip it
|
||||
if obj['frame_time'] != frame_time:
|
||||
continue
|
||||
if obj['label'] in best_objects:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
# if the object is a higher score than the current best score
|
||||
# or the current object is more than 1 minute old, use the new object
|
||||
if obj['score'] > best_objects[obj['label']]['score'] or (now - best_objects[obj['label']]['frame_time']) > 60:
|
||||
obj['frame'] = np.copy(self.camera_data[camera]['current_frame'])
|
||||
best_objects[obj['label']] = obj
|
||||
else:
|
||||
obj['frame'] = np.copy(self.camera_data[camera]['current_frame'])
|
||||
best_objects[obj['label']] = obj
|
||||
|
||||
###
|
||||
# Report over MQTT
|
||||
###
|
||||
# count objects with more than 2 entries in history by type
|
||||
obj_counter = Counter()
|
||||
for obj in tracked_objects.values():
|
||||
if len(obj['history']) > 1:
|
||||
obj_counter[obj['label']] += 1
|
||||
|
||||
# report on detected objects
|
||||
for obj_name, count in obj_counter.items():
|
||||
new_status = 'ON' if count > 0 else 'OFF'
|
||||
if new_status != current_object_status[obj_name]:
|
||||
current_object_status[obj_name] = new_status
|
||||
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}", new_status, retain=False)
|
||||
# send the best snapshot over mqtt
|
||||
best_frame = cv2.cvtColor(best_objects[obj_name]['frame'], cv2.COLOR_RGB2BGR)
|
||||
ret, jpg = cv2.imencode('.jpg', best_frame)
|
||||
if ret:
|
||||
jpg_bytes = jpg.tobytes()
|
||||
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True)
|
||||
|
||||
# expire any objects that are ON and no longer detected
|
||||
expired_objects = [obj_name for obj_name, status in current_object_status.items() if status == 'ON' and not obj_name in obj_counter]
|
||||
for obj_name in expired_objects:
|
||||
current_object_status[obj_name] = 'OFF'
|
||||
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}", 'OFF', retain=False)
|
||||
# send updated snapshot over mqtt
|
||||
best_frame = cv2.cvtColor(best_objects[obj_name]['frame'], cv2.COLOR_RGB2BGR)
|
||||
ret, jpg = cv2.imencode('.jpg', best_frame)
|
||||
if ret:
|
||||
jpg_bytes = jpg.tobytes()
|
||||
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True)
|
@@ -2,277 +2,34 @@ import time
|
||||
import datetime
|
||||
import threading
|
||||
import cv2
|
||||
import prctl
|
||||
import itertools
|
||||
import copy
|
||||
import numpy as np
|
||||
import multiprocessing as mp
|
||||
from collections import defaultdict
|
||||
from scipy.spatial import distance as dist
|
||||
from frigate.util import draw_box_with_label, LABELS, compute_intersection_rectangle, compute_intersection_over_union, calculate_region
|
||||
from frigate.util import draw_box_with_label, calculate_region
|
||||
|
||||
class ObjectCleaner(threading.Thread):
|
||||
def __init__(self, camera):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera = camera
|
||||
|
||||
def run(self):
|
||||
prctl.set_name("ObjectCleaner")
|
||||
while True:
|
||||
|
||||
# wait a bit before checking for expired frames
|
||||
time.sleep(0.2)
|
||||
|
||||
for frame_time in list(self.camera.detected_objects.keys()).copy():
|
||||
if not frame_time in self.camera.frame_cache:
|
||||
del self.camera.detected_objects[frame_time]
|
||||
|
||||
objects_deregistered = False
|
||||
with self.camera.object_tracker.tracked_objects_lock:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
for id, obj in list(self.camera.object_tracker.tracked_objects.items()):
|
||||
# if the object is more than 10 seconds old
|
||||
# and not in the most recent frame, deregister
|
||||
if (now - obj['frame_time']) > 10 and self.camera.object_tracker.most_recent_frame_time > obj['frame_time']:
|
||||
self.camera.object_tracker.deregister(id)
|
||||
objects_deregistered = True
|
||||
|
||||
if objects_deregistered:
|
||||
with self.camera.objects_tracked:
|
||||
self.camera.objects_tracked.notify_all()
|
||||
|
||||
class DetectedObjectsProcessor(threading.Thread):
|
||||
def __init__(self, camera):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera = camera
|
||||
|
||||
def run(self):
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
while True:
|
||||
frame = self.camera.detected_objects_queue.get()
|
||||
|
||||
objects = frame['detected_objects']
|
||||
|
||||
for raw_obj in objects:
|
||||
name = str(LABELS[raw_obj.label_id])
|
||||
|
||||
if not name in self.camera.objects_to_track:
|
||||
continue
|
||||
|
||||
obj = {
|
||||
'name': name,
|
||||
'score': float(raw_obj.score),
|
||||
'box': {
|
||||
'xmin': int((raw_obj.bounding_box[0][0] * frame['size']) + frame['x_offset']),
|
||||
'ymin': int((raw_obj.bounding_box[0][1] * frame['size']) + frame['y_offset']),
|
||||
'xmax': int((raw_obj.bounding_box[1][0] * frame['size']) + frame['x_offset']),
|
||||
'ymax': int((raw_obj.bounding_box[1][1] * frame['size']) + frame['y_offset'])
|
||||
},
|
||||
'region': {
|
||||
'xmin': frame['x_offset'],
|
||||
'ymin': frame['y_offset'],
|
||||
'xmax': frame['x_offset']+frame['size'],
|
||||
'ymax': frame['y_offset']+frame['size']
|
||||
},
|
||||
'frame_time': frame['frame_time'],
|
||||
'region_id': frame['region_id']
|
||||
}
|
||||
|
||||
# if the object is within 5 pixels of the region border, and the region is not on the edge
|
||||
# consider the object to be clipped
|
||||
obj['clipped'] = False
|
||||
if ((obj['region']['xmin'] > 5 and obj['box']['xmin']-obj['region']['xmin'] <= 5) or
|
||||
(obj['region']['ymin'] > 5 and obj['box']['ymin']-obj['region']['ymin'] <= 5) or
|
||||
(self.camera.frame_shape[1]-obj['region']['xmax'] > 5 and obj['region']['xmax']-obj['box']['xmax'] <= 5) or
|
||||
(self.camera.frame_shape[0]-obj['region']['ymax'] > 5 and obj['region']['ymax']-obj['box']['ymax'] <= 5)):
|
||||
obj['clipped'] = True
|
||||
|
||||
# Compute the area
|
||||
# TODO: +1 right?
|
||||
obj['area'] = (obj['box']['xmax']-obj['box']['xmin'])*(obj['box']['ymax']-obj['box']['ymin'])
|
||||
|
||||
self.camera.detected_objects[frame['frame_time']].append(obj)
|
||||
|
||||
# TODO: use in_process and processed counts instead to avoid lock
|
||||
with self.camera.regions_in_process_lock:
|
||||
if frame['frame_time'] in self.camera.regions_in_process:
|
||||
self.camera.regions_in_process[frame['frame_time']] -= 1
|
||||
# print(f"{frame['frame_time']} remaining regions {self.camera.regions_in_process[frame['frame_time']]}")
|
||||
|
||||
if self.camera.regions_in_process[frame['frame_time']] == 0:
|
||||
del self.camera.regions_in_process[frame['frame_time']]
|
||||
# print(f"{frame['frame_time']} no remaining regions")
|
||||
self.camera.finished_frame_queue.put(frame['frame_time'])
|
||||
else:
|
||||
self.camera.finished_frame_queue.put(frame['frame_time'])
|
||||
|
||||
# Thread that checks finished frames for clipped objects and sends back
|
||||
# for processing if needed
|
||||
# TODO: evaluate whether or not i really need separate threads/queues for each step
|
||||
# given that only 1 thread will really be able to run at a time. you need a
|
||||
# separate process to actually do things in parallel for when you are CPU bound.
|
||||
# threads are good when you are waiting and could be processing while you wait
|
||||
class RegionRefiner(threading.Thread):
|
||||
def __init__(self, camera):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera = camera
|
||||
|
||||
def run(self):
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
while True:
|
||||
frame_time = self.camera.finished_frame_queue.get()
|
||||
|
||||
detected_objects = self.camera.detected_objects[frame_time].copy()
|
||||
# print(f"{frame_time} finished")
|
||||
|
||||
# group by name
|
||||
detected_object_groups = defaultdict(lambda: [])
|
||||
for obj in detected_objects:
|
||||
detected_object_groups[obj['name']].append(obj)
|
||||
|
||||
look_again = False
|
||||
selected_objects = []
|
||||
for group in detected_object_groups.values():
|
||||
|
||||
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
|
||||
boxes = [(o['box']['xmin'], o['box']['ymin'], o['box']['xmax']-o['box']['xmin'], o['box']['ymax']-o['box']['ymin'])
|
||||
for o in group]
|
||||
confidences = [o['score'] for o in group]
|
||||
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
|
||||
|
||||
for index in idxs:
|
||||
obj = group[index[0]]
|
||||
selected_objects.append(obj)
|
||||
if obj['clipped']:
|
||||
box = obj['box']
|
||||
# calculate a new region that will hopefully get the entire object
|
||||
(size, x_offset, y_offset) = calculate_region(self.camera.frame_shape,
|
||||
box['xmin'], box['ymin'],
|
||||
box['xmax'], box['ymax'])
|
||||
# print(f"{frame_time} new region: {size} {x_offset} {y_offset}")
|
||||
|
||||
with self.camera.regions_in_process_lock:
|
||||
if not frame_time in self.camera.regions_in_process:
|
||||
self.camera.regions_in_process[frame_time] = 1
|
||||
else:
|
||||
self.camera.regions_in_process[frame_time] += 1
|
||||
|
||||
# add it to the queue
|
||||
self.camera.resize_queue.put({
|
||||
'camera_name': self.camera.name,
|
||||
'frame_time': frame_time,
|
||||
'region_id': -1,
|
||||
'size': size,
|
||||
'x_offset': x_offset,
|
||||
'y_offset': y_offset
|
||||
})
|
||||
self.camera.dynamic_region_fps.update()
|
||||
look_again = True
|
||||
|
||||
# if we are looking again, then this frame is not ready for processing
|
||||
if look_again:
|
||||
# remove the clipped objects
|
||||
self.camera.detected_objects[frame_time] = [o for o in selected_objects if not o['clipped']]
|
||||
continue
|
||||
|
||||
# filter objects based on camera settings
|
||||
selected_objects = [o for o in selected_objects if not self.filtered(o)]
|
||||
|
||||
self.camera.detected_objects[frame_time] = selected_objects
|
||||
|
||||
# print(f"{frame_time} is actually finished")
|
||||
|
||||
# keep adding frames to the refined queue as long as they are finished
|
||||
with self.camera.regions_in_process_lock:
|
||||
while self.camera.frame_queue.qsize() > 0 and self.camera.frame_queue.queue[0] not in self.camera.regions_in_process:
|
||||
self.camera.last_processed_frame = self.camera.frame_queue.get()
|
||||
self.camera.refined_frame_queue.put(self.camera.last_processed_frame)
|
||||
|
||||
def filtered(self, obj):
|
||||
object_name = obj['name']
|
||||
|
||||
if object_name in self.camera.object_filters:
|
||||
obj_settings = self.camera.object_filters[object_name]
|
||||
|
||||
# if the min area is larger than the
|
||||
# detected object, don't add it to detected objects
|
||||
if obj_settings.get('min_area',-1) > obj['area']:
|
||||
return True
|
||||
|
||||
# if the detected object is larger than the
|
||||
# max area, don't add it to detected objects
|
||||
if obj_settings.get('max_area', self.camera.frame_shape[0]*self.camera.frame_shape[1]) < obj['area']:
|
||||
return True
|
||||
|
||||
# if the score is lower than the threshold, skip
|
||||
if obj_settings.get('threshold', 0) > obj['score']:
|
||||
return True
|
||||
|
||||
# compute the coordinates of the object and make sure
|
||||
# the location isnt outside the bounds of the image (can happen from rounding)
|
||||
y_location = min(int(obj['box']['ymax']), len(self.camera.mask)-1)
|
||||
x_location = min(int((obj['box']['xmax']-obj['box']['xmin'])/2.0)+obj['box']['xmin'], len(self.camera.mask[0])-1)
|
||||
|
||||
# if the object is in a masked location, don't add it to detected objects
|
||||
if self.camera.mask[y_location][x_location] == [0]:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
def has_overlap(self, new_obj, obj, overlap=.7):
|
||||
# compute intersection rectangle with existing object and new objects region
|
||||
existing_obj_current_region = compute_intersection_rectangle(obj['box'], new_obj['region'])
|
||||
|
||||
# compute intersection rectangle with new object and existing objects region
|
||||
new_obj_existing_region = compute_intersection_rectangle(new_obj['box'], obj['region'])
|
||||
|
||||
# compute iou for the two intersection rectangles that were just computed
|
||||
iou = compute_intersection_over_union(existing_obj_current_region, new_obj_existing_region)
|
||||
|
||||
# if intersection is greater than overlap
|
||||
if iou > overlap:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
def find_group(self, new_obj, groups):
|
||||
for index, group in enumerate(groups):
|
||||
for obj in group:
|
||||
if self.has_overlap(new_obj, obj):
|
||||
return index
|
||||
return None
|
||||
|
||||
class ObjectTracker(threading.Thread):
|
||||
def __init__(self, camera, max_disappeared):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera = camera
|
||||
class ObjectTracker():
|
||||
def __init__(self, max_disappeared):
|
||||
self.tracked_objects = {}
|
||||
self.tracked_objects_lock = mp.Lock()
|
||||
self.most_recent_frame_time = None
|
||||
|
||||
def run(self):
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
while True:
|
||||
frame_time = self.camera.refined_frame_queue.get()
|
||||
with self.tracked_objects_lock:
|
||||
self.match_and_update(self.camera.detected_objects[frame_time])
|
||||
self.most_recent_frame_time = frame_time
|
||||
self.camera.frame_output_queue.put((frame_time, copy.deepcopy(self.tracked_objects)))
|
||||
if len(self.tracked_objects) > 0:
|
||||
with self.camera.objects_tracked:
|
||||
self.camera.objects_tracked.notify_all()
|
||||
self.disappeared = {}
|
||||
self.max_disappeared = max_disappeared
|
||||
|
||||
def register(self, index, obj):
|
||||
id = "{}-{}".format(str(obj['frame_time']), index)
|
||||
id = f"{obj['frame_time']}-{index}"
|
||||
obj['id'] = id
|
||||
obj['top_score'] = obj['score']
|
||||
self.add_history(obj)
|
||||
self.tracked_objects[id] = obj
|
||||
self.disappeared[id] = 0
|
||||
|
||||
def deregister(self, id):
|
||||
del self.tracked_objects[id]
|
||||
del self.disappeared[id]
|
||||
|
||||
def update(self, id, new_obj):
|
||||
self.disappeared[id] = 0
|
||||
self.tracked_objects[id].update(new_obj)
|
||||
self.add_history(self.tracked_objects[id])
|
||||
if self.tracked_objects[id]['score'] > self.tracked_objects[id]['top_score']:
|
||||
@@ -291,25 +48,41 @@ class ObjectTracker(threading.Thread):
|
||||
else:
|
||||
obj['history'] = [entry]
|
||||
|
||||
def match_and_update(self, new_objects):
|
||||
if len(new_objects) == 0:
|
||||
return
|
||||
|
||||
def match_and_update(self, frame_time, new_objects):
|
||||
# group by name
|
||||
new_object_groups = defaultdict(lambda: [])
|
||||
for obj in new_objects:
|
||||
new_object_groups[obj['name']].append(obj)
|
||||
new_object_groups[obj[0]].append({
|
||||
'label': obj[0],
|
||||
'score': obj[1],
|
||||
'box': obj[2],
|
||||
'area': obj[3],
|
||||
'region': obj[4],
|
||||
'frame_time': frame_time
|
||||
})
|
||||
|
||||
# update any tracked objects with labels that are not
|
||||
# seen in the current objects and deregister if needed
|
||||
for obj in list(self.tracked_objects.values()):
|
||||
if not obj['label'] in new_object_groups:
|
||||
if self.disappeared[obj['id']] >= self.max_disappeared:
|
||||
self.deregister(obj['id'])
|
||||
else:
|
||||
self.disappeared[obj['id']] += 1
|
||||
|
||||
if len(new_objects) == 0:
|
||||
return
|
||||
|
||||
# track objects for each label type
|
||||
for label, group in new_object_groups.items():
|
||||
current_objects = [o for o in self.tracked_objects.values() if o['name'] == label]
|
||||
current_objects = [o for o in self.tracked_objects.values() if o['label'] == label]
|
||||
current_ids = [o['id'] for o in current_objects]
|
||||
current_centroids = np.array([o['centroid'] for o in current_objects])
|
||||
|
||||
# compute centroids of new objects
|
||||
for obj in group:
|
||||
centroid_x = int((obj['box']['xmin']+obj['box']['xmax']) / 2.0)
|
||||
centroid_y = int((obj['box']['ymin']+obj['box']['ymax']) / 2.0)
|
||||
centroid_x = int((obj['box'][0]+obj['box'][2]) / 2.0)
|
||||
centroid_y = int((obj['box'][1]+obj['box'][3]) / 2.0)
|
||||
obj['centroid'] = (centroid_x, centroid_y)
|
||||
|
||||
if len(current_objects) == 0:
|
||||
@@ -363,56 +136,24 @@ class ObjectTracker(threading.Thread):
|
||||
usedCols.add(col)
|
||||
|
||||
# compute the column index we have NOT yet examined
|
||||
unusedRows = set(range(0, D.shape[0])).difference(usedRows)
|
||||
unusedCols = set(range(0, D.shape[1])).difference(usedCols)
|
||||
|
||||
# in the event that the number of object centroids is
|
||||
# equal or greater than the number of input centroids
|
||||
# we need to check and see if some of these objects have
|
||||
# potentially disappeared
|
||||
if D.shape[0] >= D.shape[1]:
|
||||
for row in unusedRows:
|
||||
id = current_ids[row]
|
||||
|
||||
if self.disappeared[id] >= self.max_disappeared:
|
||||
self.deregister(id)
|
||||
else:
|
||||
self.disappeared[id] += 1
|
||||
# if the number of input centroids is greater
|
||||
# than the number of existing object centroids we need to
|
||||
# register each new input centroid as a trackable object
|
||||
# if D.shape[0] < D.shape[1]:
|
||||
# TODO: rather than assuming these are new objects, we could
|
||||
# look to see if any of the remaining boxes have a large amount
|
||||
# of overlap...
|
||||
for col in unusedCols:
|
||||
self.register(col, group[col])
|
||||
|
||||
# Maintains the frame and object with the highest score
|
||||
class BestFrames(threading.Thread):
|
||||
def __init__(self, camera):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera = camera
|
||||
self.best_objects = {}
|
||||
self.best_frames = {}
|
||||
|
||||
def run(self):
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
while True:
|
||||
# wait until objects have been tracked
|
||||
with self.camera.objects_tracked:
|
||||
self.camera.objects_tracked.wait()
|
||||
|
||||
# make a copy of tracked objects
|
||||
tracked_objects = list(self.camera.object_tracker.tracked_objects.values())
|
||||
|
||||
for obj in tracked_objects:
|
||||
if obj['name'] in self.best_objects:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
# if the object is a higher score than the current best score
|
||||
# or the current object is more than 1 minute old, use the new object
|
||||
if obj['score'] > self.best_objects[obj['name']]['score'] or (now - self.best_objects[obj['name']]['frame_time']) > 60:
|
||||
self.best_objects[obj['name']] = copy.deepcopy(obj)
|
||||
else:
|
||||
self.best_objects[obj['name']] = copy.deepcopy(obj)
|
||||
|
||||
for name, obj in self.best_objects.items():
|
||||
if obj['frame_time'] in self.camera.frame_cache:
|
||||
best_frame = self.camera.frame_cache[obj['frame_time']]
|
||||
|
||||
draw_box_with_label(best_frame, obj['box']['xmin'], obj['box']['ymin'],
|
||||
obj['box']['xmax'], obj['box']['ymax'], obj['name'], "{}% {}".format(int(obj['score']*100), obj['area']))
|
||||
|
||||
# print a timestamp
|
||||
if self.camera.snapshot_config['show_timestamp']:
|
||||
time_to_show = datetime.datetime.fromtimestamp(obj['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
|
||||
cv2.putText(best_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
|
||||
|
||||
self.best_frames[name] = best_frame
|
||||
else:
|
||||
for col in unusedCols:
|
||||
self.register(col, group[col])
|
||||
|
166
frigate/util.py
Normal file → Executable file
166
frigate/util.py
Normal file → Executable file
@@ -5,83 +5,11 @@ import cv2
|
||||
import threading
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# Function to read labels from text files.
|
||||
def ReadLabelFile(file_path):
|
||||
with open(file_path, 'r') as f:
|
||||
lines = f.readlines()
|
||||
ret = {}
|
||||
for line in lines:
|
||||
pair = line.strip().split(maxsplit=1)
|
||||
ret[int(pair[0])] = pair[1].strip()
|
||||
return ret
|
||||
|
||||
def calculate_region(frame_shape, xmin, ymin, xmax, ymax):
|
||||
# size is larger than longest edge
|
||||
size = int(max(xmax-xmin, ymax-ymin)*2)
|
||||
# if the size is too big to fit in the frame
|
||||
if size > min(frame_shape[0], frame_shape[1]):
|
||||
size = min(frame_shape[0], frame_shape[1])
|
||||
|
||||
# x_offset is midpoint of bounding box minus half the size
|
||||
x_offset = int((xmax-xmin)/2.0+xmin-size/2.0)
|
||||
# if outside the image
|
||||
if x_offset < 0:
|
||||
x_offset = 0
|
||||
elif x_offset > (frame_shape[1]-size):
|
||||
x_offset = (frame_shape[1]-size)
|
||||
|
||||
# y_offset is midpoint of bounding box minus half the size
|
||||
y_offset = int((ymax-ymin)/2.0+ymin-size/2.0)
|
||||
# if outside the image
|
||||
if y_offset < 0:
|
||||
y_offset = 0
|
||||
elif y_offset > (frame_shape[0]-size):
|
||||
y_offset = (frame_shape[0]-size)
|
||||
|
||||
return (size, x_offset, y_offset)
|
||||
|
||||
def compute_intersection_rectangle(box_a, box_b):
|
||||
return {
|
||||
'xmin': max(box_a['xmin'], box_b['xmin']),
|
||||
'ymin': max(box_a['ymin'], box_b['ymin']),
|
||||
'xmax': min(box_a['xmax'], box_b['xmax']),
|
||||
'ymax': min(box_a['ymax'], box_b['ymax'])
|
||||
}
|
||||
|
||||
def compute_intersection_over_union(box_a, box_b):
|
||||
# determine the (x, y)-coordinates of the intersection rectangle
|
||||
intersect = compute_intersection_rectangle(box_a, box_b)
|
||||
|
||||
# compute the area of intersection rectangle
|
||||
inter_area = max(0, intersect['xmax'] - intersect['xmin'] + 1) * max(0, intersect['ymax'] - intersect['ymin'] + 1)
|
||||
|
||||
if inter_area == 0:
|
||||
return 0.0
|
||||
|
||||
# compute the area of both the prediction and ground-truth
|
||||
# rectangles
|
||||
box_a_area = (box_a['xmax'] - box_a['xmin'] + 1) * (box_a['ymax'] - box_a['ymin'] + 1)
|
||||
box_b_area = (box_b['xmax'] - box_b['xmin'] + 1) * (box_b['ymax'] - box_b['ymin'] + 1)
|
||||
|
||||
# compute the intersection over union by taking the intersection
|
||||
# area and dividing it by the sum of prediction + ground-truth
|
||||
# areas - the interesection area
|
||||
iou = inter_area / float(box_a_area + box_b_area - inter_area)
|
||||
|
||||
# return the intersection over union value
|
||||
return iou
|
||||
|
||||
# convert shared memory array into numpy array
|
||||
def tonumpyarray(mp_arr):
|
||||
return np.frombuffer(mp_arr.get_obj(), dtype=np.uint8)
|
||||
|
||||
def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thickness=2, color=None, position='ul'):
|
||||
if color is None:
|
||||
color = COLOR_MAP[label]
|
||||
color = (0,0,255)
|
||||
display_text = "{}: {}".format(label, info)
|
||||
cv2.rectangle(frame, (x_min, y_min),
|
||||
(x_max, y_max),
|
||||
color, thickness)
|
||||
cv2.rectangle(frame, (x_min, y_min), (x_max, y_max), color, thickness)
|
||||
font_scale = 0.5
|
||||
font = cv2.FONT_HERSHEY_SIMPLEX
|
||||
# get the width and height of the text box
|
||||
@@ -107,37 +35,77 @@ def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thicknes
|
||||
cv2.rectangle(frame, textbox_coords[0], textbox_coords[1], color, cv2.FILLED)
|
||||
cv2.putText(frame, display_text, (text_offset_x, text_offset_y + line_height - 3), font, fontScale=font_scale, color=(0, 0, 0), thickness=2)
|
||||
|
||||
# Path to frozen detection graph. This is the actual model that is used for the object detection.
|
||||
PATH_TO_CKPT = '/frozen_inference_graph.pb'
|
||||
# List of the strings that is used to add correct label for each box.
|
||||
PATH_TO_LABELS = '/label_map.pbtext'
|
||||
def calculate_region(frame_shape, xmin, ymin, xmax, ymax, multiplier=2):
|
||||
# size is larger than longest edge
|
||||
size = int(max(xmax-xmin, ymax-ymin)*multiplier)
|
||||
# if the size is too big to fit in the frame
|
||||
if size > min(frame_shape[0], frame_shape[1]):
|
||||
size = min(frame_shape[0], frame_shape[1])
|
||||
|
||||
LABELS = ReadLabelFile(PATH_TO_LABELS)
|
||||
cmap = plt.cm.get_cmap('tab10', len(LABELS.keys()))
|
||||
# x_offset is midpoint of bounding box minus half the size
|
||||
x_offset = int((xmax-xmin)/2.0+xmin-size/2.0)
|
||||
# if outside the image
|
||||
if x_offset < 0:
|
||||
x_offset = 0
|
||||
elif x_offset > (frame_shape[1]-size):
|
||||
x_offset = (frame_shape[1]-size)
|
||||
|
||||
COLOR_MAP = {}
|
||||
for key, val in LABELS.items():
|
||||
COLOR_MAP[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3])
|
||||
# y_offset is midpoint of bounding box minus half the size
|
||||
y_offset = int((ymax-ymin)/2.0+ymin-size/2.0)
|
||||
# if outside the image
|
||||
if y_offset < 0:
|
||||
y_offset = 0
|
||||
elif y_offset > (frame_shape[0]-size):
|
||||
y_offset = (frame_shape[0]-size)
|
||||
|
||||
class QueueMerger():
|
||||
def __init__(self, from_queues, to_queue):
|
||||
self.from_queues = from_queues
|
||||
self.to_queue = to_queue
|
||||
self.merge_threads = []
|
||||
return (x_offset, y_offset, x_offset+size, y_offset+size)
|
||||
|
||||
def start(self):
|
||||
for from_q in self.from_queues:
|
||||
self.merge_threads.append(QueueTransfer(from_q,self.to_queue))
|
||||
def intersection(box_a, box_b):
|
||||
return (
|
||||
max(box_a[0], box_b[0]),
|
||||
max(box_a[1], box_b[1]),
|
||||
min(box_a[2], box_b[2]),
|
||||
min(box_a[3], box_b[3])
|
||||
)
|
||||
|
||||
class QueueTransfer(threading.Thread):
|
||||
def __init__(self, from_queue, to_queue):
|
||||
threading.Thread.__init__(self)
|
||||
self.from_queue = from_queue
|
||||
self.to_queue = to_queue
|
||||
def area(box):
|
||||
return (box[2]-box[0] + 1)*(box[3]-box[1] + 1)
|
||||
|
||||
def intersection_over_union(box_a, box_b):
|
||||
# determine the (x, y)-coordinates of the intersection rectangle
|
||||
intersect = intersection(box_a, box_b)
|
||||
|
||||
def run(self):
|
||||
while True:
|
||||
self.to_queue.put(self.from_queue.get())
|
||||
# compute the area of intersection rectangle
|
||||
inter_area = max(0, intersect[2] - intersect[0] + 1) * max(0, intersect[3] - intersect[1] + 1)
|
||||
|
||||
if inter_area == 0:
|
||||
return 0.0
|
||||
|
||||
# compute the area of both the prediction and ground-truth
|
||||
# rectangles
|
||||
box_a_area = (box_a[2] - box_a[0] + 1) * (box_a[3] - box_a[1] + 1)
|
||||
box_b_area = (box_b[2] - box_b[0] + 1) * (box_b[3] - box_b[1] + 1)
|
||||
|
||||
# compute the intersection over union by taking the intersection
|
||||
# area and dividing it by the sum of prediction + ground-truth
|
||||
# areas - the interesection area
|
||||
iou = inter_area / float(box_a_area + box_b_area - inter_area)
|
||||
|
||||
# return the intersection over union value
|
||||
return iou
|
||||
|
||||
def clipped(obj, frame_shape):
|
||||
# if the object is within 5 pixels of the region border, and the region is not on the edge
|
||||
# consider the object to be clipped
|
||||
box = obj[2]
|
||||
region = obj[4]
|
||||
if ((region[0] > 5 and box[0]-region[0] <= 5) or
|
||||
(region[1] > 5 and box[1]-region[1] <= 5) or
|
||||
(frame_shape[1]-region[2] > 5 and region[2]-box[2] <= 5) or
|
||||
(frame_shape[0]-region[3] > 5 and region[3]-box[3] <= 5)):
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
class EventsPerSecond:
|
||||
def __init__(self, max_events=1000):
|
||||
|
662
frigate/video.py
Normal file → Executable file
662
frigate/video.py
Normal file → Executable file
@@ -8,39 +8,17 @@ import ctypes
|
||||
import multiprocessing as mp
|
||||
import subprocess as sp
|
||||
import numpy as np
|
||||
import prctl
|
||||
import hashlib
|
||||
import pyarrow.plasma as plasma
|
||||
import SharedArray as sa
|
||||
import copy
|
||||
import itertools
|
||||
import json
|
||||
from collections import defaultdict
|
||||
from frigate.util import tonumpyarray, LABELS, draw_box_with_label, calculate_region, EventsPerSecond
|
||||
from frigate.object_detection import RegionPrepper, RegionRequester
|
||||
from frigate.objects import ObjectCleaner, BestFrames, DetectedObjectsProcessor, RegionRefiner, ObjectTracker
|
||||
from frigate.mqtt import MqttObjectPublisher
|
||||
|
||||
# Stores 2 seconds worth of frames so they can be used for other threads
|
||||
class FrameTracker(threading.Thread):
|
||||
def __init__(self, frame_time, frame_ready, frame_lock, recent_frames):
|
||||
threading.Thread.__init__(self)
|
||||
self.frame_time = frame_time
|
||||
self.frame_ready = frame_ready
|
||||
self.frame_lock = frame_lock
|
||||
self.recent_frames = recent_frames
|
||||
|
||||
def run(self):
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
while True:
|
||||
# wait for a frame
|
||||
with self.frame_ready:
|
||||
self.frame_ready.wait()
|
||||
|
||||
# delete any old frames
|
||||
stored_frame_times = list(self.recent_frames.keys())
|
||||
stored_frame_times.sort(reverse=True)
|
||||
if len(stored_frame_times) > 100:
|
||||
frames_to_delete = stored_frame_times[50:]
|
||||
for k in frames_to_delete:
|
||||
del self.recent_frames[k]
|
||||
from frigate.util import draw_box_with_label, area, calculate_region, clipped, intersection_over_union, intersection, EventsPerSecond
|
||||
from frigate.objects import ObjectTracker
|
||||
from frigate.edgetpu import RemoteObjectDetector
|
||||
from frigate.motion import MotionDetector
|
||||
|
||||
def get_frame_shape(source):
|
||||
ffprobe_cmd = " ".join([
|
||||
@@ -76,330 +54,324 @@ def get_ffmpeg_input(ffmpeg_input):
|
||||
frigate_vars = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')}
|
||||
return ffmpeg_input.format(**frigate_vars)
|
||||
|
||||
class CameraWatchdog(threading.Thread):
|
||||
def __init__(self, camera):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera = camera
|
||||
def filtered(obj, objects_to_track, object_filters, mask):
|
||||
object_name = obj[0]
|
||||
|
||||
def run(self):
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
while True:
|
||||
# wait a bit before checking
|
||||
time.sleep(10)
|
||||
|
||||
if self.camera.frame_time.value != 0.0 and (datetime.datetime.now().timestamp() - self.camera.frame_time.value) > self.camera.watchdog_timeout:
|
||||
print(self.camera.name + ": last frame is more than 5 minutes old, restarting camera capture...")
|
||||
self.camera.start_or_restart_capture()
|
||||
time.sleep(5)
|
||||
|
||||
# Thread to read the stdout of the ffmpeg process and update the current frame
|
||||
class CameraCapture(threading.Thread):
|
||||
def __init__(self, camera):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera = camera
|
||||
|
||||
def run(self):
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
frame_num = 0
|
||||
while True:
|
||||
if self.camera.ffmpeg_process.poll() != None:
|
||||
print(self.camera.name + ": ffmpeg process is not running. exiting capture thread...")
|
||||
break
|
||||
|
||||
raw_image = self.camera.ffmpeg_process.stdout.read(self.camera.frame_size)
|
||||
|
||||
if len(raw_image) == 0:
|
||||
print(self.camera.name + ": ffmpeg didnt return a frame. something is wrong. exiting capture thread...")
|
||||
break
|
||||
|
||||
frame_num += 1
|
||||
if (frame_num % self.camera.take_frame) != 0:
|
||||
continue
|
||||
|
||||
with self.camera.frame_lock:
|
||||
# TODO: use frame_queue instead
|
||||
self.camera.frame_time.value = datetime.datetime.now().timestamp()
|
||||
self.camera.frame_cache[self.camera.frame_time.value] = (
|
||||
np
|
||||
.frombuffer(raw_image, np.uint8)
|
||||
.reshape(self.camera.frame_shape)
|
||||
)
|
||||
self.camera.frame_queue.put(self.camera.frame_time.value)
|
||||
# Notify with the condition that a new frame is ready
|
||||
with self.camera.frame_ready:
|
||||
self.camera.frame_ready.notify_all()
|
||||
|
||||
self.camera.fps.update()
|
||||
|
||||
class VideoWriter(threading.Thread):
|
||||
def __init__(self, camera):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera = camera
|
||||
|
||||
def run(self):
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
while True:
|
||||
(frame_time, tracked_objects) = self.camera.frame_output_queue.get()
|
||||
# if len(tracked_objects) == 0:
|
||||
# continue
|
||||
# f = open(f"/debug/output/{self.camera.name}-{str(format(frame_time, '.8f'))}.jpg", 'wb')
|
||||
# f.write(self.camera.frame_with_objects(frame_time, tracked_objects))
|
||||
# f.close()
|
||||
|
||||
class Camera:
|
||||
def __init__(self, name, ffmpeg_config, global_objects_config, config, prepped_frame_queue, mqtt_client, mqtt_prefix):
|
||||
self.name = name
|
||||
self.config = config
|
||||
self.detected_objects = defaultdict(lambda: [])
|
||||
self.frame_cache = {}
|
||||
self.last_processed_frame = None
|
||||
# queue for re-assembling frames in order
|
||||
self.frame_queue = queue.Queue()
|
||||
# track how many regions have been requested for a frame so we know when a frame is complete
|
||||
self.regions_in_process = {}
|
||||
# Lock to control access
|
||||
self.regions_in_process_lock = mp.Lock()
|
||||
self.finished_frame_queue = queue.Queue()
|
||||
self.refined_frame_queue = queue.Queue()
|
||||
self.frame_output_queue = queue.Queue()
|
||||
|
||||
self.ffmpeg = config.get('ffmpeg', {})
|
||||
self.ffmpeg_input = get_ffmpeg_input(self.ffmpeg['input'])
|
||||
self.ffmpeg_global_args = self.ffmpeg.get('global_args', ffmpeg_config['global_args'])
|
||||
self.ffmpeg_hwaccel_args = self.ffmpeg.get('hwaccel_args', ffmpeg_config['hwaccel_args'])
|
||||
self.ffmpeg_input_args = self.ffmpeg.get('input_args', ffmpeg_config['input_args'])
|
||||
self.ffmpeg_output_args = self.ffmpeg.get('output_args', ffmpeg_config['output_args'])
|
||||
|
||||
camera_objects_config = config.get('objects', {})
|
||||
|
||||
self.take_frame = self.config.get('take_frame', 1)
|
||||
self.watchdog_timeout = self.config.get('watchdog_timeout', 300)
|
||||
self.snapshot_config = {
|
||||
'show_timestamp': self.config.get('snapshots', {}).get('show_timestamp', True)
|
||||
}
|
||||
self.regions = self.config['regions']
|
||||
if 'width' in self.config and 'height' in self.config:
|
||||
self.frame_shape = (self.config['height'], self.config['width'], 3)
|
||||
else:
|
||||
self.frame_shape = get_frame_shape(self.ffmpeg_input)
|
||||
self.frame_size = self.frame_shape[0] * self.frame_shape[1] * self.frame_shape[2]
|
||||
self.mqtt_client = mqtt_client
|
||||
self.mqtt_topic_prefix = '{}/{}'.format(mqtt_prefix, self.name)
|
||||
|
||||
# create shared value for storing the frame_time
|
||||
self.frame_time = mp.Value('d', 0.0)
|
||||
# Lock to control access to the frame
|
||||
self.frame_lock = mp.Lock()
|
||||
# Condition for notifying that a new frame is ready
|
||||
self.frame_ready = mp.Condition()
|
||||
# Condition for notifying that objects were tracked
|
||||
self.objects_tracked = mp.Condition()
|
||||
|
||||
# Queue for prepped frames, max size set to (number of regions * 5)
|
||||
self.resize_queue = queue.Queue()
|
||||
|
||||
# Queue for raw detected objects
|
||||
self.detected_objects_queue = queue.Queue()
|
||||
self.detected_objects_processor = DetectedObjectsProcessor(self)
|
||||
self.detected_objects_processor.start()
|
||||
|
||||
# initialize the frame cache
|
||||
self.cached_frame_with_objects = {
|
||||
'frame_bytes': [],
|
||||
'frame_time': 0
|
||||
}
|
||||
|
||||
self.ffmpeg_process = None
|
||||
self.capture_thread = None
|
||||
self.fps = EventsPerSecond()
|
||||
self.skipped_region_tracker = EventsPerSecond()
|
||||
|
||||
# combine tracked objects lists
|
||||
self.objects_to_track = set().union(global_objects_config.get('track', ['person', 'car', 'truck']), camera_objects_config.get('track', []))
|
||||
|
||||
# merge object filters
|
||||
global_object_filters = global_objects_config.get('filters', {})
|
||||
camera_object_filters = camera_objects_config.get('filters', {})
|
||||
objects_with_config = set().union(global_object_filters.keys(), camera_object_filters.keys())
|
||||
self.object_filters = {}
|
||||
for obj in objects_with_config:
|
||||
self.object_filters[obj] = {**global_object_filters.get(obj, {}), **camera_object_filters.get(obj, {})}
|
||||
|
||||
# start a thread to track objects
|
||||
self.object_tracker = ObjectTracker(self, 10)
|
||||
self.object_tracker.start()
|
||||
|
||||
# start a thread to write tracked frames to disk
|
||||
self.video_writer = VideoWriter(self)
|
||||
self.video_writer.start()
|
||||
|
||||
# start a thread to queue resize requests for regions
|
||||
self.region_requester = RegionRequester(self)
|
||||
self.region_requester.start()
|
||||
|
||||
# start a thread to cache recent frames for processing
|
||||
self.frame_tracker = FrameTracker(self.frame_time,
|
||||
self.frame_ready, self.frame_lock, self.frame_cache)
|
||||
self.frame_tracker.start()
|
||||
|
||||
# start a thread to resize regions
|
||||
self.region_prepper = RegionPrepper(self, self.frame_cache, self.resize_queue, prepped_frame_queue)
|
||||
self.region_prepper.start()
|
||||
|
||||
# start a thread to store the highest scoring recent frames for monitored object types
|
||||
self.best_frames = BestFrames(self)
|
||||
self.best_frames.start()
|
||||
|
||||
# start a thread to expire objects from the detected objects list
|
||||
self.object_cleaner = ObjectCleaner(self)
|
||||
self.object_cleaner.start()
|
||||
|
||||
# start a thread to refine regions when objects are clipped
|
||||
self.dynamic_region_fps = EventsPerSecond()
|
||||
self.region_refiner = RegionRefiner(self)
|
||||
self.region_refiner.start()
|
||||
self.dynamic_region_fps.start()
|
||||
|
||||
# start a thread to publish object scores
|
||||
mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self)
|
||||
mqtt_publisher.start()
|
||||
|
||||
# create a watchdog thread for capture process
|
||||
self.watchdog = CameraWatchdog(self)
|
||||
|
||||
# load in the mask for object detection
|
||||
if 'mask' in self.config:
|
||||
self.mask = cv2.imread("/config/{}".format(self.config['mask']), cv2.IMREAD_GRAYSCALE)
|
||||
else:
|
||||
self.mask = None
|
||||
|
||||
if self.mask is None:
|
||||
self.mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
|
||||
self.mask[:] = 255
|
||||
|
||||
|
||||
def start_or_restart_capture(self):
|
||||
if not self.ffmpeg_process is None:
|
||||
print("Terminating the existing ffmpeg process...")
|
||||
self.ffmpeg_process.terminate()
|
||||
try:
|
||||
print("Waiting for ffmpeg to exit gracefully...")
|
||||
self.ffmpeg_process.wait(timeout=30)
|
||||
except sp.TimeoutExpired:
|
||||
print("FFmpeg didnt exit. Force killing...")
|
||||
self.ffmpeg_process.kill()
|
||||
self.ffmpeg_process.wait()
|
||||
|
||||
print("Waiting for the capture thread to exit...")
|
||||
self.capture_thread.join()
|
||||
self.ffmpeg_process = None
|
||||
self.capture_thread = None
|
||||
|
||||
# create the process to capture frames from the input stream and store in a shared array
|
||||
print("Creating a new ffmpeg process...")
|
||||
self.start_ffmpeg()
|
||||
|
||||
print("Creating a new capture thread...")
|
||||
self.capture_thread = CameraCapture(self)
|
||||
print("Starting a new capture thread...")
|
||||
self.capture_thread.start()
|
||||
self.fps.start()
|
||||
self.skipped_region_tracker.start()
|
||||
if not object_name in objects_to_track:
|
||||
return True
|
||||
|
||||
def start_ffmpeg(self):
|
||||
ffmpeg_cmd = (['ffmpeg'] +
|
||||
self.ffmpeg_global_args +
|
||||
self.ffmpeg_hwaccel_args +
|
||||
self.ffmpeg_input_args +
|
||||
['-i', self.ffmpeg_input] +
|
||||
self.ffmpeg_output_args +
|
||||
if object_name in object_filters:
|
||||
obj_settings = object_filters[object_name]
|
||||
|
||||
# if the min area is larger than the
|
||||
# detected object, don't add it to detected objects
|
||||
if obj_settings.get('min_area',-1) > obj[3]:
|
||||
return True
|
||||
|
||||
# if the detected object is larger than the
|
||||
# max area, don't add it to detected objects
|
||||
if obj_settings.get('max_area', 24000000) < obj[3]:
|
||||
return True
|
||||
|
||||
# if the score is lower than the threshold, skip
|
||||
if obj_settings.get('threshold', 0) > obj[1]:
|
||||
return True
|
||||
|
||||
# compute the coordinates of the object and make sure
|
||||
# the location isnt outside the bounds of the image (can happen from rounding)
|
||||
y_location = min(int(obj[2][3]), len(mask)-1)
|
||||
x_location = min(int((obj[2][2]-obj[2][0])/2.0)+obj[2][0], len(mask[0])-1)
|
||||
|
||||
# if the object is in a masked location, don't add it to detected objects
|
||||
if mask[y_location][x_location] == [0]:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
def create_tensor_input(frame, region):
|
||||
cropped_frame = frame[region[1]:region[3], region[0]:region[2]]
|
||||
|
||||
# Resize to 300x300 if needed
|
||||
if cropped_frame.shape != (300, 300, 3):
|
||||
cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
|
||||
|
||||
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
|
||||
return np.expand_dims(cropped_frame, axis=0)
|
||||
|
||||
def start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_process=None):
|
||||
if not ffmpeg_process is None:
|
||||
print("Terminating the existing ffmpeg process...")
|
||||
ffmpeg_process.terminate()
|
||||
try:
|
||||
print("Waiting for ffmpeg to exit gracefully...")
|
||||
ffmpeg_process.wait(timeout=30)
|
||||
except sp.TimeoutExpired:
|
||||
print("FFmpeg didnt exit. Force killing...")
|
||||
ffmpeg_process.kill()
|
||||
ffmpeg_process.wait()
|
||||
|
||||
print("Creating ffmpeg process...")
|
||||
print(" ".join(ffmpeg_cmd))
|
||||
return sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, bufsize=frame_size*10)
|
||||
|
||||
def track_camera(name, config, ffmpeg_global_config, global_objects_config, detection_queue, detected_objects_queue, fps, skipped_fps, detection_fps):
|
||||
print(f"Starting process for {name}: {os.getpid()}")
|
||||
|
||||
# Merge the ffmpeg config with the global config
|
||||
ffmpeg = config.get('ffmpeg', {})
|
||||
ffmpeg_input = get_ffmpeg_input(ffmpeg['input'])
|
||||
ffmpeg_global_args = ffmpeg.get('global_args', ffmpeg_global_config['global_args'])
|
||||
ffmpeg_hwaccel_args = ffmpeg.get('hwaccel_args', ffmpeg_global_config['hwaccel_args'])
|
||||
ffmpeg_input_args = ffmpeg.get('input_args', ffmpeg_global_config['input_args'])
|
||||
ffmpeg_output_args = ffmpeg.get('output_args', ffmpeg_global_config['output_args'])
|
||||
ffmpeg_cmd = (['ffmpeg'] +
|
||||
ffmpeg_global_args +
|
||||
ffmpeg_hwaccel_args +
|
||||
ffmpeg_input_args +
|
||||
['-i', ffmpeg_input] +
|
||||
ffmpeg_output_args +
|
||||
['pipe:'])
|
||||
|
||||
print(" ".join(ffmpeg_cmd))
|
||||
# Merge the tracked object config with the global config
|
||||
camera_objects_config = config.get('objects', {})
|
||||
# combine tracked objects lists
|
||||
objects_to_track = set().union(global_objects_config.get('track', ['person', 'car', 'truck']), camera_objects_config.get('track', []))
|
||||
# merge object filters
|
||||
global_object_filters = global_objects_config.get('filters', {})
|
||||
camera_object_filters = camera_objects_config.get('filters', {})
|
||||
objects_with_config = set().union(global_object_filters.keys(), camera_object_filters.keys())
|
||||
object_filters = {}
|
||||
for obj in objects_with_config:
|
||||
object_filters[obj] = {**global_object_filters.get(obj, {}), **camera_object_filters.get(obj, {})}
|
||||
|
||||
expected_fps = config['fps']
|
||||
take_frame = config.get('take_frame', 1)
|
||||
|
||||
if 'width' in config and 'height' in config:
|
||||
frame_shape = (config['height'], config['width'], 3)
|
||||
else:
|
||||
frame_shape = get_frame_shape(ffmpeg_input)
|
||||
|
||||
frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2]
|
||||
|
||||
try:
|
||||
sa.delete(name)
|
||||
except:
|
||||
pass
|
||||
|
||||
frame = sa.create(name, shape=frame_shape, dtype=np.uint8)
|
||||
|
||||
# load in the mask for object detection
|
||||
if 'mask' in config:
|
||||
mask = cv2.imread("/config/{}".format(config['mask']), cv2.IMREAD_GRAYSCALE)
|
||||
else:
|
||||
mask = None
|
||||
|
||||
if mask is None:
|
||||
mask = np.zeros((frame_shape[0], frame_shape[1], 1), np.uint8)
|
||||
mask[:] = 255
|
||||
|
||||
motion_detector = MotionDetector(frame_shape, mask, resize_factor=6)
|
||||
object_detector = RemoteObjectDetector(name, '/labelmap.txt', detection_queue)
|
||||
|
||||
object_tracker = ObjectTracker(10)
|
||||
|
||||
ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_size)
|
||||
|
||||
plasma_client = plasma.connect("/tmp/plasma")
|
||||
frame_num = 0
|
||||
avg_wait = 0.0
|
||||
fps_tracker = EventsPerSecond()
|
||||
skipped_fps_tracker = EventsPerSecond()
|
||||
fps_tracker.start()
|
||||
skipped_fps_tracker.start()
|
||||
object_detector.fps.start()
|
||||
while True:
|
||||
start = datetime.datetime.now().timestamp()
|
||||
frame_bytes = ffmpeg_process.stdout.read(frame_size)
|
||||
duration = datetime.datetime.now().timestamp()-start
|
||||
avg_wait = (avg_wait*99+duration)/100
|
||||
|
||||
if not frame_bytes:
|
||||
rc = ffmpeg_process.poll()
|
||||
if rc is not None:
|
||||
print(f"{name}: ffmpeg_process exited unexpectedly with {rc}")
|
||||
ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_process)
|
||||
time.sleep(10)
|
||||
else:
|
||||
print(f"{name}: ffmpeg_process is still running but didnt return any bytes")
|
||||
continue
|
||||
|
||||
# limit frame rate
|
||||
frame_num += 1
|
||||
if (frame_num % take_frame) != 0:
|
||||
continue
|
||||
|
||||
fps_tracker.update()
|
||||
fps.value = fps_tracker.eps()
|
||||
detection_fps.value = object_detector.fps.eps()
|
||||
|
||||
frame_time = datetime.datetime.now().timestamp()
|
||||
|
||||
self.ffmpeg_process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, bufsize=self.frame_size)
|
||||
|
||||
def start(self):
|
||||
self.start_or_restart_capture()
|
||||
self.watchdog.start()
|
||||
|
||||
def join(self):
|
||||
self.capture_thread.join()
|
||||
|
||||
def get_capture_pid(self):
|
||||
return self.ffmpeg_process.pid
|
||||
|
||||
def get_best(self, label):
|
||||
return self.best_frames.best_frames.get(label)
|
||||
|
||||
def stats(self):
|
||||
return {
|
||||
'camera_fps': self.fps.eps(60),
|
||||
'resize_queue': self.resize_queue.qsize(),
|
||||
'frame_queue': self.frame_queue.qsize(),
|
||||
'finished_frame_queue': self.finished_frame_queue.qsize(),
|
||||
'refined_frame_queue': self.refined_frame_queue.qsize(),
|
||||
'regions_in_process': self.regions_in_process,
|
||||
'dynamic_regions_per_sec': self.dynamic_region_fps.eps(),
|
||||
'skipped_regions_per_sec': self.skipped_region_tracker.eps(60)
|
||||
}
|
||||
|
||||
def frame_with_objects(self, frame_time, tracked_objects=None):
|
||||
if not frame_time in self.frame_cache:
|
||||
frame = np.zeros(self.frame_shape, np.uint8)
|
||||
else:
|
||||
frame = self.frame_cache[frame_time].copy()
|
||||
|
||||
detected_objects = self.detected_objects[frame_time].copy()
|
||||
|
||||
for region in self.regions:
|
||||
color = (255,255,255)
|
||||
cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
|
||||
(region['x_offset']+region['size'], region['y_offset']+region['size']),
|
||||
color, 2)
|
||||
|
||||
# draw the bounding boxes on the screen
|
||||
|
||||
if tracked_objects is None:
|
||||
with self.object_tracker.tracked_objects_lock:
|
||||
tracked_objects = copy.deepcopy(self.object_tracker.tracked_objects)
|
||||
|
||||
for obj in detected_objects:
|
||||
draw_box_with_label(frame, obj['box']['xmin'], obj['box']['ymin'], obj['box']['xmax'], obj['box']['ymax'], obj['name'], "{}% {}".format(int(obj['score']*100), obj['area']), thickness=3)
|
||||
# Store frame in numpy array
|
||||
frame[:] = (np
|
||||
.frombuffer(frame_bytes, np.uint8)
|
||||
.reshape(frame_shape))
|
||||
|
||||
for id, obj in tracked_objects.items():
|
||||
color = (0, 255,0) if obj['frame_time'] == frame_time else (255, 0, 0)
|
||||
draw_box_with_label(frame, obj['box']['xmin'], obj['box']['ymin'], obj['box']['xmax'], obj['box']['ymax'], obj['name'], id, color=color, thickness=1, position='bl')
|
||||
# look for motion
|
||||
motion_boxes = motion_detector.detect(frame)
|
||||
|
||||
# print a timestamp
|
||||
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
|
||||
cv2.putText(frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
|
||||
# skip object detection if we are below the min_fps and wait time is less than half the average
|
||||
if frame_num > 100 and fps.value < expected_fps-1 and duration < 0.5*avg_wait:
|
||||
skipped_fps_tracker.update()
|
||||
skipped_fps.value = skipped_fps_tracker.eps()
|
||||
continue
|
||||
|
||||
# print fps
|
||||
cv2.putText(frame, str(self.fps.eps())+'FPS', (10, 60), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
|
||||
skipped_fps.value = skipped_fps_tracker.eps()
|
||||
|
||||
# convert to BGR
|
||||
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
||||
tracked_objects = object_tracker.tracked_objects.values()
|
||||
|
||||
# encode the image into a jpg
|
||||
ret, jpg = cv2.imencode('.jpg', frame)
|
||||
|
||||
return jpg.tobytes()
|
||||
|
||||
def get_current_frame_with_objects(self):
|
||||
frame_time = self.last_processed_frame
|
||||
if frame_time == self.cached_frame_with_objects['frame_time']:
|
||||
return self.cached_frame_with_objects['frame_bytes']
|
||||
|
||||
frame_bytes = self.frame_with_objects(frame_time)
|
||||
|
||||
self.cached_frame_with_objects = {
|
||||
'frame_bytes': frame_bytes,
|
||||
'frame_time': frame_time
|
||||
}
|
||||
|
||||
return frame_bytes
|
||||
|
||||
|
||||
|
||||
# merge areas of motion that intersect with a known tracked object into a single area to look at
|
||||
areas_of_interest = []
|
||||
used_motion_boxes = []
|
||||
for obj in tracked_objects:
|
||||
x_min, y_min, x_max, y_max = obj['box']
|
||||
for m_index, motion_box in enumerate(motion_boxes):
|
||||
if area(intersection(obj['box'], motion_box))/area(motion_box) > .5:
|
||||
used_motion_boxes.append(m_index)
|
||||
x_min = min(obj['box'][0], motion_box[0])
|
||||
y_min = min(obj['box'][1], motion_box[1])
|
||||
x_max = max(obj['box'][2], motion_box[2])
|
||||
y_max = max(obj['box'][3], motion_box[3])
|
||||
areas_of_interest.append((x_min, y_min, x_max, y_max))
|
||||
unused_motion_boxes = set(range(0, len(motion_boxes))).difference(used_motion_boxes)
|
||||
|
||||
# compute motion regions
|
||||
motion_regions = [calculate_region(frame_shape, motion_boxes[i][0], motion_boxes[i][1], motion_boxes[i][2], motion_boxes[i][3], 1.2)
|
||||
for i in unused_motion_boxes]
|
||||
|
||||
# compute tracked object regions
|
||||
object_regions = [calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.2)
|
||||
for a in areas_of_interest]
|
||||
|
||||
# merge regions with high IOU
|
||||
merged_regions = motion_regions+object_regions
|
||||
while True:
|
||||
max_iou = 0.0
|
||||
max_indices = None
|
||||
region_indices = range(len(merged_regions))
|
||||
for a, b in itertools.combinations(region_indices, 2):
|
||||
iou = intersection_over_union(merged_regions[a], merged_regions[b])
|
||||
if iou > max_iou:
|
||||
max_iou = iou
|
||||
max_indices = (a, b)
|
||||
if max_iou > 0.1:
|
||||
a = merged_regions[max_indices[0]]
|
||||
b = merged_regions[max_indices[1]]
|
||||
merged_regions.append(calculate_region(frame_shape,
|
||||
min(a[0], b[0]),
|
||||
min(a[1], b[1]),
|
||||
max(a[2], b[2]),
|
||||
max(a[3], b[3]),
|
||||
1
|
||||
))
|
||||
del merged_regions[max(max_indices[0], max_indices[1])]
|
||||
del merged_regions[min(max_indices[0], max_indices[1])]
|
||||
else:
|
||||
break
|
||||
|
||||
# resize regions and detect
|
||||
detections = []
|
||||
for region in merged_regions:
|
||||
|
||||
tensor_input = create_tensor_input(frame, region)
|
||||
|
||||
region_detections = object_detector.detect(tensor_input)
|
||||
|
||||
for d in region_detections:
|
||||
box = d[2]
|
||||
size = region[2]-region[0]
|
||||
x_min = int((box[1] * size) + region[0])
|
||||
y_min = int((box[0] * size) + region[1])
|
||||
x_max = int((box[3] * size) + region[0])
|
||||
y_max = int((box[2] * size) + region[1])
|
||||
det = (d[0],
|
||||
d[1],
|
||||
(x_min, y_min, x_max, y_max),
|
||||
(x_max-x_min)*(y_max-y_min),
|
||||
region)
|
||||
if filtered(det, objects_to_track, object_filters, mask):
|
||||
continue
|
||||
detections.append(det)
|
||||
|
||||
#########
|
||||
# merge objects, check for clipped objects and look again up to N times
|
||||
#########
|
||||
refining = True
|
||||
refine_count = 0
|
||||
while refining and refine_count < 4:
|
||||
refining = False
|
||||
|
||||
# group by name
|
||||
detected_object_groups = defaultdict(lambda: [])
|
||||
for detection in detections:
|
||||
detected_object_groups[detection[0]].append(detection)
|
||||
|
||||
selected_objects = []
|
||||
for group in detected_object_groups.values():
|
||||
|
||||
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
|
||||
boxes = [(o[2][0], o[2][1], o[2][2]-o[2][0], o[2][3]-o[2][1])
|
||||
for o in group]
|
||||
confidences = [o[1] for o in group]
|
||||
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
|
||||
|
||||
for index in idxs:
|
||||
obj = group[index[0]]
|
||||
if clipped(obj, frame_shape): #obj['clipped']:
|
||||
box = obj[2]
|
||||
# calculate a new region that will hopefully get the entire object
|
||||
region = calculate_region(frame_shape,
|
||||
box[0], box[1],
|
||||
box[2], box[3])
|
||||
|
||||
tensor_input = create_tensor_input(frame, region)
|
||||
# run detection on new region
|
||||
refined_detections = object_detector.detect(tensor_input)
|
||||
for d in refined_detections:
|
||||
box = d[2]
|
||||
size = region[2]-region[0]
|
||||
x_min = int((box[1] * size) + region[0])
|
||||
y_min = int((box[0] * size) + region[1])
|
||||
x_max = int((box[3] * size) + region[0])
|
||||
y_max = int((box[2] * size) + region[1])
|
||||
det = (d[0],
|
||||
d[1],
|
||||
(x_min, y_min, x_max, y_max),
|
||||
(x_max-x_min)*(y_max-y_min),
|
||||
region)
|
||||
if filtered(det, objects_to_track, object_filters, mask):
|
||||
continue
|
||||
selected_objects.append(det)
|
||||
|
||||
refining = True
|
||||
else:
|
||||
selected_objects.append(obj)
|
||||
|
||||
# set the detections list to only include top, complete objects
|
||||
# and new detections
|
||||
detections = selected_objects
|
||||
|
||||
if refining:
|
||||
refine_count += 1
|
||||
|
||||
# now that we have refined our detections, we need to track objects
|
||||
object_tracker.match_and_update(frame_time, detections)
|
||||
|
||||
# put the frame in the plasma store
|
||||
object_id = hashlib.sha1(str.encode(f"{name}{frame_time}")).digest()
|
||||
plasma_client.put(frame, plasma.ObjectID(object_id))
|
||||
# add to the queue
|
||||
detected_objects_queue.put((name, frame_time, object_tracker.tracked_objects))
|
||||
|
||||
print(f"{name}: exiting subprocess")
|
Reference in New Issue
Block a user