Compare commits

...

133 Commits

Author SHA1 Message Date
kluszczyn
2bc8736fd9 Recordings - fix expire_file 2020-12-22 09:58:26 -05:00
Blake Blackshear
e9b3b09cc2 add clips endpoint to readme 2020-12-22 09:58:26 -05:00
Blake Blackshear
ca337c32b4 better mask error handling 2020-12-22 09:58:26 -05:00
Blake Blackshear
24b8bd7c85 fix tmpfs 2020-12-22 09:58:26 -05:00
Blake Blackshear
3ad75a441d remove redundant error output 2020-12-20 08:04:54 -06:00
Blake Blackshear
f006e9be8d use CACHE_DIR constant 2020-12-20 08:04:54 -06:00
Blake Blackshear
03f3ba8008 enable mounting tmpfs volume on start 2020-12-20 08:04:54 -06:00
Blake Blackshear
96a44eb7bf docs and issue template 2020-12-20 07:37:44 -06:00
Blake Blackshear
006782fe3d update process clip for latest changes 2020-12-20 07:37:44 -06:00
Blake Blackshear
ff3e95bbf7 publish event updates on zone change 2020-12-20 07:37:44 -06:00
Blake Blackshear
4b95a37e65 readme updates 2020-12-20 07:37:44 -06:00
Blake Blackshear
38c661b3a8 handle scenario with empty cache 2020-12-20 07:37:44 -06:00
Blake Blackshear
0d6e4f6a66 add qsv support to amd64 image 2020-12-20 07:37:44 -06:00
Blake Blackshear
1ad2219f1c add num_threads fixes #322 2020-12-20 07:37:44 -06:00
Blake Blackshear
dfcdd289c3 optimize clips fixes #299 2020-12-20 07:37:44 -06:00
Blake Blackshear
32f5f2cca9 add post_capture option 2020-12-20 07:37:44 -06:00
Blake Blackshear
24bfe9f3e8 re-crop to the object rather than the region 2020-12-20 07:37:44 -06:00
Blake Blackshear
004667dc99 allow runtime drawing settings for mjpeg and latest 2020-12-20 07:37:44 -06:00
Blake Blackshear
9d785dc781 allow the mask to be a list of masks 2020-12-20 07:37:44 -06:00
Blake Blackshear
cbba5a7af0 adding version endpoint 2020-12-20 07:37:44 -06:00
Blake Blackshear
29b29ee349 configurable motion and detect settings 2020-12-20 07:37:44 -06:00
Blake Blackshear
9ad53e09af update gitignore 2020-12-20 07:37:44 -06:00
Blake Blackshear
c9278991c9 fix test 2020-12-20 07:37:44 -06:00
Blake Blackshear
729de48934 switch default threshold to .7 2020-12-20 07:37:44 -06:00
Blake Blackshear
7476bff5fb allow process clips to output a csv of scores 2020-12-20 07:37:44 -06:00
Blake Blackshear
1e9eae8d9a allow db path to be customized 2020-12-20 07:37:44 -06:00
Blake Blackshear
8113a53381 add telegram example 2020-12-20 07:37:44 -06:00
Blake Blackshear
72833686f1 fix process clip 2020-12-20 07:37:44 -06:00
Blake Blackshear
096c21f105 handle empty string args 2020-12-20 07:37:44 -06:00
Blake Blackshear
181f66357b allow region to extend beyond the frame 2020-12-20 07:37:44 -06:00
tubalainen
a54fbc483c Updated file
ref: https://github.com/blakeblackshear/frigate/issues/373
2020-12-12 10:38:02 -06:00
Blake Blackshear
92d5a002d3 swap width and height to reduce confusion 2020-12-10 19:22:03 -06:00
Blake Blackshear
f9184903d7 updating compose example to reduce confusion 2020-12-10 19:02:08 -06:00
Blake Blackshear
91cde6ce7b allow defining model shape and switch to mobiledet as default model 2020-12-09 07:22:26 -06:00
Blake Blackshear
186a4587c7 add model dimensions to config 2020-12-09 07:22:26 -06:00
Patrick Decat
6049acb1f3 Document beta addon host 2020-12-08 07:25:13 -06:00
Blake Blackshear
2d2ebf313c make shm consistent with compose 2020-12-08 07:24:37 -06:00
tubalainen
3d329dcb52 Updated docker command line...
...to correspond with 0.8.0 feature set.
2020-12-08 07:24:37 -06:00
Blake Blackshear
06854fc34f readme cleanup fixes #332 2020-12-07 18:00:12 -06:00
Blake Blackshear
e01e14d866 handle and warn if roles dont match enabled features 2020-12-07 08:07:35 -06:00
Blake Blackshear
3dfd251ebb camera recommendations 2020-12-07 07:36:29 -06:00
Blake Blackshear
dcea807f77 catch all psutil errors 2020-12-07 07:16:48 -06:00
Blake Blackshear
87d83ff33a clarify height width and fps 2020-12-07 07:16:28 -06:00
Blake Blackshear
1d31cbdf0d readme updates 2020-12-06 14:25:28 -06:00
Blake Blackshear
e05b27b8dc tweak screenshots 2020-12-06 08:27:03 -06:00
Blake Blackshear
7111bd208e readme updates 2020-12-06 08:25:25 -06:00
Blake Blackshear
04a80280da set ffmpeg image versions 2020-12-06 07:09:14 -06:00
Blake Blackshear
3bda092140 comment you zeroconf 2020-12-06 07:05:45 -06:00
Blake Blackshear
9086820479 fix flask logger config 2020-12-05 19:05:03 -06:00
Blake Blackshear
d1da57aedc fix graceful exits 2020-12-05 12:06:07 -06:00
Blake Blackshear
6ded12c566 better exception handling 2020-12-05 12:06:07 -06:00
Blake Blackshear
70352566a7 fix default args 2020-12-05 12:06:07 -06:00
Blake Blackshear
cf5cc86588 fix fontconfig issue 2020-12-05 08:48:46 -06:00
Blake Blackshear
e41db49ab8 doc updates 2020-12-05 08:48:46 -06:00
Blake Blackshear
1b7effafee update some default config values 2020-12-05 08:48:46 -06:00
Blake Blackshear
69e9e0b0bf log level configuration 2020-12-05 08:48:46 -06:00
Blake Blackshear
89624df411 no need to write jpg disk 2020-12-05 08:48:46 -06:00
Blake Blackshear
d1a7405211 dont delete the recordings directory 2020-12-05 08:48:46 -06:00
Blake Blackshear
040f8c7c20 default save_clips objects 2020-12-05 08:48:46 -06:00
Blake Blackshear
6d7acabf4c add logging for directory creation 2020-12-05 08:48:46 -06:00
Blake Blackshear
45a8b42157 exit on config errors 2020-12-05 08:48:46 -06:00
Blake Blackshear
8785be24b7 add zeroconf discovery 2020-12-05 08:48:46 -06:00
Blake Blackshear
cc0812540c optional android notification aspect ratio 2020-12-05 08:48:46 -06:00
Blake Blackshear
5cf38ca4f7 reduce min timestamp size 2020-12-05 08:48:46 -06:00
Blake Blackshear
7e4395c30e publish object counts rather than on/off 2020-12-05 08:48:46 -06:00
Blake Blackshear
598d3aeda2 make directories constants 2020-12-05 08:48:46 -06:00
Blake Blackshear
012dbf81f7 cleanup empty directories 2020-12-05 08:48:46 -06:00
Blake Blackshear
f869def12e serve up recordings with nginx 2020-12-05 08:48:46 -06:00
Blake Blackshear
31f7666337 add recording maintenance 2020-12-05 08:48:46 -06:00
Blake Blackshear
9e339acbca add record settings to config 2020-12-05 08:48:46 -06:00
Blake Blackshear
8f8054a299 fix log timeout 2020-12-05 08:48:46 -06:00
Blake Blackshear
f7021eec4c ensure zones dont have the same name as a camera 2020-12-05 08:48:46 -06:00
Blake Blackshear
c124153da4 graceful exit of subprocesses 2020-12-05 08:48:46 -06:00
Blake Blackshear
706c2f921e add multiple streams per camera 2020-12-05 08:48:46 -06:00
Blake Blackshear
de1d66bcb9 fix fontconfig error 2020-12-05 08:48:46 -06:00
Blake Blackshear
4502ca8e80 add support for rebroadcasting as rtmp 2020-12-05 08:48:46 -06:00
Blake Blackshear
32a66fe5e8 avoid null error 2020-12-05 08:48:46 -06:00
Blake Blackshear
e1251aafdb minimize logging 2020-12-05 08:48:46 -06:00
Blake Blackshear
587494068c oops 2020-12-05 08:48:46 -06:00
Blake Blackshear
7a4d90a47a only publish end events for true positives 2020-12-05 08:48:46 -06:00
Blake Blackshear
d06b587d33 ensure all events are cleaned up 2020-12-05 08:48:46 -06:00
Blake Blackshear
eef70e434b publish events like a change feed 2020-12-05 08:48:46 -06:00
Blake Blackshear
b39da3ee01 pull from memory if event in progress 2020-12-05 08:48:46 -06:00
Blake Blackshear
e07c4e0d8c add endpoint for event thumbnail 2020-12-05 08:48:46 -06:00
Blake Blackshear
2f41ba6f77 add service to get by id 2020-12-05 08:48:46 -06:00
Blake Blackshear
bf95af0f22 add zones to summary data 2020-12-05 08:48:46 -06:00
Blake Blackshear
2e15847f86 sleep in the right place 2020-12-05 08:48:46 -06:00
Blake Blackshear
5992e85dc8 manage events for unlisted cameras 2020-12-05 08:48:46 -06:00
Blake Blackshear
24d416b869 add event cleanup thread 2020-12-05 08:48:46 -06:00
Blake Blackshear
5dbf368c4b add clip retention to config 2020-12-05 08:48:46 -06:00
Blake Blackshear
7d56fe105f use localtime in group by 2020-12-05 08:48:46 -06:00
Blake Blackshear
e9327aa18c new http endpoints 2020-12-05 08:48:46 -06:00
Blake Blackshear
df56e079de add parameters to event query 2020-12-05 08:48:46 -06:00
Blake Blackshear
8c5bfbd187 only save events when a clip is created 2020-12-05 08:48:46 -06:00
Blake Blackshear
2613e74f97 add bas64 encoded thumbnail to the database 2020-12-05 08:48:46 -06:00
Blake Blackshear
9a7fb96357 check for None value thumbnail_data 2020-12-05 08:48:46 -06:00
Blake Blackshear
37f9dfed92 only set thumbnail data if object is a true positive 2020-12-05 08:48:46 -06:00
Blake Blackshear
68c1544808 add some debug logging to frame cache 2020-12-05 08:48:46 -06:00
Blake Blackshear
2b3d3c5824 dont use a property 2020-12-05 08:48:46 -06:00
Blake Blackshear
efea87a3ea attempt to fix missing thumbs 2020-12-05 08:48:46 -06:00
Blake Blackshear
977785fb10 better frame handling for best images 2020-12-05 08:48:46 -06:00
Blake Blackshear
4e113e62c0 cleanup false_positive attribute 2020-12-05 08:48:46 -06:00
Blake Blackshear
5080b2d781 ensure some valid thumbnail is available 2020-12-05 08:48:46 -06:00
Blake Blackshear
5cfd6d1edb don't save thumbnails for false positives 2020-12-05 08:48:46 -06:00
Blake Blackshear
27ae4d8ab0 cleanup 2020-12-05 08:48:46 -06:00
Blake Blackshear
3db33302ec reduce logging 2020-12-05 08:48:46 -06:00
Blake Blackshear
f2910d48e0 fixes 2020-12-05 08:48:46 -06:00
Blake Blackshear
cf0f8892e2 update nginx config 2020-12-05 08:48:46 -06:00
Blake Blackshear
4d22e172ff stop writing json file to disk 2020-12-05 08:48:46 -06:00
Blake Blackshear
8874a55b0f create tracked object class and save thumbnails 2020-12-05 08:48:46 -06:00
Blake Blackshear
24b703a875 maintain thumbnail frames for tracked objects 2020-12-05 08:48:46 -06:00
Blake Blackshear
8b8f5b5c40 sort imports 2020-12-05 08:48:46 -06:00
Blake Blackshear
eac81136d2 naming threads and processes for logs 2020-12-05 08:48:46 -06:00
Blake Blackshear
d1e27b43ea use a queue for logging 2020-12-05 08:48:46 -06:00
Blake Blackshear
105dcb7094 create typed config classes 2020-12-05 08:48:46 -06:00
Blake Blackshear
c0a16efdc1 add nginx and change default file locations 2020-12-05 08:48:46 -06:00
Blake Blackshear
2800c54743 config setup 2020-12-05 08:48:46 -06:00
Blake Blackshear
2a24e8abcb add watchdog 2020-12-05 08:48:46 -06:00
Blake Blackshear
37ee746ebb add back all endpoints 2020-12-05 08:48:46 -06:00
Blake Blackshear
7ee6bfe855 add event processor 2020-12-05 08:48:46 -06:00
Blake Blackshear
40f57a8754 add capture processes 2020-12-05 08:48:46 -06:00
Blake Blackshear
e0da462223 add camera processors 2020-12-05 08:48:46 -06:00
Blake Blackshear
47a9fc4292 add detected_frames_processor 2020-12-05 08:48:46 -06:00
Blake Blackshear
03fe5158db add detector processes 2020-12-05 08:48:46 -06:00
Blake Blackshear
72be6b480d init db/http/mqtt 2020-12-05 08:48:46 -06:00
Blake Blackshear
a8964dcc1f app container and config schema 2020-12-05 08:48:46 -06:00
Blake Blackshear
732e91ee42 move primary script into the module 2020-12-05 08:48:46 -06:00
Blake Blackshear
27da080ce6 saving events and simple endpoint 2020-12-05 08:48:46 -06:00
Blake Blackshear
075d06b108 basic database model and api endpoint 2020-12-05 08:48:46 -06:00
Blake Blackshear
95dc17ffcd store events in tinydb 2020-12-05 08:48:46 -06:00
Blake Blackshear
408b53f8b4 update events model 2020-12-05 08:48:46 -06:00
Marc Seeger
3ef68a297a Add support for AMD Ryzen iGPU (fixes #311)
This package will add support for the iGPU of AMD Ryzen and presumably a few more AMD cards.
See details of the package here: https://packages.ubuntu.com/focal/mesa-va-drivers
It also adds support for the open source Nvidia Nouveau driver according to https://wiki.debian.org/HardwareVideoAcceleration
2020-12-05 07:00:07 -06:00
Michael Wei
3e9b3711dc Use cv2.bitwise_and instead of numpy.where 2020-12-05 06:59:28 -06:00
40 changed files with 4026 additions and 1603 deletions

View File

@@ -3,4 +3,5 @@ docs/
.gitignore
debug
config/
*.pyc
*.pyc
.git

View File

@@ -1,6 +1,6 @@
---
name: Bug report
about: Create a report to help us improve
name: Bug report or Support request
about: ''
title: ''
labels: ''
assignees: ''
@@ -8,10 +8,10 @@ assignees: ''
---
**Describe the bug**
A clear and concise description of what the bug is.
A clear and concise description of what your issue is.
**Version of frigate**
What version are you using?
Output from `/version`
**Config file**
Include your full config file wrapped in triple back ticks.
@@ -19,14 +19,14 @@ Include your full config file wrapped in triple back ticks.
config here
```
**Logs**
**Frigate container logs**
```
Include relevant log output here
```
**Frigate debug stats**
```
Output from frigate's /debug/stats endpoint
**Frigate stats**
```json
Output from frigate's /stats endpoint
```
**FFprobe from your camera**
@@ -41,6 +41,7 @@ If applicable, add screenshots to help explain your problem.
**Computer Hardware**
- OS: [e.g. Ubuntu, Windows]
- Install method: [e.g. Addon, Docker Compose, Docker Command]
- Virtualization: [e.g. Proxmox, Virtualbox]
- Coral Version: [e.g. USB, PCIe, None]
- Network Setup: [e.g. Wired, WiFi]

6
.gitignore vendored
View File

@@ -1,4 +1,8 @@
*.pyc
debug
.vscode
config/config.yml
config/config.yml
models
*.mp4
*.db
frigate/version.py

View File

@@ -1,13 +1,18 @@
default_target: amd64_frigate
COMMIT_HASH := $(shell git log -1 --pretty=format:"%h")
version:
echo "VERSION='0.8.0-$(COMMIT_HASH)'" > frigate/version.py
amd64_wheels:
docker build --tag blakeblackshear/frigate-wheels:amd64 --file docker/Dockerfile.wheels .
amd64_ffmpeg:
docker build --tag blakeblackshear/frigate-ffmpeg:amd64 --file docker/Dockerfile.ffmpeg.amd64 .
docker build --tag blakeblackshear/frigate-ffmpeg:1.1.0-amd64 --file docker/Dockerfile.ffmpeg.amd64 .
amd64_frigate:
docker build --tag frigate-base --build-arg ARCH=amd64 --file docker/Dockerfile.base .
amd64_frigate: version
docker build --tag frigate-base --build-arg ARCH=amd64 --build-arg FFMPEG_VERSION=1.1.0 --file docker/Dockerfile.base .
docker build --tag frigate --file docker/Dockerfile.amd64 .
amd64_all: amd64_wheels amd64_ffmpeg amd64_frigate
@@ -16,10 +21,10 @@ amd64nvidia_wheels:
docker build --tag blakeblackshear/frigate-wheels:amd64nvidia --file docker/Dockerfile.wheels .
amd64nvidia_ffmpeg:
docker build --tag blakeblackshear/frigate-ffmpeg:amd64nvidia --file docker/Dockerfile.ffmpeg.amd64nvidia .
docker build --tag blakeblackshear/frigate-ffmpeg:1.0.0-amd64nvidia --file docker/Dockerfile.ffmpeg.amd64nvidia .
amd64nvidia_frigate:
docker build --tag frigate-base --build-arg ARCH=amd64nvidia --file docker/Dockerfile.base .
amd64nvidia_frigate: version
docker build --tag frigate-base --build-arg ARCH=amd64nvidia --build-arg FFMPEG_VERSION=1.0.0 --file docker/Dockerfile.base .
docker build --tag frigate --file docker/Dockerfile.amd64nvidia .
amd64nvidia_all: amd64nvidia_wheels amd64nvidia_ffmpeg amd64nvidia_frigate
@@ -28,10 +33,10 @@ aarch64_wheels:
docker build --tag blakeblackshear/frigate-wheels:aarch64 --file docker/Dockerfile.wheels.aarch64 .
aarch64_ffmpeg:
docker build --tag blakeblackshear/frigate-ffmpeg:aarch64 --file docker/Dockerfile.ffmpeg.aarch64 .
docker build --tag blakeblackshear/frigate-ffmpeg:1.0.0-aarch64 --file docker/Dockerfile.ffmpeg.aarch64 .
aarch64_frigate:
docker build --tag frigate-base --build-arg ARCH=aarch64 --file docker/Dockerfile.base .
aarch64_frigate: version
docker build --tag frigate-base --build-arg ARCH=aarch64 --build-arg FFMPEG_VERSION=1.0.0 --file docker/Dockerfile.base .
docker build --tag frigate --file docker/Dockerfile.aarch64 .
armv7_all: armv7_wheels armv7_ffmpeg armv7_frigate
@@ -40,10 +45,10 @@ armv7_wheels:
docker build --tag blakeblackshear/frigate-wheels:armv7 --file docker/Dockerfile.wheels .
armv7_ffmpeg:
docker build --tag blakeblackshear/frigate-ffmpeg:armv7 --file docker/Dockerfile.ffmpeg.armv7 .
docker build --tag blakeblackshear/frigate-ffmpeg:1.0.0-armv7 --file docker/Dockerfile.ffmpeg.armv7 .
armv7_frigate:
docker build --tag frigate-base --build-arg ARCH=armv7 --file docker/Dockerfile.base .
armv7_frigate: version
docker build --tag frigate-base --build-arg ARCH=armv7 --build-arg FFMPEG_VERSION=1.0.0 --file docker/Dockerfile.base .
docker build --tag frigate --file docker/Dockerfile.armv7 .
armv7_all: armv7_wheels armv7_ffmpeg armv7_frigate

659
README.md
View File

@@ -3,26 +3,39 @@
</p>
# Frigate - NVR With Realtime Object Detection for IP Cameras
Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras. Designed for integration with HomeAssistant or others via MQTT.
A complete and local NVR designed for HomeAssistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras.
Use of a [Google Coral Accelerator](https://coral.ai/products/) is optional, but highly recommended. The Coral will outperform even the best CPUs and can process 100+ FPS with very little overhead.
- Tight integration with HomeAssistant via a [custom component](https://github.com/blakeblackshear/frigate-hass-integration)
- Designed to minimize resource use and maximize performance by only looking for objects when and where it is necessary
- Leverages multiprocessing heavily with an emphasis on realtime over processing every frame
- Uses a very low overhead motion detection to determine where to run object detection
- Object detection with TensorFlow runs in separate processes for maximum FPS
- Communicates over MQTT for easy integration into other systems
- 24/7 recording
- Re-streaming via RTMP to reduce the number of connections to your camera
## Screenshots
<div>
<a href="docs/media_browser.png"><img src="docs/media_browser.png" height=400></a>
<a href="docs/notification.png"><img src="docs/notification.png" height=400></a>
</div>
## Documentation
- [How Frigate Works](docs/how-frigate-works.md)
- [Recommended Hardware](#recommended-hardware)
- [Installing](#installing)
- [Configuration File](#configuration)
- [Setting Up Camera Inputs](#setting-up-camera-inputs)
- [Optimizing Performance](#optimizing-performance)
- [Detectors](#detectors)
- [Object Filters](#object-filters)
- [Masks](#masks)
- [Zones](#zones)
- [Recording Clips (save_clips)](#recording-clips)
- [24/7 Recordings (record)](#247-recordings)
- [RTMP Streams (rtmp)](#rtmp-streams)
- [Integration with HomeAssistant](#integration-with-homeassistant)
- [MQTT Topics](#mqtt-topics)
- [HTTP Endpoints](#http-endpoints)
@@ -30,6 +43,11 @@ Use of a [Google Coral Accelerator](https://coral.ai/products/) is optional, but
- [Troubleshooting](#troubleshooting)
## Recommended Hardware
### Cameras
Cameras that output H.264 video and AAC audio will offer the most compatibility with all features of Frigate and HomeAssistant. It is also helpful if your camera supports multiple substreams to allow different resolutions to be used for detection, streaming, clips, and recordings without re-encoding.
### Computer
|Name|Inference Speed|Notes|
|----|---------------|-----|
|Atomic Pi|16ms|Good option for a dedicated low power board with a small number of cameras. Can leverage Intel QuickSync for stream decoding.|
@@ -43,9 +61,14 @@ Use of a [Google Coral Accelerator](https://coral.ai/products/) is optional, but
[Back to top](#documentation)
## Installing
Frigate is a Docker container that can be run on any Docker host including as a [HassOS Addon](https://www.home-assistant.io/addons/). See instructions below for installing the HassOS addon.
For HomeAssistant users, there is also a [custom component (aka integration)](https://github.com/blakeblackshear/frigate-hass-integration). This custom component adds tighter integration with HomeAssistant by automatically setting up camera entities, sensors, media browser for clips and recordings, and a public API to simplify notifications.
Note that HassOS Addons and custom components are different things. If you are already running Frigate with Docker directly, you do not need the Addon since the Addon would run another instance of Frigate.
### HassOS Addon
HassOS users can install via the addon repository. Frigate requires that an MQTT server be running.
HassOS users can install via the addon repository. Frigate requires an MQTT server.
1. Navigate to Supervisor > Add-on Store > Repositories
1. Add https://github.com/blakeblackshear/frigate-hass-addons
1. Setup your configuration in the `Configuration` tab
@@ -56,48 +79,51 @@ Make sure you choose the right image for your architecture:
|Arch|Image Name|
|-|-|
|amd64|blakeblackshear/frigate:stable-amd64|
|amd64nvidia|blakeblackshear/frigate:stable-amd64nvidia|
|armv7|blakeblackshear/frigate:stable-armv7|
|aarch64|blakeblackshear/frigate:stable-aarch64|
It is recommended to run with docker-compose:
```yaml
version: "3.6"
services:
frigate:
container_name: frigate
restart: unless-stopped
privileged: true
image: blakeblackshear/frigate:stable-amd64
image: blakeblackshear/frigate:0.8.0-beta2-amd64
volumes:
- /dev/bus/usb:/dev/bus/usb
- /etc/localtime:/etc/localtime:ro
- <path_to_config>:/config
- <path_to_directory_for_clips>:/clips
- type: tmpfs # 1GB of memory, reduces SSD/SD Card wear
target: /cache
- <path_to_directory_for_clips>:/media/frigate/clips
- <path_to_directory_for_recordings>:/media/frigate/recordings
- type: tmpfs # Optional: 1GB of memory, reduces SSD/SD Card wear
target: /tmp/cache
tmpfs:
size: 100000000
ports:
- "5000:5000"
- "1935:1935" # RTMP feeds
environment:
FRIGATE_RTSP_PASSWORD: "password"
healthcheck:
test: ["CMD", "wget" , "-q", "-O-", "http://localhost:5000"]
interval: 30s
timeout: 10s
retries: 5
start_period: 3m
```
If you can't use docker compose, you can run the container with:
If you can't use docker compose, you can run the container with something similar to this:
```bash
docker run --rm \
--name frigate \
--privileged \
--mount type=tmpfs,target=/tmp/cache,tmpfs-size=100000000 \
-v /dev/bus/usb:/dev/bus/usb \
-v <path_to_config_dir>:/config:ro \
-v <path_to_directory_for_clips>:/media/frigate/clips \
-v <path_to_directory_for_recordings>:/media/frigate/recordings \
-v <path_to_config>:/config:ro \
-v /etc/localtime:/etc/localtime:ro \
-p 5000:5000 \
-e FRIGATE_RTSP_PASSWORD='password' \
blakeblackshear/frigate:stable-amd64
-p 5000:5000 \
-p 1935:1935 \
blakeblackshear/frigate:0.8.0-beta2-amd64
```
### Kubernetes
@@ -138,9 +164,37 @@ You can calculate the necessary shm-size for each camera with the following form
## Configuration
HassOS users can manage their configuration directly in the addon Configuration tab. For other installations, the default location for the config file is `/config/config.yml`. This can be overridden with the `CONFIG_FILE` environment variable. Camera specific ffmpeg parameters are documented [here](docs/cameras.md).
It is recommended to start with a minimal configuration and add to it:
```yaml
# Optional: port for http server (default: shown below)
web_port: 5000
mqtt:
host: mqtt.server.com
cameras:
back:
ffmpeg:
inputs:
- path: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/cam/realmonitor?channel=1&subtype=2
roles:
- detect
- rtmp
width: 1280
height: 720
fps: 5
```
Here are all the configuration options:
```yaml
# Optional: Logging configuration
logger:
# Optional: default log level (default: shown below)
default: info
# Optional: module by module log level configuration
logs:
frigate.mqtt: error
# Optional: database configuration
database:
# Optional: database path
# This may need to be in a custom location if network storage is used for clips
path: /media/frigate/clips/frigate.db
# Optional: detectors configuration
# USB Coral devices will be auto detected with CPU fallback
@@ -152,6 +206,16 @@ detectors:
type: edgetpu
# Optional: device name as defined here: https://coral.ai/docs/edgetpu/multiple-edgetpu/#using-the-tensorflow-lite-python-api
device: usb
# Optional: num_threads value passed to the tflite.Interpreter (default: shown below)
# This value is only used for CPU types
num_threads: 3
# Optional: model configuration
model:
# Required: height of the trained model
height: 320
# Required: width of the trained model
width: 320
# Required: mqtt configuration
mqtt:
@@ -178,47 +242,39 @@ save_clips:
# NOTE: If an object is being tracked for longer than this amount of time, the cache
# will begin to expire and the resulting clip will be the last x seconds of the event.
max_seconds: 300
# Optional: Location to save event clips. (default: shown below)
clips_dir: /clips
# Optional: Location to save cache files for creating clips. (default: shown below)
# NOTE: To reduce wear on SSDs and SD cards, use a tmpfs volume.
cache_dir: /cache
# Optional: size of tmpfs mount to create for cache files (default: not set)
# mount -t tmpfs -o size={tmpfs_cache_size} tmpfs /tmp/cache
# Notice: If you have mounted a tmpfs volume through docker, this value should not be set in your config
tmpfs_cache_size: 256m
# Optional: Retention settings for clips (default: shown below)
retain:
# Required: Default retention days (default: shown below)
default: 10
# Optional: Per object retention days
objects:
person: 15
# Optional: Global ffmpeg args
# Args may be provided as a string or an array
# "ffmpeg" + global_args + input_args + "-i" + input + output_args
ffmpeg:
# Optional: global ffmpeg args (default: shown below)
global_args:
- -hide_banner
- -loglevel
- panic
global_args: -hide_banner -loglevel fatal
# Optional: global hwaccel args (default: shown below)
# NOTE: See hardware acceleration docs for your specific device
hwaccel_args: []
# Optional: global input args (default: shown below)
input_args:
- -avoid_negative_ts
- make_zero
- -fflags
- nobuffer
- -flags
- low_delay
- -strict
- experimental
- -fflags
- +genpts+discardcorrupt
- -rtsp_transport
- tcp
- -stimeout
- '5000000'
- -use_wallclock_as_timestamps
- '1'
# Optional: global output args (default: shown below)
output_args:
- -f
- rawvideo
- -pix_fmt
- yuv420p
input_args: -avoid_negative_ts make_zero -fflags +genpts+discardcorrupt -rtsp_transport tcp -stimeout 5000000 -use_wallclock_as_timestamps 1
# Optional: global output args
output_args:
# Optional: output args for detect streams (default: shown below)
detect: -f rawvideo -pix_fmt yuv420p
# Optional: output args for record streams (default: shown below)
record: -f segment -segment_time 60 -segment_format mp4 -reset_timestamps 1 -strftime 1 -c copy -an
# Optional: output args for clips streams (default: shown below)
clips: -f segment -segment_time 10 -segment_format mp4 -reset_timestamps 1 -strftime 1 -c copy -an
# Optional: output args for rtmp streams (default: shown below)
rtmp: -c copy -f flv
# Optional: Global object filters for all cameras.
# NOTE: can be overridden at the camera level
@@ -231,12 +287,44 @@ objects:
person:
# Optional: minimum width*height of the bounding box for the detected object (default: 0)
min_area: 5000
# Optional: maximum width*height of the bounding box for the detected object (default: max_int)
# Optional: maximum width*height of the bounding box for the detected object (default: 24000000)
max_area: 100000
# Optional: minimum score for the object to initiate tracking (default: shown below)
min_score: 0.5
# Optional: minimum decimal percentage for tracked object's computed score to be considered a true positive (default: shown below)
threshold: 0.85
threshold: 0.7
# Optional: Global motion detection config. These may also be defined at the camera level.
# ADVANCED: Most users will not need to set these values in their config
motion:
# Optional: The threshold passed to cv2.threshold to determine if a pixel is different enough to be counted as motion. (default: shown below)
# Increasing this value will make motion detection less sensitive and decreasing it will make motion detection more sensitive.
# The value should be between 1 and 255.
threshold: 25
# Optional: Minimum size in pixels in the resized motion image that counts as motion
# Increasing this value will prevent smaller areas of motion from being detected. Decreasing will make motion detection more sensitive to smaller
# moving objects.
contour_area: 100
# Optional: Alpha value passed to cv2.accumulateWeighted when averaging the motion delta across multiple frames (default: shown below)
# Higher values mean the current frame impacts the delta a lot, and a single raindrop may register as motion.
# Too low and a fast moving person wont be detected as motion.
delta_alpha: 0.2
# Optional: Alpha value passed to cv2.accumulateWeighted when averaging frames to determine the background (default: shown below)
# Higher values mean the current frame impacts the average a lot, and a new object will be averaged into the background faster.
# Low values will cause things like moving shadows to be detected as motion for longer.
# https://www.geeksforgeeks.org/background-subtraction-in-an-image-using-concept-of-running-average/
frame_alpha: 0.2
# Optional: Height of the resized motion frame (default: 1/6th of the original frame height)
# This operates as an efficient blur alternative. Higher values will result in more granular motion detection at the expense of higher CPU usage.
# Lower values result in less CPU, but small changes may not register as motion.
frame_height: 180
# Optional: Global detecttion settings. These may also be defined at the camera level.
# ADVANCED: Most users will not need to set these values in their config
detect:
# Optional: Number of frames without a detection before frigate considers an object to be gone. (default: double the frame rate)
max_disappeared: 10
# Required: configuration section for cameras
cameras:
@@ -244,9 +332,24 @@ cameras:
back:
# Required: ffmpeg settings for the camera
ffmpeg:
# Required: Source passed to ffmpeg after the -i parameter.
# NOTE: Environment variables that begin with 'FRIGATE_' may be referenced in {}
input: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/cam/realmonitor?channel=1&subtype=2
# Required: A list of input streams for the camera. See documentation for more information.
inputs:
# Required: the path to the stream
# NOTE: Environment variables that begin with 'FRIGATE_' may be referenced in {}
- path: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/cam/realmonitor?channel=1&subtype=2
# Required: list of roles for this stream. valid values are: detect,record,clips,rtmp
# NOTICE: In addition to assigning the record, clips, and rtmp roles,
# they must also be enabled in the camera config.
roles:
- detect
- rtmp
# Optional: stream specific global args (default: inherit)
global_args:
# Optional: stream specific hwaccel args (default: inherit)
hwaccel_args:
# Optional: stream specific input args (default: inherit)
input_args:
# Optional: camera specific global args (default: inherit)
global_args:
# Optional: camera specific hwaccel args (default: inherit)
@@ -256,32 +359,24 @@ cameras:
# Optional: camera specific output args (default: inherit)
output_args:
# Optional: height of the frame
# NOTE: Recommended to set this value, but frigate will attempt to autodetect.
height: 720
# Optional: width of the frame
# NOTE: Recommended to set this value, but frigate will attempt to autodetect.
# Required: width of the frame for the input with the detect role
width: 1280
# Optional: desired fps for your camera
# Required: height of the frame for the input with the detect role
height: 720
# Optional: desired fps for your camera for the input with the detect role
# NOTE: Recommended value of 5. Ideally, try and reduce your FPS on the camera.
# Frigate will attempt to autodetect if not specified.
fps: 5
# Optional: motion mask
# Optional: list of motion masks
# NOTE: see docs for more detailed info on creating masks
mask: poly,0,900,1080,900,1080,1920,0,1920
mask:
- poly,0,900,1080,900,1080,1920,0,1920
# Optional: timeout for highest scoring image before allowing it
# to be replaced by a newer image. (default: shown below)
best_image_timeout: 60
# Optional: camera specific mqtt settings
mqtt:
# Optional: crop the camera frame to the detection region of the object (default: False)
crop_to_region: True
# Optional: resize the image before publishing over mqtt
snapshot_height: 300
# Optional: zones for this camera
zones:
# Required: name of the zone
@@ -297,7 +392,7 @@ cameras:
person:
min_area: 5000
max_area: 100000
threshold: 0.8
threshold: 0.7
# Optional: save clips configuration
# NOTE: This feature does not work if you have added "-vsync drop" in your input params.
@@ -307,10 +402,31 @@ cameras:
# Required: enables clips for the camera (default: shown below)
enabled: False
# Optional: Number of seconds before the event to include in the clips (default: shown below)
pre_capture: 30
pre_capture: 5
# Optional: Number of seconds after the event to include in the clips (default: shown below)
post_capture: 5
# Optional: Objects to save clips for. (default: all tracked objects)
objects:
- person
- person
# Optional: Camera override for retention settings (default: global values)
retain:
# Required: Default retention days (default: shown below)
default: 10
# Optional: Per object retention days
objects:
person: 15
# Optional: 24/7 recording configuration
record:
# Optional: Enable recording (default: global setting)
enabled: False
# Optional: Number of days to retain (default: global setting)
retain_days: 30
# Optional: RTMP re-stream configuration
rtmp:
# Required: Enable the live stream (default: True)
enabled: True
# Optional: Configuration for the snapshots in the debug view and mqtt
snapshots:
@@ -320,6 +436,11 @@ cameras:
draw_zones: False
# Optional: draw bounding boxes on the mqtt snapshots (default: shown below)
draw_bounding_boxes: True
# Optional: crop the snapshot to the detection region (default: shown below)
crop_to_region: True
# Optional: height to resize the snapshot to (default: shown below)
# NOTE: 175px is optimized for thumbnails in the homeassistant media browser
height: 175
# Optional: Camera level object filters config. If defined, this is used instead of the global config.
objects:
@@ -331,13 +452,48 @@ cameras:
min_area: 5000
max_area: 100000
min_score: 0.5
threshold: 0.85
threshold: 0.7
```
[Back to top](#documentation)
## Setting Up Camera Inputs
Up to 4 inputs can be configured for each camera and the role of each input can be mixed and matched based on your needs. This allows you to use a lower resolution stream for object detection, but create clips from a higher resolution stream, or vice versa.
Each role can only be assigned to one input per camera. The options for roles are as follows:
|Role|Description|
|----|-----|
|`detect`|Main feed for object detection|
|`clips`|Clips of events from objects detected in the `detect` feed. [docs](#recording-clips)|
|`record`|Saves 60 second segments of the video feed. [docs](#247-recordings)|
|`rtmp`|Broadcast as an RTMP feed for other services to consume. [docs](#rtmp-streams)|
Example:
```yaml
mqtt:
host: mqtt.server.com
cameras:
back:
ffmpeg:
inputs:
- path: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/cam/realmonitor?channel=1&subtype=2
roles:
- detect
- rtmp
- path: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/live
roles:
- clips
- record
width: 1280
height: 720
fps: 5
```
[Back to top](#documentation)
## Optimizing Performance
- **Google Coral**: It is strongly recommended to use a Google Coral, but Frigate will fall back to CPU in the event one is not found. Offloading TensorFlow to the Google Coral is an order of magnitude faster and will reduce your CPU load dramatically. A $60 device will outperform $2000 CPU.
- **Resolution**: Choose a camera resolution where the smallest object you want to detect barely fits inside a 300x300px square. The model used by Frigate is trained on 300x300px images, so you will get worse performance and no improvement in accuracy by using a larger resolution since Frigate resizes the area where it is looking for objects to 300x300 anyway.
- **Google Coral**: It is strongly recommended to use a Google Coral, but Frigate will fall back to CPU in the event one is not found. Offloading TensorFlow to the Google Coral is an order of magnitude faster and will reduce your CPU load dramatically. A $60 device will outperform $2000 CPU. Frigate should work with any supported Coral device from https://coral.ai
- **Resolution**: For the `detect` input, choose a camera resolution where the smallest object you want to detect barely fits inside a 300x300px square. The model used by Frigate is trained on 300x300px images, so you will get worse performance and no improvement in accuracy by using a larger resolution since Frigate resizes the area where it is looking for objects to 300x300 anyway.
- **FPS**: 5 frames per second should be adequate. Higher frame rates will require more CPU usage without improving detections or accuracy. Reducing the frame rate on your camera will have the greatest improvement on system resources.
- **Hardware Acceleration**: Make sure you configure the `hwaccel_args` for your hardware. They provide a significant reduction in CPU usage if they are available.
- **Masks**: Masks can be used to ignore motion and reduce your idle CPU load. If you have areas with regular motion such as timestamps or trees blowing in the wind, frigate will constantly try to determine if that motion is from a person or other object you are tracking. Those detections not only increase your average CPU usage, but also clog the pipeline for detecting objects elsewhere. If you are experiencing high values for `detection_fps` when no objects of interest are in the cameras, you should use masks to tell frigate to ignore movement from trees, bushes, timestamps, or any part of the image where detections should not be wasted looking for objects.
@@ -345,7 +501,8 @@ cameras:
### FFmpeg Hardware Acceleration
Frigate works on Raspberry Pi 3b/4 and x86 machines. It is recommended to update your configuration to enable hardware accelerated decoding in ffmpeg. Depending on your system, these parameters may not be compatible.
Raspberry Pi 3/4 (32-bit OS):
Raspberry Pi 3/4 (32-bit OS)
**NOTICE**: If you are using the addon, ensure you turn off `Protection mode` for hardware acceleration.
```yaml
ffmpeg:
hwaccel_args:
@@ -354,6 +511,7 @@ ffmpeg:
```
Raspberry Pi 3/4 (64-bit OS)
**NOTICE**: If you are using the addon, ensure you turn off `Protection mode` for hardware acceleration.
```yaml
ffmpeg:
hwaccel_args:
@@ -374,7 +532,17 @@ ffmpeg:
```
Intel-based CPUs (>=10th Generation) via Quicksync (https://trac.ffmpeg.org/wiki/Hardware/QuickSync)
**Note:** You also need to set `LIBVA_DRIVER_NAME=iHD` as an environment variable on the container.
```yaml
ffmpeg:
hwaccel_args:
- -hwaccel
- qsv
- -qsv_device
- /dev/dri/renderD128
```
AMD/ATI GPUs (Radeon HD 2000 and newer GPUs) via libva-mesa-driver (https://trac.ffmpeg.org/wiki/Hardware/QuickSync)
**Note:** You also need to set `LIBVA_DRIVER_NAME=radeonsi` as an environment variable on the container.
```yaml
ffmpeg:
hwaccel_args:
@@ -393,6 +561,8 @@ By default Frigate will look for a USB Coral device and fall back to the CPU if
Frigate supports `edgetpu` and `cpu` as detector types. The device value should be specified according to the [Documentation for the TensorFlow Lite Python API](https://coral.ai/docs/edgetpu/multiple-edgetpu/#using-the-tensorflow-lite-python-api).
**Note**: There is no support for Nvidia GPUs to perform object detection with tensorflow. It can be used for ffmpeg decoding, but not object detection.
Single USB Coral:
```yaml
detectors:
@@ -495,84 +665,77 @@ During testing, `draw_zones` should be set in the config to draw the zone on the
## Recording Clips
**Note**: Previous versions of frigate included `-vsync drop` in input parameters. This is not compatible with FFmpeg's segment feature and must be removed from your input parameters if you have overrides set.
Frigate can save video clips without any CPU overhead for encoding by simply copying the stream directly with FFmpeg. It leverages FFmpeg's segment functionality to maintain a cache of video for each camera. The cache files are written to disk at `cache_dir` and do not introduce memory overhead. When an object is being tracked, it will extend the cache to ensure it can assemble a clip when the event ends. Once the event ends, it again uses FFmpeg to assemble a clip by combining the video clips without any encoding by the CPU. Assembled clips are are saved to the `clips_dir` directory along with a json file containing the current information about the tracked object.
Frigate can save video clips without any CPU overhead for encoding by simply copying the stream directly with FFmpeg. It leverages FFmpeg's segment functionality to maintain a cache of video for each camera. The cache files are written to disk at `/tmp/cache` and do not introduce memory overhead. When an object is being tracked, it will extend the cache to ensure it can assemble a clip when the event ends. Once the event ends, it again uses FFmpeg to assemble a clip by combining the video clips without any encoding by the CPU. Assembled clips are are saved to `/media/frigate/clips`. Clips are retained according to the retention settings defined on the config for each object type.
### Database
Event and clip information is managed in a sqlite database at `/media/frigate/clips/frigate.db`. If that database is deleted, clips will be orphaned and will need to be cleaned up manually. They also won't show up in the Media Browser within HomeAssistant.
If you are storing your clips on a network share (SMB, NFS, etc), you may get a `database is locked` error message on startup. You can customize the location of the database in the config if necessary.
### Global Configuration Options
- `max_seconds`: This limits the size of the cache when an object is being tracked. If an object is stationary and being tracked for a long time, the cache files will expire and this value will be the maximum clip length for the *end* of the event. For example, if this is set to 300 seconds and an object is being tracked for 600 seconds, the clip will end up being the last 300 seconds. Defaults to 300 seconds.
### Per-camera Configuration Options
- `pre_capture`: Defines how much time should be included in the clip prior to the beginning of the event. Defaults to 30 seconds.
- `pre_capture`: Defines how much time should be included in the clip prior to the beginning of the event. Defaults to 5 seconds.
- `post_capture`: Defines how much time should be included in the clip after the end of the event. Defaults to 5 seconds.
- `objects`: List of object types to save clips for. Object types here must be listed for tracking at the camera or global configuration. Defaults to all tracked objects.
[Back to top](#documentation)
## 24/7 Recordings
**Note**: Previous versions of frigate included `-vsync drop` in input parameters. This is not compatible with FFmpeg's segment feature and must be removed from your input parameters if you have overrides set.
24/7 recordings can be enabled and are stored at `/media/frigate/recordings`. The folder structure for the recordings is `YYYY-MM/DD/HH/<camera_name>/MM.SS.mp4`. These recordings are written directly from your camera stream without re-encoding and are available in HomeAssistant's media browser. Each camera supports a configurable retention policy in the config.
[Back to top](#documentation)
## RTMP Streams
Frigate can re-stream your video feed as a RTMP feed for other applications such as HomeAssistant to utilize it at `rtmp://<frigate_host>/live/<camera_name>`. Port 1935 must be open. This allows you to use a video feed for detection in frigate and HomeAssistant live view at the same time without having to make two separate connections to the camera. The video feed is copied from the original video feed directly to avoid re-encoding. This feed does not include any annotation by Frigate.
Some video feeds are not compatible with RTMP. If you are experiencing issues, check to make sure your camera feed is h264 with AAC audio. If your camera doesn't support a compatible format for RTMP, you can use the ffmpeg args to re-encode it on the fly at the expense of increased CPU utilization.
[Back to top](#documentation)
## Integration with HomeAssistant
Setup a camera, binary_sensor, sensor and optionally automation as shown for each camera you define in frigate. Replace <camera_name> with the camera name as defined in the frigate `config.yml` (The `frigate_coral_fps` and `frigate_coral_inference` sensors only need to be defined once)
The best way to integrate with HomeAssistant is to use the [official integration](https://github.com/blakeblackshear/frigate-hass-integration). When configuring the integration, you will be asked for the `Host` of your frigate instance. This value should be the url you use to access Frigate in the browser and will look like `http://<host>:5000/`. If you are using HassOS with the addon, the host should be `http://ccab4aaf-frigate:5000` (or `http://ccab4aaf-frigate-beta:5000` if your are using the beta version of the addon). HomeAssistant needs access to port 5000 (api) and 1935 (rtmp) for all features. The integration will setup the following entities within HomeAssistant:
Sensors:
- Stats to monitor frigate performance
- Object counts for all zones and cameras
Cameras:
- Cameras for image of the last detected object for each camera
- Camera entities with stream support (requires RTMP)
Media Browser:
- Rich UI with thumbnails for browsing event clips
- Rich UI for browsing 24/7 recordings by month, day, camera, time
API:
- Notification API with public facing endpoints for images in notifications
### Notifications
Frigate publishes event information in the form of a change feed via MQTT. This allows lots of customization for notifications to meet your needs. Event changes are published with `before` and `after` information as shown [here](#frigateevents).
Here is a simple example of a notification automation of events which will update the existing notification for each change. This means the image you see in the notification will update as frigate finds a "better" image.
```yaml
camera:
- name: <camera_name> Last Person
platform: mqtt
topic: frigate/<camera_name>/person/snapshot
- name: <camera_name> Last Car
platform: mqtt
topic: frigate/<camera_name>/car/snapshot
binary_sensor:
- name: <camera_name> Person
platform: mqtt
state_topic: "frigate/<camera_name>/person"
device_class: motion
availability_topic: "frigate/available"
sensor:
- platform: rest
name: Frigate Debug
resource: http://localhost:5000/debug/stats
scan_interval: 5
json_attributes:
- <camera_name>
- detection_fps
- detectors
value_template: 'OK'
- platform: template
sensors:
<camera_name>_fps:
value_template: '{{ states.sensor.frigate_debug.attributes["<camera_name>"]["camera_fps"] }}'
unit_of_measurement: 'FPS'
<camera_name>_skipped_fps:
value_template: '{{ states.sensor.frigate_debug.attributes["<camera_name>"]["skipped_fps"] }}'
unit_of_measurement: 'FPS'
<camera_name>_detection_fps:
value_template: '{{ states.sensor.frigate_debug.attributes["<camera_name>"]["detection_fps"] }}'
unit_of_measurement: 'FPS'
frigate_detection_fps:
value_template: '{{ states.sensor.frigate_debug.attributes["detection_fps"] }}'
unit_of_measurement: 'FPS'
frigate_coral_inference:
value_template: '{{ states.sensor.frigate_debug.attributes["detectors"]["coral"]["inference_speed"] }}'
unit_of_measurement: 'ms'
automation:
- alias: Alert me if a person is detected while armed away
trigger:
platform: state
entity_id: binary_sensor.camera_person
from: 'off'
to: 'on'
condition:
- condition: state
entity_id: alarm_control_panel.home_alarm
state: armed_away
- alias: Notify of events
trigger:
platform: mqtt
topic: frigate/events
action:
- service: notify.user_telegram
data:
message: "A person was detected."
- service: notify.mobile_app_pixel_3
data_template:
message: 'A {{trigger.payload_json["after"]["label"]}} was detected.'
data:
photo:
- url: http://<ip>:5000/<camera_name>/person/best.jpg
caption: A person was detected.
image: 'https://your.public.hass.address.com/api/frigate/notifications/{{trigger.payload_json["after"]["id"]}}.jpg?format=android'
tag: '{{trigger.payload_json["after"]["id"]}}'
```
Note that the image url has `?format=android`. This adjusts the aspect ratio to be idea for android notifications. For iOS optimized snapshots, no format parameter needs to be passed.
You can find some additional examples for notifications [here](docs/notification-examples.md).
[Back to top](#documentation)
@@ -582,7 +745,19 @@ A web server is available on port 5000 with the following endpoints.
### `/<camera_name>`
An mjpeg stream for debugging. Keep in mind the mjpeg endpoint is for debugging only and will put additional load on the system when in use.
You can access a higher resolution mjpeg stream by appending `h=height-in-pixels` to the endpoint. For example `http://localhost:5000/back?h=1080`. You can also increase the FPS by appending `fps=frame-rate` to the URL such as `http://localhost:5000/back?fps=10` or both with `?fps=10&h=1000`
Accepts the following query string parameters:
|param|Type|Description|
|----|-----|--|
|`fps`|int|Frame rate|
|`h`|int|Height in pixels|
|`bbox`|int|Show bounding boxes for detected objects (0 or 1)|
|`timestamp`|int|Print the timestamp in the upper left (0 or 1)|
|`zones`|int|Draw the zones on the image (0 or 1)|
|`mask`|int|Overlay the mask on the image (0 or 1)|
|`motion`|int|Draw blue boxes for areas with detected motion (0 or 1)|
|`regions`|int|Draw green boxes for areas where object detection was run (0 or 1)|
You can access a higher resolution mjpeg stream by appending `h=height-in-pixels` to the endpoint. For example `http://localhost:5000/back?h=1080`. You can also increase the FPS by appending `fps=frame-rate` to the URL such as `http://localhost:5000/back?fps=10` or both with `?fps=10&h=1000`.
### `/<camera_name>/<object_name>/best.jpg[?h=300&crop=1]`
The best snapshot for any object type. It is a full resolution image by default.
@@ -594,10 +769,21 @@ Example parameters:
### `/<camera_name>/latest.jpg[?h=300]`
The most recent frame that frigate has finished processing. It is a full resolution image by default.
Accepts the following query string parameters:
|param|Type|Description|
|----|-----|--|
|`h`|int|Height in pixels|
|`bbox`|int|Show bounding boxes for detected objects (0 or 1)|
|`timestamp`|int|Print the timestamp in the upper left (0 or 1)|
|`zones`|int|Draw the zones on the image (0 or 1)|
|`mask`|int|Overlay the mask on the image (0 or 1)|
|`motion`|int|Draw blue boxes for areas with detected motion (0 or 1)|
|`regions`|int|Draw green boxes for areas where object detection was run (0 or 1)|
Example parameters:
- `h=300`: resizes the image to 300 pixes tall
### `/debug/stats`
### `/stats`
Contains some granular debug info that can be used for sensors in HomeAssistant.
Sample response:
@@ -620,25 +806,7 @@ Sample response:
/***************
* PID for the ffmpeg process that consumes this camera
***************/
"ffmpeg_pid": 27,
/***************
* Timestamps of frames in various parts of processing
***************/
"frame_info": {
/***************
* Timestamp of the frame frigate is running object detection on.
***************/
"detect": 1596994991.91426,
/***************
* Timestamp of the frame frigate is processing detected objects on.
* This is where MQTT messages are sent, zones are checked, etc.
***************/
"process": 1596994991.91426,
/***************
* Timestamp of the frame frigate last read from ffmpeg.
***************/
"read": 1596994991.91426
},
"capture_pid": 27,
/***************
* PID for the process that runs detection for this camera
***************/
@@ -648,11 +816,6 @@ Sample response:
***************/
"process_fps": 5.1,
/***************
* Timestamp when the detection process started looking for a frame. If this value stays constant
* for a long time, that means there aren't any frames in the frame queue.
***************/
"read_start": 1596994991.943814,
/***************
* Frames per second skip for processing by frigate.
***************/
"skipped_fps": 0.0
@@ -683,6 +846,34 @@ Sample response:
}
```
### `/config`
A json representation of your configuration
### `/version`
Version info
### `/events`
Events from the database. Accepts the following query string parameters:
|param|Type|Description|
|----|-----|--|
|`before`|int|Epoch time|
|`after`|int|Epoch time|
|`camera`|str|Camera name|
|`label`|str|Label name|
|`zone`|str|Zone name|
|`limit`|int|Limit the number of events returned|
### `/events/summary`
Returns summary data for events in the database. Used by the HomeAssistant integration.
### `/events/<id>`
Returns data for a single event.
### `/events/<id>/snapshot.jpg`
Returns a snapshot for the event id optimized for notifications. Works while the event is in progress and after completion. Passing `?format=android` will convert the thumbnail to 2:1 aspect ratio.
### `/clips/<camera>-<id>.mp4`
Video clip for the given camera and event id.
[Back to top](#documentation)
## MQTT Topics
@@ -694,7 +885,10 @@ Designed to be used as an availability topic with HomeAssistant. Possible messag
"offline": published right before frigate stops
### `frigate/<camera_name>/<object_name>`
Publishes `ON` or `OFF` and is designed to be used a as a binary sensor in HomeAssistant for whether or not that object type is detected.
Publishes the count of objects for the camera for use as a sensor in HomeAssistant.
### `frigate/<zone_name>/<object_name>`
Publishes the count of objects for the zone for use as a sensor in HomeAssistant.
### `frigate/<camera_name>/<object_name>/snapshot`
Publishes a jpeg encoded frame of the detected object type. When the object is no longer detected, the highest confidence image is published or the original image
@@ -702,48 +896,79 @@ is published again.
The height and crop of snapshots can be configured in the config.
### `frigate/<camera_name>/events/start`
Message published at the start of any tracked object. JSON looks as follows:
```json
### `frigate/events`
Message published for each changed event. The first message is published when the tracked object is no longer marked as a false_positive. When frigate finds a better snapshot of the tracked object or when a zone change occurs, it will publish a message with the same id. When the event ends, a final message is published with `end_time` set.
```jsonc
{
"label": "person",
"score": 0.87890625,
"box": [
95,
155,
581,
1182
],
"area": 499122,
"region": [
0,
132,
1080,
1212
],
"frame_time": 1600208805.60284,
"centroid": [
338,
668
],
"id": "1600208805.60284-k1l43p",
"start_time": 1600208805.60284,
"top_score": 0.87890625,
"zones": [],
"score_history": [
0.87890625
],
"computed_score": 0.0,
"false_positive": true
"before": {
"id": "1607123955.475377-mxklsc",
"camera": "front_door",
"frame_time": 1607123961.837752,
"label": "person",
"top_score": 0.958984375,
"false_positive": false,
"start_time": 1607123955.475377,
"end_time": null,
"score": 0.7890625,
"box": [
424,
500,
536,
712
],
"area": 23744,
"region": [
264,
450,
667,
853
],
"current_zones": [
"driveway"
],
"entered_zones": [
"yard",
"driveway"
],
"thumbnail": null
},
"after": {
"id": "1607123955.475377-mxklsc",
"camera": "front_door",
"frame_time": 1607123962.082975,
"label": "person",
"top_score": 0.958984375,
"false_positive": false,
"start_time": 1607123955.475377,
"end_time": null,
"score": 0.87890625,
"box": [
432,
496,
544,
854
],
"area": 40096,
"region": [
218,
440,
693,
915
],
"current_zones": [
"yard",
"driveway"
],
"entered_zones": [
"yard",
"driveway"
],
"thumbnail": null
}
}
```
### `frigate/<camera_name>/events/end`
Same as `frigate/<camera_name>/events/start`, but with an `end_time` property as well.
### `frigate/<zone_name>/<object_name>`
Publishes `ON` when the object enters the zone and `OFF` when the object disappears or exits the zone. Designed to be used a as a binary sensor in HomeAssistant for whether or not that object type is detected in the zone.
[Back to top](#documentation)
## Custom Models
@@ -752,6 +977,8 @@ Models for both CPU and EdgeTPU (Coral) are bundled in the image. You can use yo
- EdgeTPU Model: `/edgetpu_model.tflite`
- Labels: `/labelmap.txt`
You also need to update the model width/height in the config if they differ from the defaults.
### Customizing the Labelmap
The labelmap can be customized to your needs. A common reason to do this is to combine multiple object types that are easily confused when you don't need to be as granular such as car/truck. You must retain the same number of labels, but you can change the names. To change:
@@ -764,16 +991,28 @@ The labelmap can be customized to your needs. A common reason to do this is to c
[Back to top](#documentation)
## Logging
Available log levels are: `debug`, `info`, `warning`, `error`, `critical`
Examples of available modules are:
- `frigate.app`
- `frigate.mqtt`
- `frigate.edgetpu`
- `frigate.zeroconf`
- `detector.<detector_name>`
- `watchdog.<camera_name>`
- `ffmpeg.<camera_name>.<sorted_roles>` NOTE: All FFmpeg logs are sent as `error` level.
## Troubleshooting
### "[mov,mp4,m4a,3gp,3g2,mj2 @ 0x5639eeb6e140] moov atom not found"
These messages in the logs are expected in certain situations. Frigate checks the integrity of the video cache before assembling clips. Occasionally these cached files will be invalid and cleaned up automatically.
### "ffmpeg didnt return a frame. something is wrong"
Turn on logging for the camera by overriding the global_args and setting the log level to `info`:
Turn on logging for the ffmpeg process by overriding the global_args and setting the log level to `info` (the default is `fatal`). Note that all ffmpeg logs show up in the Frigate logs as `ERROR` level. This does not mean they are actually errors.
```yaml
ffmpeg:
global_args:
- -hide_banner
- -loglevel
- info
global_args: -hide_banner -loglevel info
```
### "On connect called"

View File

@@ -1,441 +0,0 @@
import faulthandler; faulthandler.enable()
import os
import signal
import sys
import traceback
import signal
import cv2
import time
import datetime
import queue
import yaml
import json
import threading
import multiprocessing as mp
import subprocess as sp
import numpy as np
import logging
from flask import Flask, Response, make_response, jsonify, request
import paho.mqtt.client as mqtt
from frigate.video import capture_camera, track_camera, get_ffmpeg_input, get_frame_shape, CameraCapture, start_or_restart_ffmpeg
from frigate.object_processing import TrackedObjectProcessor
from frigate.events import EventProcessor
from frigate.util import EventsPerSecond
from frigate.edgetpu import EdgeTPUProcess
FRIGATE_VARS = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')}
CONFIG_FILE = os.environ.get('CONFIG_FILE', '/config/config.yml')
if CONFIG_FILE.endswith(".yml"):
with open(CONFIG_FILE) as f:
CONFIG = yaml.safe_load(f)
elif CONFIG_FILE.endswith(".json"):
with open(CONFIG_FILE) as f:
CONFIG = json.load(f)
CACHE_DIR = CONFIG.get('save_clips', {}).get('cache_dir', '/cache')
CLIPS_DIR = CONFIG.get('save_clips', {}).get('clips_dir', '/clips')
if not os.path.exists(CACHE_DIR) and not os.path.islink(CACHE_DIR):
os.makedirs(CACHE_DIR)
if not os.path.exists(CLIPS_DIR) and not os.path.islink(CLIPS_DIR):
os.makedirs(CLIPS_DIR)
MQTT_HOST = CONFIG['mqtt']['host']
MQTT_PORT = CONFIG.get('mqtt', {}).get('port', 1883)
MQTT_TOPIC_PREFIX = CONFIG.get('mqtt', {}).get('topic_prefix', 'frigate')
MQTT_USER = CONFIG.get('mqtt', {}).get('user')
MQTT_PASS = CONFIG.get('mqtt', {}).get('password')
if not MQTT_PASS is None:
MQTT_PASS = MQTT_PASS.format(**FRIGATE_VARS)
MQTT_CLIENT_ID = CONFIG.get('mqtt', {}).get('client_id', 'frigate')
# Set the default FFmpeg config
FFMPEG_CONFIG = CONFIG.get('ffmpeg', {})
FFMPEG_DEFAULT_CONFIG = {
'global_args': FFMPEG_CONFIG.get('global_args',
['-hide_banner','-loglevel','panic']),
'hwaccel_args': FFMPEG_CONFIG.get('hwaccel_args',
[]),
'input_args': FFMPEG_CONFIG.get('input_args',
['-avoid_negative_ts', 'make_zero',
'-fflags', 'nobuffer',
'-flags', 'low_delay',
'-strict', 'experimental',
'-fflags', '+genpts+discardcorrupt',
'-rtsp_transport', 'tcp',
'-stimeout', '5000000',
'-use_wallclock_as_timestamps', '1']),
'output_args': FFMPEG_CONFIG.get('output_args',
['-f', 'rawvideo',
'-pix_fmt', 'yuv420p'])
}
GLOBAL_OBJECT_CONFIG = CONFIG.get('objects', {})
WEB_PORT = CONFIG.get('web_port', 5000)
DETECTORS = CONFIG.get('detectors', {'coral': {'type': 'edgetpu', 'device': 'usb'}})
class FrigateWatchdog(threading.Thread):
def __init__(self, camera_processes, config, detectors, detection_queue, out_events, tracked_objects_queue, stop_event):
threading.Thread.__init__(self)
self.camera_processes = camera_processes
self.config = config
self.detectors = detectors
self.detection_queue = detection_queue
self.out_events = out_events
self.tracked_objects_queue = tracked_objects_queue
self.stop_event = stop_event
def run(self):
time.sleep(10)
while True:
# wait a bit before checking
time.sleep(10)
if self.stop_event.is_set():
print(f"Exiting watchdog...")
break
now = datetime.datetime.now().timestamp()
# check the detection processes
for detector in self.detectors.values():
detection_start = detector.detection_start.value
if (detection_start > 0.0 and
now - detection_start > 10):
print("Detection appears to be stuck. Restarting detection process")
detector.start_or_restart()
elif not detector.detect_process.is_alive():
print("Detection appears to have stopped. Restarting detection process")
detector.start_or_restart()
# check the camera processes
for name, camera_process in self.camera_processes.items():
process = camera_process['process']
if not process.is_alive():
print(f"Track process for {name} is not alive. Starting again...")
camera_process['camera_fps'].value = 0.0
camera_process['process_fps'].value = 0.0
camera_process['detection_fps'].value = 0.0
camera_process['read_start'].value = 0.0
process = mp.Process(target=track_camera, args=(name, self.config,
self.detection_queue, self.out_events[name], self.tracked_objects_queue, camera_process, self.stop_event))
process.daemon = True
camera_process['process'] = process
process.start()
print(f"Track process started for {name}: {process.pid}")
def main():
stop_event = threading.Event()
# connect to mqtt and setup last will
def on_connect(client, userdata, flags, rc):
print("On connect called")
if rc != 0:
if rc == 3:
print ("MQTT Server unavailable")
elif rc == 4:
print ("MQTT Bad username or password")
elif rc == 5:
print ("MQTT Not authorized")
else:
print ("Unable to connect to MQTT: Connection refused. Error code: " + str(rc))
# publish a message to signal that the service is running
client.publish(MQTT_TOPIC_PREFIX+'/available', 'online', retain=True)
client = mqtt.Client(client_id=MQTT_CLIENT_ID)
client.on_connect = on_connect
client.will_set(MQTT_TOPIC_PREFIX+'/available', payload='offline', qos=1, retain=True)
if not MQTT_USER is None:
client.username_pw_set(MQTT_USER, password=MQTT_PASS)
client.connect(MQTT_HOST, MQTT_PORT, 60)
client.loop_start()
##
# Setup config defaults for cameras
##
for name, config in CONFIG['cameras'].items():
config['snapshots'] = {
'show_timestamp': config.get('snapshots', {}).get('show_timestamp', True),
'draw_zones': config.get('snapshots', {}).get('draw_zones', False),
'draw_bounding_boxes': config.get('snapshots', {}).get('draw_bounding_boxes', True)
}
config['zones'] = config.get('zones', {})
# Queue for cameras to push tracked objects to
tracked_objects_queue = mp.Queue(maxsize=len(CONFIG['cameras'].keys())*2)
# Queue for clip processing
event_queue = mp.Queue()
# create the detection pipes and shms
out_events = {}
camera_shms = []
for name in CONFIG['cameras'].keys():
out_events[name] = mp.Event()
shm_in = mp.shared_memory.SharedMemory(name=name, create=True, size=300*300*3)
shm_out = mp.shared_memory.SharedMemory(name=f"out-{name}", create=True, size=20*6*4)
camera_shms.append(shm_in)
camera_shms.append(shm_out)
detection_queue = mp.Queue()
detectors = {}
for name, detector in DETECTORS.items():
if detector['type'] == 'cpu':
detectors[name] = EdgeTPUProcess(detection_queue, out_events=out_events, tf_device='cpu')
if detector['type'] == 'edgetpu':
detectors[name] = EdgeTPUProcess(detection_queue, out_events=out_events, tf_device=detector['device'])
# create the camera processes
camera_process_info = {}
for name, config in CONFIG['cameras'].items():
# Merge the ffmpeg config with the global config
ffmpeg = config.get('ffmpeg', {})
ffmpeg_input = get_ffmpeg_input(ffmpeg['input'])
ffmpeg_global_args = ffmpeg.get('global_args', FFMPEG_DEFAULT_CONFIG['global_args'])
ffmpeg_hwaccel_args = ffmpeg.get('hwaccel_args', FFMPEG_DEFAULT_CONFIG['hwaccel_args'])
ffmpeg_input_args = ffmpeg.get('input_args', FFMPEG_DEFAULT_CONFIG['input_args'])
ffmpeg_output_args = ffmpeg.get('output_args', FFMPEG_DEFAULT_CONFIG['output_args'])
if not config.get('fps') is None:
ffmpeg_output_args = ["-r", str(config.get('fps'))] + ffmpeg_output_args
if config.get('save_clips', {}).get('enabled', False):
ffmpeg_output_args = [
"-f",
"segment",
"-segment_time",
"10",
"-segment_format",
"mp4",
"-reset_timestamps",
"1",
"-strftime",
"1",
"-c",
"copy",
"-an",
"-map",
"0",
f"{os.path.join(CACHE_DIR, name)}-%Y%m%d%H%M%S.mp4"
] + ffmpeg_output_args
ffmpeg_cmd = (['ffmpeg'] +
ffmpeg_global_args +
ffmpeg_hwaccel_args +
ffmpeg_input_args +
['-i', ffmpeg_input] +
ffmpeg_output_args +
['pipe:'])
config['ffmpeg_cmd'] = ffmpeg_cmd
if 'width' in config and 'height' in config:
frame_shape = (config['height'], config['width'], 3)
else:
frame_shape = get_frame_shape(ffmpeg_input)
config['frame_shape'] = frame_shape
config['take_frame'] = config.get('take_frame', 1)
camera_process_info[name] = {
'camera_fps': mp.Value('d', 0.0),
'skipped_fps': mp.Value('d', 0.0),
'process_fps': mp.Value('d', 0.0),
'detection_fps': mp.Value('d', 0.0),
'detection_frame': mp.Value('d', 0.0),
'read_start': mp.Value('d', 0.0),
'ffmpeg_pid': mp.Value('i', 0),
'frame_queue': mp.Queue(maxsize=2)
}
# merge global object config into camera object config
camera_objects_config = config.get('objects', {})
# get objects to track for camera
objects_to_track = camera_objects_config.get('track', GLOBAL_OBJECT_CONFIG.get('track', ['person']))
# get object filters
object_filters = camera_objects_config.get('filters', GLOBAL_OBJECT_CONFIG.get('filters', {}))
config['objects'] = {
'track': objects_to_track,
'filters': object_filters
}
capture_process = mp.Process(target=capture_camera, args=(name, config,
camera_process_info[name], stop_event))
capture_process.daemon = True
camera_process_info[name]['capture_process'] = capture_process
camera_process = mp.Process(target=track_camera, args=(name, config,
detection_queue, out_events[name], tracked_objects_queue, camera_process_info[name], stop_event))
camera_process.daemon = True
camera_process_info[name]['process'] = camera_process
# start the camera_processes
for name, camera_process in camera_process_info.items():
camera_process['capture_process'].start()
print(f"Camera capture process started for {name}: {camera_process['capture_process'].pid}")
camera_process['process'].start()
print(f"Camera process started for {name}: {camera_process['process'].pid}")
event_processor = EventProcessor(CONFIG, camera_process_info, CACHE_DIR, CLIPS_DIR, event_queue, stop_event)
event_processor.start()
object_processor = TrackedObjectProcessor(CONFIG['cameras'], client, MQTT_TOPIC_PREFIX, tracked_objects_queue, event_queue, stop_event)
object_processor.start()
frigate_watchdog = FrigateWatchdog(camera_process_info, CONFIG['cameras'], detectors, detection_queue, out_events, tracked_objects_queue, stop_event)
frigate_watchdog.start()
def receiveSignal(signalNumber, frame):
print('Received:', signalNumber)
stop_event.set()
event_processor.join()
object_processor.join()
frigate_watchdog.join()
for detector in detectors.values():
detector.stop()
for shm in camera_shms:
shm.close()
shm.unlink()
sys.exit()
signal.signal(signal.SIGTERM, receiveSignal)
signal.signal(signal.SIGINT, receiveSignal)
# create a flask app that encodes frames a mjpeg on demand
app = Flask(__name__)
log = logging.getLogger('werkzeug')
log.setLevel(logging.ERROR)
@app.route('/')
def ishealthy():
# return a healh
return "Frigate is running. Alive and healthy!"
@app.route('/debug/stack')
def processor_stack():
frame = sys._current_frames().get(object_processor.ident, None)
if frame:
return "<br>".join(traceback.format_stack(frame)), 200
else:
return "no frame found", 200
@app.route('/debug/print_stack')
def print_stack():
pid = int(request.args.get('pid', 0))
if pid == 0:
return "missing pid", 200
else:
os.kill(pid, signal.SIGUSR1)
return "check logs", 200
@app.route('/debug/stats')
def stats():
stats = {}
total_detection_fps = 0
for name, camera_stats in camera_process_info.items():
total_detection_fps += camera_stats['detection_fps'].value
stats[name] = {
'camera_fps': round(camera_stats['camera_fps'].value, 2),
'process_fps': round(camera_stats['process_fps'].value, 2),
'skipped_fps': round(camera_stats['skipped_fps'].value, 2),
'detection_fps': round(camera_stats['detection_fps'].value, 2),
'pid': camera_stats['process'].pid,
'capture_pid': camera_stats['capture_process'].pid,
'frame_info': {
'detect': camera_stats['detection_frame'].value,
'process': object_processor.camera_data[name]['current_frame_time']
}
}
stats['detectors'] = {}
for name, detector in detectors.items():
stats['detectors'][name] = {
'inference_speed': round(detector.avg_inference_speed.value*1000, 2),
'detection_start': detector.detection_start.value,
'pid': detector.detect_process.pid
}
stats['detection_fps'] = round(total_detection_fps, 2)
return jsonify(stats)
@app.route('/<camera_name>/<label>/best.jpg')
def best(camera_name, label):
if camera_name in CONFIG['cameras']:
best_object = object_processor.get_best(camera_name, label)
best_frame = best_object.get('frame')
if best_frame is None:
best_frame = np.zeros((720,1280,3), np.uint8)
else:
best_frame = cv2.cvtColor(best_frame, cv2.COLOR_YUV2BGR_I420)
crop = bool(request.args.get('crop', 0, type=int))
if crop:
region = best_object.get('region', [0,0,300,300])
best_frame = best_frame[region[1]:region[3], region[0]:region[2]]
height = int(request.args.get('h', str(best_frame.shape[0])))
width = int(height*best_frame.shape[1]/best_frame.shape[0])
best_frame = cv2.resize(best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
ret, jpg = cv2.imencode('.jpg', best_frame)
response = make_response(jpg.tobytes())
response.headers['Content-Type'] = 'image/jpg'
return response
else:
return "Camera named {} not found".format(camera_name), 404
@app.route('/<camera_name>')
def mjpeg_feed(camera_name):
fps = int(request.args.get('fps', '3'))
height = int(request.args.get('h', '360'))
if camera_name in CONFIG['cameras']:
# return a multipart response
return Response(imagestream(camera_name, fps, height),
mimetype='multipart/x-mixed-replace; boundary=frame')
else:
return "Camera named {} not found".format(camera_name), 404
@app.route('/<camera_name>/latest.jpg')
def latest_frame(camera_name):
if camera_name in CONFIG['cameras']:
# max out at specified FPS
frame = object_processor.get_current_frame(camera_name)
if frame is None:
frame = np.zeros((720,1280,3), np.uint8)
height = int(request.args.get('h', str(frame.shape[0])))
width = int(height*frame.shape[1]/frame.shape[0])
frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
ret, jpg = cv2.imencode('.jpg', frame)
response = make_response(jpg.tobytes())
response.headers['Content-Type'] = 'image/jpg'
return response
else:
return "Camera named {} not found".format(camera_name), 404
def imagestream(camera_name, fps, height):
while True:
# max out at specified FPS
time.sleep(1/fps)
frame = object_processor.get_current_frame(camera_name, draw=True)
if frame is None:
frame = np.zeros((height,int(height*16/9),3), np.uint8)
width = int(height*frame.shape[1]/frame.shape[0])
frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_LINEAR)
ret, jpg = cv2.imencode('.jpg', frame)
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
app.run(host='0.0.0.0', port=WEB_PORT, debug=False)
object_processor.join()
if __name__ == '__main__':
main()

View File

@@ -9,7 +9,7 @@ RUN apt-get -qq update \
# ffmpeg dependencies
libgomp1 \
# VAAPI drivers for Intel hardware accel
libva-drm2 libva2 i965-va-driver vainfo intel-media-va-driver \
libva-drm2 libva2 libmfx1 i965-va-driver vainfo intel-media-va-driver mesa-va-drivers \
## Tensorflow lite
&& wget -q https://github.com/google-coral/pycoral/releases/download/release-frogfish/tflite_runtime-2.5.0-cp38-cp38-linux_x86_64.whl \
&& python3.8 -m pip install tflite_runtime-2.5.0-cp38-cp38-linux_x86_64.whl \

View File

@@ -1,6 +1,7 @@
ARG ARCH=amd64
ARG FFMPEG_VERSION
FROM blakeblackshear/frigate-wheels:${ARCH} as wheels
FROM blakeblackshear/frigate-ffmpeg:${ARCH} as ffmpeg
FROM blakeblackshear/frigate-ffmpeg:${FFMPEG_VERSION}-${ARCH} as ffmpeg
FROM ubuntu:20.04
LABEL maintainer "blakeb@blakeshome.com"
@@ -10,12 +11,13 @@ COPY --from=ffmpeg /usr/local /usr/local/
COPY --from=wheels /wheels/. /wheels/
ENV FLASK_ENV=development
# ENV FONTCONFIG_PATH=/etc/fonts
ENV DEBIAN_FRONTEND=noninteractive
# Install packages for apt repo
RUN apt-get -qq update \
&& apt-get upgrade -y \
&& apt-get -qq install --no-install-recommends -y \
gnupg wget unzip tzdata \
gnupg wget unzip tzdata nginx libnginx-mod-rtmp \
&& apt-get -qq install --no-install-recommends -y \
python3-pip \
&& pip3 install -U /wheels/*.whl \
@@ -27,18 +29,25 @@ RUN apt-get -qq update \
&& rm -rf /var/lib/apt/lists/* /wheels \
&& (apt-get autoremove -y; apt-get autoclean -y)
# get model and labels
ARG MODEL_REFS=7064b94dd5b996189242320359dbab8b52c94a84
COPY labelmap.txt /labelmap.txt
RUN wget -q https://github.com/google-coral/edgetpu/raw/$MODEL_REFS/test_data/ssd_mobilenet_v2_coco_quant_postprocess_edgetpu.tflite -O /edgetpu_model.tflite
RUN wget -q https://github.com/google-coral/edgetpu/raw/$MODEL_REFS/test_data/ssd_mobilenet_v2_coco_quant_postprocess.tflite -O /cpu_model.tflite
RUN pip3 install \
peewee \
zeroconf \
voluptuous
RUN mkdir /cache /clips
COPY nginx/nginx.conf /etc/nginx/nginx.conf
# get model and labels
COPY labelmap.txt /labelmap.txt
RUN wget -q https://github.com/google-coral/test_data/raw/master/ssdlite_mobiledet_coco_qat_postprocess_edgetpu.tflite -O /edgetpu_model.tflite
RUN wget -q https://github.com/google-coral/test_data/raw/master/ssdlite_mobiledet_coco_qat_postprocess.tflite -O /cpu_model.tflite
WORKDIR /opt/frigate/
ADD frigate frigate/
COPY detect_objects.py .
COPY benchmark.py .
COPY process_clip.py .
CMD ["python3", "-u", "detect_objects.py"]
COPY run.sh /run.sh
RUN chmod +x /run.sh
EXPOSE 5000
EXPOSE 1935
CMD ["/run.sh"]

View File

@@ -18,12 +18,10 @@ FROM base as build
ENV FFMPEG_VERSION=4.3.1 \
AOM_VERSION=v1.0.0 \
FDKAAC_VERSION=0.1.5 \
FONTCONFIG_VERSION=2.12.4 \
FREETYPE_VERSION=2.5.5 \
FRIBIDI_VERSION=0.19.7 \
KVAZAAR_VERSION=1.2.0 \
LAME_VERSION=3.100 \
LIBASS_VERSION=0.13.7 \
LIBPTHREAD_STUBS_VERSION=0.4 \
LIBVIDSTAB_VERSION=1.1.0 \
LIBXCB_VERSION=1.13.1 \
@@ -42,22 +40,17 @@ ENV FFMPEG_VERSION=4.3.1 \
XORG_MACROS_VERSION=1.19.2 \
XPROTO_VERSION=7.0.31 \
XVID_VERSION=1.3.4 \
LIBXML2_VERSION=2.9.10 \
LIBBLURAY_VERSION=1.1.2 \
LIBZMQ_VERSION=4.3.2 \
SRC=/usr/local
ARG FREETYPE_SHA256SUM="5d03dd76c2171a7601e9ce10551d52d4471cf92cd205948e60289251daddffa8 freetype-2.5.5.tar.gz"
ARG FRIBIDI_SHA256SUM="3fc96fa9473bd31dcb5500bdf1aa78b337ba13eb8c301e7c28923fea982453a8 0.19.7.tar.gz"
ARG LIBASS_SHA256SUM="8fadf294bf701300d4605e6f1d92929304187fca4b8d8a47889315526adbafd7 0.13.7.tar.gz"
ARG LIBVIDSTAB_SHA256SUM="14d2a053e56edad4f397be0cb3ef8eb1ec3150404ce99a426c4eb641861dc0bb v1.1.0.tar.gz"
ARG OGG_SHA256SUM="e19ee34711d7af328cb26287f4137e70630e7261b17cbe3cd41011d73a654692 libogg-1.3.2.tar.gz"
ARG OPUS_SHA256SUM="77db45a87b51578fbc49555ef1b10926179861d854eb2613207dc79d9ec0a9a9 opus-1.2.tar.gz"
ARG THEORA_SHA256SUM="40952956c47811928d1e7922cda3bc1f427eb75680c3c37249c91e949054916b libtheora-1.1.1.tar.gz"
ARG VORBIS_SHA256SUM="6efbcecdd3e5dfbf090341b485da9d176eb250d893e3eb378c428a2db38301ce libvorbis-1.3.5.tar.gz"
ARG XVID_SHA256SUM="4e9fd62728885855bc5007fe1be58df42e5e274497591fec37249e1052ae316f xvidcore-1.3.4.tar.gz"
ARG LIBXML2_SHA256SUM="f07dab13bf42d2b8db80620cce7419b3b87827cc937c8bb20fe13b8571ee9501 libxml2-v2.9.10.tar.gz"
ARG LIBBLURAY_SHA256SUM="a3dd452239b100dc9da0d01b30e1692693e2a332a7d29917bf84bb10ea7c0b42 libbluray-1.1.2.tar.bz2"
ARG LIBZMQ_SHA256SUM="02ecc88466ae38cf2c8d79f09cfd2675ba299a439680b64ade733e26a349edeb v4.3.2.tar.gz"
@@ -287,30 +280,7 @@ RUN \
make -j1 && \
make -j $(nproc) install && \
rm -rf ${DIR}
## fontconfig https://www.freedesktop.org/wiki/Software/fontconfig/
RUN \
DIR=/tmp/fontconfig && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.freedesktop.org/software/fontconfig/release/fontconfig-${FONTCONFIG_VERSION}.tar.bz2 && \
tar -jx --strip-components=1 -f fontconfig-${FONTCONFIG_VERSION}.tar.bz2 && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## libass https://github.com/libass/libass
RUN \
DIR=/tmp/libass && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/libass/libass/archive/${LIBASS_VERSION}.tar.gz && \
echo ${LIBASS_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f ${LIBASS_VERSION}.tar.gz && \
./autogen.sh && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## kvazaar https://github.com/ultravideo/kvazaar
RUN \
DIR=/tmp/kvazaar && \
@@ -407,32 +377,6 @@ RUN \
make -j $(nproc) install && \
rm -rf ${DIR}
## libxml2 - for libbluray
RUN \
DIR=/tmp/libxml2 && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://gitlab.gnome.org/GNOME/libxml2/-/archive/v${LIBXML2_VERSION}/libxml2-v${LIBXML2_VERSION}.tar.gz && \
echo ${LIBXML2_SHA256SUM} | sha256sum --check && \
tar -xz --strip-components=1 -f libxml2-v${LIBXML2_VERSION}.tar.gz && \
./autogen.sh --prefix="${PREFIX}" --with-ftp=no --with-http=no --with-python=no && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## libbluray - Requires libxml, freetype, and fontconfig
RUN \
DIR=/tmp/libbluray && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://download.videolan.org/pub/videolan/libbluray/${LIBBLURAY_VERSION}/libbluray-${LIBBLURAY_VERSION}.tar.bz2 && \
echo ${LIBBLURAY_SHA256SUM} | sha256sum --check && \
tar -jx --strip-components=1 -f libbluray-${LIBBLURAY_VERSION}.tar.bz2 && \
./configure --prefix="${PREFIX}" --disable-examples --disable-bdjava-jar --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## libzmq https://github.com/zeromq/libzmq/
RUN \
DIR=/tmp/libzmq && \
@@ -465,8 +409,6 @@ RUN \
--enable-libopencore-amrnb \
--enable-libopencore-amrwb \
--enable-gpl \
--enable-libass \
--enable-fontconfig \
--enable-libfreetype \
--enable-libvidstab \
--enable-libmp3lame \
@@ -485,7 +427,6 @@ RUN \
--enable-postproc \
--enable-small \
--enable-version3 \
--enable-libbluray \
--enable-libzmq \
--extra-libs=-ldl \
--prefix="${PREFIX}" \

View File

@@ -17,12 +17,10 @@ FROM base as build
ENV FFMPEG_VERSION=4.3.1 \
AOM_VERSION=v1.0.0 \
FDKAAC_VERSION=0.1.5 \
FONTCONFIG_VERSION=2.12.4 \
FREETYPE_VERSION=2.5.5 \
FRIBIDI_VERSION=0.19.7 \
KVAZAAR_VERSION=1.2.0 \
LAME_VERSION=3.100 \
LIBASS_VERSION=0.13.7 \
LIBPTHREAD_STUBS_VERSION=0.4 \
LIBVIDSTAB_VERSION=1.1.0 \
LIBXCB_VERSION=1.13.1 \
@@ -41,22 +39,17 @@ ENV FFMPEG_VERSION=4.3.1 \
XORG_MACROS_VERSION=1.19.2 \
XPROTO_VERSION=7.0.31 \
XVID_VERSION=1.3.4 \
LIBXML2_VERSION=2.9.10 \
LIBBLURAY_VERSION=1.1.2 \
LIBZMQ_VERSION=4.3.2 \
SRC=/usr/local
ARG FREETYPE_SHA256SUM="5d03dd76c2171a7601e9ce10551d52d4471cf92cd205948e60289251daddffa8 freetype-2.5.5.tar.gz"
ARG FRIBIDI_SHA256SUM="3fc96fa9473bd31dcb5500bdf1aa78b337ba13eb8c301e7c28923fea982453a8 0.19.7.tar.gz"
ARG LIBASS_SHA256SUM="8fadf294bf701300d4605e6f1d92929304187fca4b8d8a47889315526adbafd7 0.13.7.tar.gz"
ARG LIBVIDSTAB_SHA256SUM="14d2a053e56edad4f397be0cb3ef8eb1ec3150404ce99a426c4eb641861dc0bb v1.1.0.tar.gz"
ARG OGG_SHA256SUM="e19ee34711d7af328cb26287f4137e70630e7261b17cbe3cd41011d73a654692 libogg-1.3.2.tar.gz"
ARG OPUS_SHA256SUM="77db45a87b51578fbc49555ef1b10926179861d854eb2613207dc79d9ec0a9a9 opus-1.2.tar.gz"
ARG THEORA_SHA256SUM="40952956c47811928d1e7922cda3bc1f427eb75680c3c37249c91e949054916b libtheora-1.1.1.tar.gz"
ARG VORBIS_SHA256SUM="6efbcecdd3e5dfbf090341b485da9d176eb250d893e3eb378c428a2db38301ce libvorbis-1.3.5.tar.gz"
ARG XVID_SHA256SUM="4e9fd62728885855bc5007fe1be58df42e5e274497591fec37249e1052ae316f xvidcore-1.3.4.tar.gz"
ARG LIBXML2_SHA256SUM="f07dab13bf42d2b8db80620cce7419b3b87827cc937c8bb20fe13b8571ee9501 libxml2-v2.9.10.tar.gz"
ARG LIBBLURAY_SHA256SUM="a3dd452239b100dc9da0d01b30e1692693e2a332a7d29917bf84bb10ea7c0b42 libbluray-1.1.2.tar.bz2"
ARG LIBZMQ_SHA256SUM="02ecc88466ae38cf2c8d79f09cfd2675ba299a439680b64ade733e26a349edeb v4.3.2.tar.gz"
@@ -86,6 +79,7 @@ RUN buildDeps="autoconf \
libssl-dev \
yasm \
libva-dev \
libmfx-dev \
zlib1g-dev" && \
apt-get -yqq update && \
apt-get install -yq --no-install-recommends ${buildDeps}
@@ -281,30 +275,6 @@ RUN \
make -j1 && \
make install && \
rm -rf ${DIR}
## fontconfig https://www.freedesktop.org/wiki/Software/fontconfig/
RUN \
DIR=/tmp/fontconfig && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.freedesktop.org/software/fontconfig/release/fontconfig-${FONTCONFIG_VERSION}.tar.bz2 && \
tar -jx --strip-components=1 -f fontconfig-${FONTCONFIG_VERSION}.tar.bz2 && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
## libass https://github.com/libass/libass
RUN \
DIR=/tmp/libass && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/libass/libass/archive/${LIBASS_VERSION}.tar.gz && \
echo ${LIBASS_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f ${LIBASS_VERSION}.tar.gz && \
./autogen.sh && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
## kvazaar https://github.com/ultravideo/kvazaar
RUN \
DIR=/tmp/kvazaar && \
@@ -399,32 +369,6 @@ RUN \
make install && \
rm -rf ${DIR}
## libxml2 - for libbluray
RUN \
DIR=/tmp/libxml2 && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://gitlab.gnome.org/GNOME/libxml2/-/archive/v${LIBXML2_VERSION}/libxml2-v${LIBXML2_VERSION}.tar.gz && \
echo ${LIBXML2_SHA256SUM} | sha256sum --check && \
tar -xz --strip-components=1 -f libxml2-v${LIBXML2_VERSION}.tar.gz && \
./autogen.sh --prefix="${PREFIX}" --with-ftp=no --with-http=no --with-python=no && \
make && \
make install && \
rm -rf ${DIR}
## libbluray - Requires libxml, freetype, and fontconfig
RUN \
DIR=/tmp/libbluray && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://download.videolan.org/pub/videolan/libbluray/${LIBBLURAY_VERSION}/libbluray-${LIBBLURAY_VERSION}.tar.bz2 && \
echo ${LIBBLURAY_SHA256SUM} | sha256sum --check && \
tar -jx --strip-components=1 -f libbluray-${LIBBLURAY_VERSION}.tar.bz2 && \
./configure --prefix="${PREFIX}" --disable-examples --disable-bdjava-jar --disable-static --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
## libzmq https://github.com/zeromq/libzmq/
RUN \
DIR=/tmp/libzmq && \
@@ -459,10 +403,9 @@ RUN \
--enable-libopencore-amrnb \
--enable-libopencore-amrwb \
--enable-gpl \
--enable-libass \
--enable-fontconfig \
--enable-libfreetype \
--enable-libvidstab \
--enable-libmfx \
--enable-libmp3lame \
--enable-libopus \
--enable-libtheora \
@@ -479,7 +422,6 @@ RUN \
--enable-postproc \
--enable-small \
--enable-version3 \
--enable-libbluray \
--enable-libzmq \
--extra-libs=-ldl \
--prefix="${PREFIX}" \
@@ -522,5 +464,5 @@ COPY --from=build /usr/local /usr/local/
RUN \
apt-get update -y && \
apt-get install -y --no-install-recommends libva-drm2 libva2 i965-va-driver && \
apt-get install -y --no-install-recommends libva-drm2 libva2 i965-va-driver mesa-va-drivers && \
rm -rf /var/lib/apt/lists/*

View File

@@ -40,12 +40,10 @@ ENV NVIDIA_HEADERS_VERSION=9.1.23.1
ENV FFMPEG_VERSION=4.3.1 \
AOM_VERSION=v1.0.0 \
FDKAAC_VERSION=0.1.5 \
FONTCONFIG_VERSION=2.12.4 \
FREETYPE_VERSION=2.5.5 \
FRIBIDI_VERSION=0.19.7 \
KVAZAAR_VERSION=1.2.0 \
LAME_VERSION=3.100 \
LIBASS_VERSION=0.13.7 \
LIBPTHREAD_STUBS_VERSION=0.4 \
LIBVIDSTAB_VERSION=1.1.0 \
LIBXCB_VERSION=1.13.1 \
@@ -64,8 +62,6 @@ ENV FFMPEG_VERSION=4.3.1 \
XORG_MACROS_VERSION=1.19.2 \
XPROTO_VERSION=7.0.31 \
XVID_VERSION=1.3.4 \
LIBXML2_VERSION=2.9.10 \
LIBBLURAY_VERSION=1.1.2 \
LIBZMQ_VERSION=4.3.2 \
LIBSRT_VERSION=1.4.1 \
LIBARIBB24_VERSION=1.0.3 \
@@ -74,15 +70,12 @@ ENV FFMPEG_VERSION=4.3.1 \
ARG FREETYPE_SHA256SUM="5d03dd76c2171a7601e9ce10551d52d4471cf92cd205948e60289251daddffa8 freetype-2.5.5.tar.gz"
ARG FRIBIDI_SHA256SUM="3fc96fa9473bd31dcb5500bdf1aa78b337ba13eb8c301e7c28923fea982453a8 0.19.7.tar.gz"
ARG LIBASS_SHA256SUM="8fadf294bf701300d4605e6f1d92929304187fca4b8d8a47889315526adbafd7 0.13.7.tar.gz"
ARG LIBVIDSTAB_SHA256SUM="14d2a053e56edad4f397be0cb3ef8eb1ec3150404ce99a426c4eb641861dc0bb v1.1.0.tar.gz"
ARG OGG_SHA256SUM="e19ee34711d7af328cb26287f4137e70630e7261b17cbe3cd41011d73a654692 libogg-1.3.2.tar.gz"
ARG OPUS_SHA256SUM="77db45a87b51578fbc49555ef1b10926179861d854eb2613207dc79d9ec0a9a9 opus-1.2.tar.gz"
ARG THEORA_SHA256SUM="40952956c47811928d1e7922cda3bc1f427eb75680c3c37249c91e949054916b libtheora-1.1.1.tar.gz"
ARG VORBIS_SHA256SUM="6efbcecdd3e5dfbf090341b485da9d176eb250d893e3eb378c428a2db38301ce libvorbis-1.3.5.tar.gz"
ARG XVID_SHA256SUM="4e9fd62728885855bc5007fe1be58df42e5e274497591fec37249e1052ae316f xvidcore-1.3.4.tar.gz"
ARG LIBXML2_SHA256SUM="f07dab13bf42d2b8db80620cce7419b3b87827cc937c8bb20fe13b8571ee9501 libxml2-v2.9.10.tar.gz"
ARG LIBBLURAY_SHA256SUM="a3dd452239b100dc9da0d01b30e1692693e2a332a7d29917bf84bb10ea7c0b42 libbluray-1.1.2.tar.bz2"
ARG LIBZMQ_SHA256SUM="02ecc88466ae38cf2c8d79f09cfd2675ba299a439680b64ade733e26a349edeb v4.3.2.tar.gz"
ARG LIBARIBB24_SHA256SUM="f61560738926e57f9173510389634d8c06cabedfa857db4b28fb7704707ff128 v1.0.3.tar.gz"
@@ -317,30 +310,6 @@ RUN \
make -j1 && \
make install && \
rm -rf ${DIR}
## fontconfig https://www.freedesktop.org/wiki/Software/fontconfig/
RUN \
DIR=/tmp/fontconfig && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.freedesktop.org/software/fontconfig/release/fontconfig-${FONTCONFIG_VERSION}.tar.bz2 && \
tar -jx --strip-components=1 -f fontconfig-${FONTCONFIG_VERSION}.tar.bz2 && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
## libass https://github.com/libass/libass
RUN \
DIR=/tmp/libass && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/libass/libass/archive/${LIBASS_VERSION}.tar.gz && \
echo ${LIBASS_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f ${LIBASS_VERSION}.tar.gz && \
./autogen.sh && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
## kvazaar https://github.com/ultravideo/kvazaar
RUN \
DIR=/tmp/kvazaar && \
@@ -435,32 +404,6 @@ RUN \
make install && \
rm -rf ${DIR}
## libxml2 - for libbluray
RUN \
DIR=/tmp/libxml2 && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://gitlab.gnome.org/GNOME/libxml2/-/archive/v${LIBXML2_VERSION}/libxml2-v${LIBXML2_VERSION}.tar.gz && \
echo ${LIBXML2_SHA256SUM} | sha256sum --check && \
tar -xz --strip-components=1 -f libxml2-v${LIBXML2_VERSION}.tar.gz && \
./autogen.sh --prefix="${PREFIX}" --with-ftp=no --with-http=no --with-python=no && \
make && \
make install && \
rm -rf ${DIR}
## libbluray - Requires libxml, freetype, and fontconfig
RUN \
DIR=/tmp/libbluray && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://download.videolan.org/pub/videolan/libbluray/${LIBBLURAY_VERSION}/libbluray-${LIBBLURAY_VERSION}.tar.bz2 && \
echo ${LIBBLURAY_SHA256SUM} | sha256sum --check && \
tar -jx --strip-components=1 -f libbluray-${LIBBLURAY_VERSION}.tar.bz2 && \
./configure --prefix="${PREFIX}" --disable-examples --disable-bdjava-jar --disable-static --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
## libzmq https://github.com/zeromq/libzmq/
RUN \
DIR=/tmp/libzmq && \
@@ -533,8 +476,6 @@ RUN \
--enable-libopencore-amrnb \
--enable-libopencore-amrwb \
--enable-gpl \
--enable-libass \
--enable-fontconfig \
--enable-libfreetype \
--enable-libvidstab \
--enable-libmp3lame \
@@ -553,7 +494,6 @@ RUN \
--enable-postproc \
--enable-small \
--enable-version3 \
--enable-libbluray \
--enable-libzmq \
--extra-libs=-ldl \
--prefix="${PREFIX}" \
@@ -593,7 +533,6 @@ RUN \
FROM runtime-base AS release
MAINTAINER Julien Rottenberg <julien@rottenberg.info>
ENV LD_LIBRARY_PATH=/usr/local/lib:/usr/local/lib64

View File

@@ -18,12 +18,10 @@ FROM base as build
ENV FFMPEG_VERSION=4.3.1 \
AOM_VERSION=v1.0.0 \
FDKAAC_VERSION=0.1.5 \
FONTCONFIG_VERSION=2.12.4 \
FREETYPE_VERSION=2.5.5 \
FRIBIDI_VERSION=0.19.7 \
KVAZAAR_VERSION=1.2.0 \
LAME_VERSION=3.100 \
LIBASS_VERSION=0.13.7 \
LIBPTHREAD_STUBS_VERSION=0.4 \
LIBVIDSTAB_VERSION=1.1.0 \
LIBXCB_VERSION=1.13.1 \
@@ -42,22 +40,17 @@ ENV FFMPEG_VERSION=4.3.1 \
XORG_MACROS_VERSION=1.19.2 \
XPROTO_VERSION=7.0.31 \
XVID_VERSION=1.3.4 \
LIBXML2_VERSION=2.9.10 \
LIBBLURAY_VERSION=1.1.2 \
LIBZMQ_VERSION=4.3.3 \
SRC=/usr/local
ARG FREETYPE_SHA256SUM="5d03dd76c2171a7601e9ce10551d52d4471cf92cd205948e60289251daddffa8 freetype-2.5.5.tar.gz"
ARG FRIBIDI_SHA256SUM="3fc96fa9473bd31dcb5500bdf1aa78b337ba13eb8c301e7c28923fea982453a8 0.19.7.tar.gz"
ARG LIBASS_SHA256SUM="8fadf294bf701300d4605e6f1d92929304187fca4b8d8a47889315526adbafd7 0.13.7.tar.gz"
ARG LIBVIDSTAB_SHA256SUM="14d2a053e56edad4f397be0cb3ef8eb1ec3150404ce99a426c4eb641861dc0bb v1.1.0.tar.gz"
ARG OGG_SHA256SUM="e19ee34711d7af328cb26287f4137e70630e7261b17cbe3cd41011d73a654692 libogg-1.3.2.tar.gz"
ARG OPUS_SHA256SUM="77db45a87b51578fbc49555ef1b10926179861d854eb2613207dc79d9ec0a9a9 opus-1.2.tar.gz"
ARG THEORA_SHA256SUM="40952956c47811928d1e7922cda3bc1f427eb75680c3c37249c91e949054916b libtheora-1.1.1.tar.gz"
ARG VORBIS_SHA256SUM="6efbcecdd3e5dfbf090341b485da9d176eb250d893e3eb378c428a2db38301ce libvorbis-1.3.5.tar.gz"
ARG XVID_SHA256SUM="4e9fd62728885855bc5007fe1be58df42e5e274497591fec37249e1052ae316f xvidcore-1.3.4.tar.gz"
ARG LIBXML2_SHA256SUM="f07dab13bf42d2b8db80620cce7419b3b87827cc937c8bb20fe13b8571ee9501 libxml2-v2.9.10.tar.gz"
ARG LIBBLURAY_SHA256SUM="a3dd452239b100dc9da0d01b30e1692693e2a332a7d29917bf84bb10ea7c0b42 libbluray-1.1.2.tar.bz2"
ARG LD_LIBRARY_PATH=/opt/ffmpeg/lib
@@ -289,30 +282,7 @@ RUN \
make -j1 && \
make -j $(nproc) install && \
rm -rf ${DIR}
## fontconfig https://www.freedesktop.org/wiki/Software/fontconfig/
RUN \
DIR=/tmp/fontconfig && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.freedesktop.org/software/fontconfig/release/fontconfig-${FONTCONFIG_VERSION}.tar.bz2 && \
tar -jx --strip-components=1 -f fontconfig-${FONTCONFIG_VERSION}.tar.bz2 && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## libass https://github.com/libass/libass
RUN \
DIR=/tmp/libass && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/libass/libass/archive/${LIBASS_VERSION}.tar.gz && \
echo ${LIBASS_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f ${LIBASS_VERSION}.tar.gz && \
./autogen.sh && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## kvazaar https://github.com/ultravideo/kvazaar
RUN \
DIR=/tmp/kvazaar && \
@@ -409,32 +379,6 @@ RUN \
make -j $(nproc) install && \
rm -rf ${DIR}
## libxml2 - for libbluray
RUN \
DIR=/tmp/libxml2 && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://gitlab.gnome.org/GNOME/libxml2/-/archive/v${LIBXML2_VERSION}/libxml2-v${LIBXML2_VERSION}.tar.gz && \
echo ${LIBXML2_SHA256SUM} | sha256sum --check && \
tar -xz --strip-components=1 -f libxml2-v${LIBXML2_VERSION}.tar.gz && \
./autogen.sh --prefix="${PREFIX}" --with-ftp=no --with-http=no --with-python=no && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## libbluray - Requires libxml, freetype, and fontconfig
RUN \
DIR=/tmp/libbluray && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://download.videolan.org/pub/videolan/libbluray/${LIBBLURAY_VERSION}/libbluray-${LIBBLURAY_VERSION}.tar.bz2 && \
echo ${LIBBLURAY_SHA256SUM} | sha256sum --check && \
tar -jx --strip-components=1 -f libbluray-${LIBBLURAY_VERSION}.tar.bz2 && \
./configure --prefix="${PREFIX}" --disable-examples --disable-bdjava-jar --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## libzmq https://github.com/zeromq/libzmq/
RUN \
DIR=/tmp/libzmq && \
@@ -475,8 +419,6 @@ RUN \
--enable-libopencore-amrnb \
--enable-libopencore-amrwb \
--enable-gpl \
--enable-libass \
--enable-fontconfig \
--enable-libfreetype \
--enable-libvidstab \
--enable-libmp3lame \
@@ -495,7 +437,6 @@ RUN \
--enable-postproc \
--enable-small \
--enable-version3 \
--enable-libbluray \
--enable-libzmq \
--extra-libs=-ldl \
--prefix="${PREFIX}" \

BIN
docs/media_browser.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 781 KiB

View File

@@ -0,0 +1,71 @@
# Notification examples
Here are some examples of notifications for the HomeAssistant android companion app:
```yaml
automation:
- alias: When a person enters a zone named yard
trigger:
platform: mqtt
topic: frigate/events
conditions:
- "{{ trigger.payload_json['after']['label'] == 'person' }}"
- "{{ 'yard' in trigger.payload_json['after']['entered_zones'] }}"
action:
- service: notify.mobile_app_pixel_3
data_template:
message: "A {{trigger.payload_json['after']['label']}} has entered the yard."
data:
image: "https://url.com/api/frigate/notifications/{{trigger.payload_json['after']['id']}}.jpg"
tag: "{{trigger.payload_json['after']['id']}}"
- alias: When a person leaves a zone named yard
trigger:
platform: mqtt
topic: frigate/events
conditions:
- "{{ trigger.payload_json['after']['label'] == 'person' }}"
- "{{ 'yard' in trigger.payload_json['before']['current_zones'] }}"
- "{{ not 'yard' in trigger.payload_json['after']['current_zones'] }}"
action:
- service: notify.mobile_app_pixel_3
data_template:
message: "A {{trigger.payload_json['after']['label']}} has left the yard."
data:
image: "https://url.com/api/frigate/notifications/{{trigger.payload_json['after']['id']}}.jpg"
tag: "{{trigger.payload_json['after']['id']}}"
- alias: Notify for dogs in the front with a high top score
trigger:
platform: mqtt
topic: frigate/events
conditions:
- "{{ trigger.payload_json['after']['label'] == 'dog' }}"
- "{{ trigger.payload_json['after']['camera'] == 'front' }}"
- "{{ trigger.payload_json['after']['top_score'] > 0.98 }}"
action:
- service: notify.mobile_app_pixel_3
data_template:
message: 'High confidence dog detection.'
data:
image: "https://url.com/api/frigate/notifications/{{trigger.payload_json['after']['id']}}.jpg"
tag: "{{trigger.payload_json['after']['id']}}"
```
If you are using telegram, you can fetch the image directly from Frigate:
```yaml
automation:
- alias: Notify of events
trigger:
platform: mqtt
topic: frigate/events
action:
- service: notify.telegram_full
data_template:
message: 'A {{trigger.payload_json["after"]["label"]}} was detected.'
data:
photo:
# this url should work for addon users
- url: 'http://ccab4aaf-frigate:5000/events/{{trigger.payload_json["after"]["id"]}}/snapshot.jpg'
caption : 'A {{trigger.payload_json["after"]["label"]}} was detected on {{ trigger.payload_json["after"]["camera"] }} camera'
```

BIN
docs/notification.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.5 MiB

15
frigate/__main__.py Normal file
View File

@@ -0,0 +1,15 @@
import faulthandler; faulthandler.enable()
import sys
import threading
threading.current_thread().name = "frigate"
from frigate.app import FrigateApp
cli = sys.modules['flask.cli']
cli.show_server_banner = lambda *x: None
if __name__ == '__main__':
frigate_app = FrigateApp()
frigate_app.start()

235
frigate/app.py Normal file
View File

@@ -0,0 +1,235 @@
import json
import logging
import multiprocessing as mp
import os
from logging.handlers import QueueHandler
from typing import Dict, List
import sys
import signal
import yaml
from playhouse.sqlite_ext import SqliteExtDatabase
from frigate.config import FrigateConfig
from frigate.const import RECORD_DIR, CLIPS_DIR, CACHE_DIR
from frigate.edgetpu import EdgeTPUProcess
from frigate.events import EventProcessor, EventCleanup
from frigate.http import create_app
from frigate.log import log_process, root_configurer
from frigate.models import Event
from frigate.mqtt import create_mqtt_client
from frigate.object_processing import TrackedObjectProcessor
from frigate.record import RecordingMaintainer
from frigate.video import capture_camera, track_camera
from frigate.watchdog import FrigateWatchdog
from frigate.zeroconf import broadcast_zeroconf
logger = logging.getLogger(__name__)
class FrigateApp():
def __init__(self):
self.stop_event = mp.Event()
self.config: FrigateConfig = None
self.detection_queue = mp.Queue()
self.detectors: Dict[str, EdgeTPUProcess] = {}
self.detection_out_events: Dict[str, mp.Event] = {}
self.detection_shms: List[mp.shared_memory.SharedMemory] = []
self.log_queue = mp.Queue()
self.camera_metrics = {}
def ensure_dirs(self):
for d in [RECORD_DIR, CLIPS_DIR, CACHE_DIR]:
if not os.path.exists(d) and not os.path.islink(d):
logger.info(f"Creating directory: {d}")
os.makedirs(d)
else:
logger.debug(f"Skipping directory: {d}")
tmpfs_size = self.config.save_clips.tmpfs_cache_size
if tmpfs_size:
logger.info(f"Creating tmpfs of size {tmpfs_size}")
rc = os.system(f"mount -t tmpfs -o size={tmpfs_size} tmpfs {CACHE_DIR}")
if rc != 0:
logger.error(f"Failed to create tmpfs, error code: {rc}")
def init_logger(self):
self.log_process = mp.Process(target=log_process, args=(self.log_queue,), name='log_process')
self.log_process.daemon = True
self.log_process.start()
root_configurer(self.log_queue)
def init_config(self):
config_file = os.environ.get('CONFIG_FILE', '/config/config.yml')
self.config = FrigateConfig(config_file=config_file)
for camera_name in self.config.cameras.keys():
# create camera_metrics
self.camera_metrics[camera_name] = {
'camera_fps': mp.Value('d', 0.0),
'skipped_fps': mp.Value('d', 0.0),
'process_fps': mp.Value('d', 0.0),
'detection_fps': mp.Value('d', 0.0),
'detection_frame': mp.Value('d', 0.0),
'read_start': mp.Value('d', 0.0),
'ffmpeg_pid': mp.Value('i', 0),
'frame_queue': mp.Queue(maxsize=2)
}
def check_config(self):
for name, camera in self.config.cameras.items():
assigned_roles = list(set([r for i in camera.ffmpeg.inputs for r in i.roles]))
if not camera.save_clips.enabled and 'clips' in assigned_roles:
logger.warning(f"Camera {name} has clips assigned to an input, but save_clips is not enabled.")
elif camera.save_clips.enabled and not 'clips' in assigned_roles:
logger.warning(f"Camera {name} has save_clips enabled, but clips is not assigned to an input.")
if not camera.record.enabled and 'record' in assigned_roles:
logger.warning(f"Camera {name} has record assigned to an input, but record is not enabled.")
elif camera.record.enabled and not 'record' in assigned_roles:
logger.warning(f"Camera {name} has record enabled, but record is not assigned to an input.")
if not camera.rtmp.enabled and 'rtmp' in assigned_roles:
logger.warning(f"Camera {name} has rtmp assigned to an input, but rtmp is not enabled.")
elif camera.rtmp.enabled and not 'rtmp' in assigned_roles:
logger.warning(f"Camera {name} has rtmp enabled, but rtmp is not assigned to an input.")
def set_log_levels(self):
logging.getLogger().setLevel(self.config.logger.default)
for log, level in self.config.logger.logs.items():
logging.getLogger(log).setLevel(level)
if not 'werkzeug' in self.config.logger.logs:
logging.getLogger('werkzeug').setLevel('ERROR')
def init_queues(self):
# Queues for clip processing
self.event_queue = mp.Queue()
self.event_processed_queue = mp.Queue()
# Queue for cameras to push tracked objects to
self.detected_frames_queue = mp.Queue(maxsize=len(self.config.cameras.keys())*2)
def init_database(self):
self.db = SqliteExtDatabase(self.config.database.path)
models = [Event]
self.db.bind(models)
self.db.create_tables(models, safe=True)
def init_web_server(self):
self.flask_app = create_app(self.config, self.db, self.camera_metrics, self.detectors, self.detected_frames_processor)
def init_mqtt(self):
self.mqtt_client = create_mqtt_client(self.config.mqtt)
def start_detectors(self):
model_shape = (self.config.model.height, self.config.model.width)
for name in self.config.cameras.keys():
self.detection_out_events[name] = mp.Event()
shm_in = mp.shared_memory.SharedMemory(name=name, create=True, size=self.config.model.height*self.config.model.width*3)
shm_out = mp.shared_memory.SharedMemory(name=f"out-{name}", create=True, size=20*6*4)
self.detection_shms.append(shm_in)
self.detection_shms.append(shm_out)
for name, detector in self.config.detectors.items():
if detector.type == 'cpu':
self.detectors[name] = EdgeTPUProcess(name, self.detection_queue, self.detection_out_events, model_shape, 'cpu', detector.num_threads)
if detector.type == 'edgetpu':
self.detectors[name] = EdgeTPUProcess(name, self.detection_queue, self.detection_out_events, model_shape, detector.device, detector.num_threads)
def start_detected_frames_processor(self):
self.detected_frames_processor = TrackedObjectProcessor(self.config, self.mqtt_client, self.config.mqtt.topic_prefix,
self.detected_frames_queue, self.event_queue, self.event_processed_queue, self.stop_event)
self.detected_frames_processor.start()
def start_camera_processors(self):
model_shape = (self.config.model.height, self.config.model.width)
for name, config in self.config.cameras.items():
camera_process = mp.Process(target=track_camera, name=f"camera_processor:{name}", args=(name, config, model_shape,
self.detection_queue, self.detection_out_events[name], self.detected_frames_queue,
self.camera_metrics[name]))
camera_process.daemon = True
self.camera_metrics[name]['process'] = camera_process
camera_process.start()
logger.info(f"Camera processor started for {name}: {camera_process.pid}")
def start_camera_capture_processes(self):
for name, config in self.config.cameras.items():
capture_process = mp.Process(target=capture_camera, name=f"camera_capture:{name}", args=(name, config,
self.camera_metrics[name]))
capture_process.daemon = True
self.camera_metrics[name]['capture_process'] = capture_process
capture_process.start()
logger.info(f"Capture process started for {name}: {capture_process.pid}")
def start_event_processor(self):
self.event_processor = EventProcessor(self.config, self.camera_metrics, self.event_queue, self.event_processed_queue, self.stop_event)
self.event_processor.start()
def start_event_cleanup(self):
self.event_cleanup = EventCleanup(self.config, self.stop_event)
self.event_cleanup.start()
def start_recording_maintainer(self):
self.recording_maintainer = RecordingMaintainer(self.config, self.stop_event)
self.recording_maintainer.start()
def start_watchdog(self):
self.frigate_watchdog = FrigateWatchdog(self.detectors, self.stop_event)
self.frigate_watchdog.start()
def start(self):
self.init_logger()
try:
try:
self.init_config()
except Exception as e:
logger.error(f"Error parsing config: {e}")
self.log_process.terminate()
sys.exit(1)
self.ensure_dirs()
self.check_config()
self.set_log_levels()
self.init_queues()
self.init_database()
self.init_mqtt()
except Exception as e:
print(e)
self.log_process.terminate()
sys.exit(1)
self.start_detectors()
self.start_detected_frames_processor()
self.start_camera_processors()
self.start_camera_capture_processes()
self.init_web_server()
self.start_event_processor()
self.start_event_cleanup()
self.start_recording_maintainer()
self.start_watchdog()
# self.zeroconf = broadcast_zeroconf(self.config.mqtt.client_id)
def receiveSignal(signalNumber, frame):
self.stop()
sys.exit()
signal.signal(signal.SIGTERM, receiveSignal)
self.flask_app.run(host='127.0.0.1', port=5001, debug=False)
self.stop()
def stop(self):
logger.info(f"Stopping...")
self.stop_event.set()
self.detected_frames_processor.join()
self.event_processor.join()
self.event_cleanup.join()
self.recording_maintainer.join()
self.frigate_watchdog.join()
for detector in self.detectors.values():
detector.stop()
while len(self.detection_shms) > 0:
shm = self.detection_shms.pop()
shm.close()
shm.unlink()

968
frigate/config.py Normal file
View File

@@ -0,0 +1,968 @@
import base64
import json
import logging
import os
from typing import Dict
import cv2
import matplotlib.pyplot as plt
import numpy as np
import voluptuous as vol
import yaml
from frigate.const import RECORD_DIR, CLIPS_DIR, CACHE_DIR
logger = logging.getLogger(__name__)
DETECTORS_SCHEMA = vol.Schema(
{
vol.Required(str): {
vol.Required('type', default='edgetpu'): vol.In(['cpu', 'edgetpu']),
vol.Optional('device', default='usb'): str,
vol.Optional('num_threads', default=3): int
}
}
)
DEFAULT_DETECTORS = {
'coral': {
'type': 'edgetpu',
'device': 'usb'
}
}
MQTT_SCHEMA = vol.Schema(
{
vol.Required('host'): str,
vol.Optional('port', default=1883): int,
vol.Optional('topic_prefix', default='frigate'): str,
vol.Optional('client_id', default='frigate'): str,
'user': str,
'password': str
}
)
SAVE_CLIPS_RETAIN_SCHEMA = vol.Schema(
{
vol.Required('default',default=10): int,
'objects': {
str: int
}
}
)
SAVE_CLIPS_SCHEMA = vol.Schema(
{
vol.Optional('max_seconds', default=300): int,
'tmpfs_cache_size': str,
vol.Optional('retain', default={}): SAVE_CLIPS_RETAIN_SCHEMA
}
)
FFMPEG_GLOBAL_ARGS_DEFAULT = ['-hide_banner','-loglevel','fatal']
FFMPEG_INPUT_ARGS_DEFAULT = ['-avoid_negative_ts', 'make_zero',
'-fflags', '+genpts+discardcorrupt',
'-rtsp_transport', 'tcp',
'-stimeout', '5000000',
'-use_wallclock_as_timestamps', '1']
DETECT_FFMPEG_OUTPUT_ARGS_DEFAULT = ['-f', 'rawvideo',
'-pix_fmt', 'yuv420p']
RTMP_FFMPEG_OUTPUT_ARGS_DEFAULT = ["-c", "copy", "-f", "flv"]
SAVE_CLIPS_FFMPEG_OUTPUT_ARGS_DEFAULT = ["-f", "segment", "-segment_time",
"10", "-segment_format", "mp4", "-reset_timestamps", "1", "-strftime",
"1", "-c", "copy", "-an"]
RECORD_FFMPEG_OUTPUT_ARGS_DEFAULT = ["-f", "segment", "-segment_time",
"60", "-segment_format", "mp4", "-reset_timestamps", "1", "-strftime",
"1", "-c", "copy", "-an"]
GLOBAL_FFMPEG_SCHEMA = vol.Schema(
{
vol.Optional('global_args', default=FFMPEG_GLOBAL_ARGS_DEFAULT): vol.Any(str, [str]),
vol.Optional('hwaccel_args', default=[]): vol.Any(str, [str]),
vol.Optional('input_args', default=FFMPEG_INPUT_ARGS_DEFAULT): vol.Any(str, [str]),
vol.Optional('output_args', default={}): {
vol.Optional('detect', default=DETECT_FFMPEG_OUTPUT_ARGS_DEFAULT): vol.Any(str, [str]),
vol.Optional('record', default=RECORD_FFMPEG_OUTPUT_ARGS_DEFAULT): vol.Any(str, [str]),
vol.Optional('clips', default=SAVE_CLIPS_FFMPEG_OUTPUT_ARGS_DEFAULT): vol.Any(str, [str]),
vol.Optional('rtmp', default=RTMP_FFMPEG_OUTPUT_ARGS_DEFAULT): vol.Any(str, [str]),
}
}
)
MOTION_SCHEMA = vol.Schema(
{
'threshold': vol.Range(min=1, max=255),
'contour_area': int,
'delta_alpha': float,
'frame_alpha': float,
'frame_height': int
}
)
DETECT_SCHEMA = vol.Schema(
{
'max_disappeared': int
}
)
FILTER_SCHEMA = vol.Schema(
{
str: {
vol.Optional('min_area', default=0): int,
vol.Optional('max_area', default=24000000): int,
vol.Optional('threshold', default=0.7): float
}
}
)
def filters_for_all_tracked_objects(object_config):
for tracked_object in object_config.get('track', ['person']):
if not 'filters' in object_config:
object_config['filters'] = {}
if not tracked_object in object_config['filters']:
object_config['filters'][tracked_object] = {}
return object_config
OBJECTS_SCHEMA = vol.Schema(vol.All(filters_for_all_tracked_objects,
{
vol.Optional('track', default=['person']): [str],
vol.Optional('filters', default = {}): FILTER_SCHEMA.extend({ str: {vol.Optional('min_score', default=0.5): float}})
}
))
def each_role_used_once(inputs):
roles = [role for i in inputs for role in i['roles']]
roles_set = set(roles)
if len(roles) > len(roles_set):
raise ValueError
return inputs
CAMERA_FFMPEG_SCHEMA = vol.Schema(
{
vol.Required('inputs'): vol.All([{
vol.Required('path'): str,
vol.Required('roles'): ['detect', 'clips', 'record', 'rtmp'],
'global_args': vol.Any(str, [str]),
'hwaccel_args': vol.Any(str, [str]),
'input_args': vol.Any(str, [str]),
}], vol.Msg(each_role_used_once, msg="Each input role may only be used once")),
'output_args': {
vol.Optional('detect', default=DETECT_FFMPEG_OUTPUT_ARGS_DEFAULT): vol.Any(str, [str]),
vol.Optional('record', default=RECORD_FFMPEG_OUTPUT_ARGS_DEFAULT): vol.Any(str, [str]),
vol.Optional('clips', default=SAVE_CLIPS_FFMPEG_OUTPUT_ARGS_DEFAULT): vol.Any(str, [str]),
vol.Optional('rtmp', default=RTMP_FFMPEG_OUTPUT_ARGS_DEFAULT): vol.Any(str, [str]),
}
}
)
def ensure_zones_and_cameras_have_different_names(cameras):
zones = [zone for camera in cameras.values() for zone in camera['zones'].keys()]
for zone in zones:
if zone in cameras.keys():
raise ValueError
return cameras
CAMERAS_SCHEMA = vol.Schema(vol.All(
{
str: {
vol.Required('ffmpeg'): CAMERA_FFMPEG_SCHEMA,
vol.Required('height'): int,
vol.Required('width'): int,
'fps': int,
'mask': vol.Any(str, [str]),
vol.Optional('best_image_timeout', default=60): int,
vol.Optional('zones', default={}): {
str: {
vol.Required('coordinates'): vol.Any(str, [str]),
vol.Optional('filters', default={}): FILTER_SCHEMA
}
},
vol.Optional('save_clips', default={}): {
vol.Optional('enabled', default=False): bool,
vol.Optional('pre_capture', default=5): int,
vol.Optional('post_capture', default=5): int,
'objects': [str],
vol.Optional('retain', default={}): SAVE_CLIPS_RETAIN_SCHEMA,
},
vol.Optional('record', default={}): {
'enabled': bool,
'retain_days': int,
},
vol.Optional('rtmp', default={}): {
vol.Required('enabled', default=True): bool,
},
vol.Optional('snapshots', default={}): {
vol.Optional('show_timestamp', default=True): bool,
vol.Optional('draw_zones', default=False): bool,
vol.Optional('draw_bounding_boxes', default=True): bool,
vol.Optional('crop_to_region', default=True): bool,
vol.Optional('height', default=175): int
},
'objects': OBJECTS_SCHEMA,
vol.Optional('motion', default={}): MOTION_SCHEMA,
vol.Optional('detect', default={}): DETECT_SCHEMA
}
}, vol.Msg(ensure_zones_and_cameras_have_different_names, msg='Zones cannot share names with cameras'))
)
FRIGATE_CONFIG_SCHEMA = vol.Schema(
{
vol.Optional('database', default={}): {
vol.Optional('path', default=os.path.join(CLIPS_DIR, 'frigate.db')): str
},
vol.Optional('model', default={'width': 320, 'height': 320}): {
vol.Required('width'): int,
vol.Required('height'): int
},
vol.Optional('detectors', default=DEFAULT_DETECTORS): DETECTORS_SCHEMA,
'mqtt': MQTT_SCHEMA,
vol.Optional('logger', default={'default': 'info', 'logs': {}}): {
vol.Optional('default', default='info'): vol.In(['info', 'debug', 'warning', 'error', 'critical']),
vol.Optional('logs', default={}): {str: vol.In(['info', 'debug', 'warning', 'error', 'critical']) }
},
vol.Optional('save_clips', default={}): SAVE_CLIPS_SCHEMA,
vol.Optional('record', default={}): {
vol.Optional('enabled', default=False): bool,
vol.Optional('retain_days', default=30): int,
},
vol.Optional('ffmpeg', default={}): GLOBAL_FFMPEG_SCHEMA,
vol.Optional('objects', default={}): OBJECTS_SCHEMA,
vol.Optional('motion', default={}): MOTION_SCHEMA,
vol.Optional('detect', default={}): DETECT_SCHEMA,
vol.Required('cameras', default={}): CAMERAS_SCHEMA
}
)
class DatabaseConfig():
def __init__(self, config):
self._path = config['path']
@property
def path(self):
return self._path
def to_dict(self):
return {
'path': self.path
}
class ModelConfig():
def __init__(self, config):
self._width = config['width']
self._height = config['height']
@property
def width(self):
return self._width
@property
def height(self):
return self._height
def to_dict(self):
return {
'width': self.width,
'height': self.height
}
class DetectorConfig():
def __init__(self, config):
self._type = config['type']
self._device = config['device']
self._num_threads = config['num_threads']
@property
def type(self):
return self._type
@property
def device(self):
return self._device
@property
def num_threads(self):
return self._num_threads
def to_dict(self):
return {
'type': self.type,
'device': self.device,
'num_threads': self.num_threads
}
class LoggerConfig():
def __init__(self, config):
self._default = config['default'].upper()
self._logs = {k: v.upper() for k, v in config['logs'].items()}
@property
def default(self):
return self._default
@property
def logs(self):
return self._logs
def to_dict(self):
return {
'default': self.default,
'logs': self.logs
}
class MqttConfig():
def __init__(self, config):
self._host = config['host']
self._port = config['port']
self._topic_prefix = config['topic_prefix']
self._client_id = config['client_id']
self._user = config.get('user')
self._password = config.get('password')
@property
def host(self):
return self._host
@property
def port(self):
return self._port
@property
def topic_prefix(self):
return self._topic_prefix
@property
def client_id(self):
return self._client_id
@property
def user(self):
return self._user
@property
def password(self):
return self._password
def to_dict(self):
return {
'host': self.host,
'port': self.port,
'topic_prefix': self.topic_prefix,
'client_id': self.client_id,
'user': self.user
}
class CameraInput():
def __init__(self, global_config, ffmpeg_input):
self._path = ffmpeg_input['path']
self._roles = ffmpeg_input['roles']
self._global_args = ffmpeg_input.get('global_args', global_config['global_args'])
self._hwaccel_args = ffmpeg_input.get('hwaccel_args', global_config['hwaccel_args'])
self._input_args = ffmpeg_input.get('input_args', global_config['input_args'])
@property
def path(self):
return self._path
@property
def roles(self):
return self._roles
@property
def global_args(self):
return self._global_args if isinstance(self._global_args, list) else self._global_args.split(' ')
@property
def hwaccel_args(self):
return self._hwaccel_args if isinstance(self._hwaccel_args, list) else self._hwaccel_args.split(' ')
@property
def input_args(self):
return self._input_args if isinstance(self._input_args, list) else self._input_args.split(' ')
class CameraFfmpegConfig():
def __init__(self, global_config, config):
self._inputs = [CameraInput(global_config, i) for i in config['inputs']]
self._output_args = config.get('output_args', global_config['output_args'])
@property
def inputs(self):
return self._inputs
@property
def output_args(self):
return {k: v if isinstance(v, list) else v.split(' ') for k, v in self._output_args.items()}
class SaveClipsRetainConfig():
def __init__(self, global_config, config):
self._default = config.get('default', global_config.get('default'))
self._objects = config.get('objects', global_config.get('objects', {}))
@property
def default(self):
return self._default
@property
def objects(self):
return self._objects
def to_dict(self):
return {
'default': self.default,
'objects': self.objects
}
class SaveClipsConfig():
def __init__(self, config):
self._max_seconds = config['max_seconds']
self._tmpfs_cache_size = config.get('tmpfs_cache_size', '').strip()
self._retain = SaveClipsRetainConfig(config['retain'], config['retain'])
@property
def max_seconds(self):
return self._max_seconds
@property
def tmpfs_cache_size(self):
return self._tmpfs_cache_size
@property
def retain(self):
return self._retain
def to_dict(self):
return {
'max_seconds': self.max_seconds,
'tmpfs_cache_size': self.tmpfs_cache_size,
'retain': self.retain.to_dict()
}
class RecordConfig():
def __init__(self, global_config, config):
self._enabled = config.get('enabled', global_config['enabled'])
self._retain_days = config.get('retain_days', global_config['retain_days'])
@property
def enabled(self):
return self._enabled
@property
def retain_days(self):
return self._retain_days
def to_dict(self):
return {
'enabled': self.enabled,
'retain_days': self.retain_days,
}
class FilterConfig():
def __init__(self, config):
self._min_area = config['min_area']
self._max_area = config['max_area']
self._threshold = config['threshold']
self._min_score = config.get('min_score')
@property
def min_area(self):
return self._min_area
@property
def max_area(self):
return self._max_area
@property
def threshold(self):
return self._threshold
@property
def min_score(self):
return self._min_score
def to_dict(self):
return {
'min_area': self.min_area,
'max_area': self.max_area,
'threshold': self.threshold,
'min_score': self.min_score
}
class ObjectConfig():
def __init__(self, global_config, config):
self._track = config.get('track', global_config['track'])
if 'filters' in config:
self._filters = { name: FilterConfig(c) for name, c in config['filters'].items() }
else:
self._filters = { name: FilterConfig(c) for name, c in global_config['filters'].items() }
@property
def track(self):
return self._track
@property
def filters(self) -> Dict[str, FilterConfig]:
return self._filters
def to_dict(self):
return {
'track': self.track,
'filters': { k: f.to_dict() for k, f in self.filters.items() }
}
class CameraSnapshotsConfig():
def __init__(self, config):
self._show_timestamp = config['show_timestamp']
self._draw_zones = config['draw_zones']
self._draw_bounding_boxes = config['draw_bounding_boxes']
self._crop_to_region = config['crop_to_region']
self._height = config.get('height')
@property
def show_timestamp(self):
return self._show_timestamp
@property
def draw_zones(self):
return self._draw_zones
@property
def draw_bounding_boxes(self):
return self._draw_bounding_boxes
@property
def crop_to_region(self):
return self._crop_to_region
@property
def height(self):
return self._height
def to_dict(self):
return {
'show_timestamp': self.show_timestamp,
'draw_zones': self.draw_zones,
'draw_bounding_boxes': self.draw_bounding_boxes,
'crop_to_region': self.crop_to_region,
'height': self.height
}
class CameraSaveClipsConfig():
def __init__(self, global_config, config):
self._enabled = config['enabled']
self._pre_capture = config['pre_capture']
self._post_capture = config['post_capture']
self._objects = config.get('objects', global_config['objects']['track'])
self._retain = SaveClipsRetainConfig(global_config['save_clips']['retain'], config['retain'])
@property
def enabled(self):
return self._enabled
@property
def pre_capture(self):
return self._pre_capture
@property
def post_capture(self):
return self._post_capture
@property
def objects(self):
return self._objects
@property
def retain(self):
return self._retain
def to_dict(self):
return {
'enabled': self.enabled,
'pre_capture': self.pre_capture,
'post_capture': self.post_capture,
'objects': self.objects,
'retain': self.retain.to_dict()
}
class CameraRtmpConfig():
def __init__(self, global_config, config):
self._enabled = config['enabled']
@property
def enabled(self):
return self._enabled
def to_dict(self):
return {
'enabled': self.enabled,
}
class MotionConfig():
def __init__(self, global_config, config, camera_height: int):
self._threshold = config.get('threshold', global_config.get('threshold', 25))
self._contour_area = config.get('contour_area', global_config.get('contour_area', 100))
self._delta_alpha = config.get('delta_alpha', global_config.get('delta_alpha', 0.2))
self._frame_alpha = config.get('frame_alpha', global_config.get('frame_alpha', 0.2))
self._frame_height = config.get('frame_height', global_config.get('frame_height', camera_height//6))
@property
def threshold(self):
return self._threshold
@property
def contour_area(self):
return self._contour_area
@property
def delta_alpha(self):
return self._delta_alpha
@property
def frame_alpha(self):
return self._frame_alpha
@property
def frame_height(self):
return self._frame_height
def to_dict(self):
return {
'threshold': self.threshold,
'contour_area': self.contour_area,
'delta_alpha': self.delta_alpha,
'frame_alpha': self.frame_alpha,
'frame_height': self.frame_height,
}
class DetectConfig():
def __init__(self, global_config, config, camera_fps):
self._max_disappeared = config.get('max_disappeared', global_config.get('max_disappeared', camera_fps*2))
@property
def max_disappeared(self):
return self._max_disappeared
def to_dict(self):
return {
'max_disappeared': self._max_disappeared,
}
class ZoneConfig():
def __init__(self, name, config):
self._coordinates = config['coordinates']
self._filters = { name: FilterConfig(c) for name, c in config['filters'].items() }
if isinstance(self._coordinates, list):
self._contour = np.array([[int(p.split(',')[0]), int(p.split(',')[1])] for p in self._coordinates])
elif isinstance(self._coordinates, str):
points = self._coordinates.split(',')
self._contour = np.array([[int(points[i]), int(points[i+1])] for i in range(0, len(points), 2)])
else:
print(f"Unable to parse zone coordinates for {name}")
self._contour = np.array([])
self._color = (0,0,0)
@property
def coordinates(self):
return self._coordinates
@property
def contour(self):
return self._contour
@contour.setter
def contour(self, val):
self._contour = val
@property
def color(self):
return self._color
@color.setter
def color(self, val):
self._color = val
@property
def filters(self):
return self._filters
def to_dict(self):
return {
'filters': {k: f.to_dict() for k, f in self.filters.items()}
}
class CameraConfig():
def __init__(self, name, config, global_config):
self._name = name
self._ffmpeg = CameraFfmpegConfig(global_config['ffmpeg'], config['ffmpeg'])
self._height = config.get('height')
self._width = config.get('width')
self._frame_shape = (self._height, self._width)
self._frame_shape_yuv = (self._frame_shape[0]*3//2, self._frame_shape[1])
self._fps = config.get('fps')
self._mask = self._create_mask(config.get('mask'))
self._best_image_timeout = config['best_image_timeout']
self._zones = { name: ZoneConfig(name, z) for name, z in config['zones'].items() }
self._save_clips = CameraSaveClipsConfig(global_config, config['save_clips'])
self._record = RecordConfig(global_config['record'], config['record'])
self._rtmp = CameraRtmpConfig(global_config, config['rtmp'])
self._snapshots = CameraSnapshotsConfig(config['snapshots'])
self._objects = ObjectConfig(global_config['objects'], config.get('objects', {}))
self._motion = MotionConfig(global_config['motion'], config['motion'], self._height)
self._detect = DetectConfig(global_config['detect'], config['detect'], config.get('fps', 5))
self._ffmpeg_cmds = []
for ffmpeg_input in self._ffmpeg.inputs:
ffmpeg_cmd = self._get_ffmpeg_cmd(ffmpeg_input)
if ffmpeg_cmd is None:
continue
self._ffmpeg_cmds.append({
'roles': ffmpeg_input.roles,
'cmd': ffmpeg_cmd
})
self._set_zone_colors(self._zones)
def _create_mask(self, mask):
mask_img = np.zeros(self.frame_shape, np.uint8)
mask_img[:] = 255
if isinstance(mask, list):
for m in mask:
self._add_mask(m, mask_img)
elif isinstance(mask, str):
self._add_mask(mask, mask_img)
return mask_img
def _add_mask(self, mask, mask_img):
if mask.startswith('poly,'):
points = mask.split(',')[1:]
contour = np.array([[int(points[i]), int(points[i+1])] for i in range(0, len(points), 2)])
cv2.fillPoly(mask_img, pts=[contour], color=(0))
else:
mask_file = cv2.imread(f"/config/{mask}", cv2.IMREAD_GRAYSCALE)
if mask_file is None or mask_file.size == 0:
logger.warning(f"Could not read mask file {mask}")
else:
mask_img[np.where(mask_file==[0])] = [0]
def _get_ffmpeg_cmd(self, ffmpeg_input):
ffmpeg_output_args = []
if 'detect' in ffmpeg_input.roles:
ffmpeg_output_args = self.ffmpeg.output_args['detect'] + ffmpeg_output_args + ['pipe:']
if self.fps:
ffmpeg_output_args = ["-r", str(self.fps)] + ffmpeg_output_args
if 'rtmp' in ffmpeg_input.roles and self.rtmp.enabled:
ffmpeg_output_args = self.ffmpeg.output_args['rtmp'] + [
f"rtmp://127.0.0.1/live/{self.name}"
] + ffmpeg_output_args
if 'clips' in ffmpeg_input.roles and self.save_clips.enabled:
ffmpeg_output_args = self.ffmpeg.output_args['clips'] + [
f"{os.path.join(CACHE_DIR, self.name)}-%Y%m%d%H%M%S.mp4"
] + ffmpeg_output_args
if 'record' in ffmpeg_input.roles and self.record.enabled:
ffmpeg_output_args = self.ffmpeg.output_args['record'] + [
f"{os.path.join(RECORD_DIR, self.name)}-%Y%m%d%H%M%S.mp4"
] + ffmpeg_output_args
# if there arent any outputs enabled for this input
if len(ffmpeg_output_args) == 0:
return None
cmd = (['ffmpeg'] +
ffmpeg_input.global_args +
ffmpeg_input.hwaccel_args +
ffmpeg_input.input_args +
['-i', ffmpeg_input.path] +
ffmpeg_output_args)
return [part for part in cmd if part != '']
def _set_zone_colors(self, zones: Dict[str, ZoneConfig]):
# set colors for zones
all_zone_names = zones.keys()
zone_colors = {}
colors = plt.cm.get_cmap('tab10', len(all_zone_names))
for i, zone in enumerate(all_zone_names):
zone_colors[zone] = tuple(int(round(255 * c)) for c in colors(i)[:3])
for name, zone in zones.items():
zone.color = zone_colors[name]
@property
def name(self):
return self._name
@property
def ffmpeg(self):
return self._ffmpeg
@property
def height(self):
return self._height
@property
def width(self):
return self._width
@property
def fps(self):
return self._fps
@property
def mask(self):
return self._mask
@property
def best_image_timeout(self):
return self._best_image_timeout
@property
def zones(self)-> Dict[str, ZoneConfig]:
return self._zones
@property
def save_clips(self):
return self._save_clips
@property
def record(self):
return self._record
@property
def rtmp(self):
return self._rtmp
@property
def snapshots(self):
return self._snapshots
@property
def objects(self):
return self._objects
@property
def motion(self):
return self._motion
@property
def detect(self):
return self._detect
@property
def frame_shape(self):
return self._frame_shape
@property
def frame_shape_yuv(self):
return self._frame_shape_yuv
@property
def ffmpeg_cmds(self):
return self._ffmpeg_cmds
def to_dict(self):
return {
'name': self.name,
'height': self.height,
'width': self.width,
'fps': self.fps,
'best_image_timeout': self.best_image_timeout,
'zones': {k: z.to_dict() for k, z in self.zones.items()},
'save_clips': self.save_clips.to_dict(),
'record': self.record.to_dict(),
'rtmp': self.rtmp.to_dict(),
'snapshots': self.snapshots.to_dict(),
'objects': self.objects.to_dict(),
'motion': self.motion.to_dict(),
'detect': self.detect.to_dict(),
'frame_shape': self.frame_shape,
'ffmpeg_cmds': [{'roles': c['roles'], 'cmd': ' '.join(c['cmd'])} for c in self.ffmpeg_cmds],
}
class FrigateConfig():
def __init__(self, config_file=None, config=None):
if config is None and config_file is None:
raise ValueError('config or config_file must be defined')
elif not config_file is None:
config = self._load_file(config_file)
config = FRIGATE_CONFIG_SCHEMA(config)
config = self._sub_env_vars(config)
self._database = DatabaseConfig(config['database'])
self._model = ModelConfig(config['model'])
self._detectors = { name: DetectorConfig(d) for name, d in config['detectors'].items() }
self._mqtt = MqttConfig(config['mqtt'])
self._save_clips = SaveClipsConfig(config['save_clips'])
self._cameras = { name: CameraConfig(name, c, config) for name, c in config['cameras'].items() }
self._logger = LoggerConfig(config['logger'])
def _sub_env_vars(self, config):
frigate_env_vars = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')}
if 'password' in config['mqtt']:
config['mqtt']['password'] = config['mqtt']['password'].format(**frigate_env_vars)
for camera in config['cameras'].values():
for i in camera['ffmpeg']['inputs']:
i['path'] = i['path'].format(**frigate_env_vars)
return config
def _load_file(self, config_file):
with open(config_file) as f:
raw_config = f.read()
if config_file.endswith(".yml"):
config = yaml.safe_load(raw_config)
elif config_file.endswith(".json"):
config = json.loads(raw_config)
return config
def to_dict(self):
return {
'database': self.database.to_dict(),
'model': self.model.to_dict(),
'detectors': {k: d.to_dict() for k, d in self.detectors.items()},
'mqtt': self.mqtt.to_dict(),
'save_clips': self.save_clips.to_dict(),
'cameras': {k: c.to_dict() for k, c in self.cameras.items()},
'logger': self.logger.to_dict()
}
@property
def database(self):
return self._database
@property
def model(self):
return self._model
@property
def detectors(self) -> Dict[str, DetectorConfig]:
return self._detectors
@property
def logger(self):
return self._logger
@property
def mqtt(self):
return self._mqtt
@property
def save_clips(self):
return self._save_clips
@property
def cameras(self) -> Dict[str, CameraConfig]:
return self._cameras

3
frigate/const.py Normal file
View File

@@ -0,0 +1,3 @@
CLIPS_DIR = '/media/frigate/clips'
RECORD_DIR = '/media/frigate/recordings'
CACHE_DIR = '/tmp/cache'

View File

@@ -1,15 +1,22 @@
import os
import datetime
import hashlib
import logging
import multiprocessing as mp
import os
import queue
from multiprocessing.connection import Connection
import threading
import signal
from abc import ABC, abstractmethod
from multiprocessing.connection import Connection
from typing import Dict
import numpy as np
import tflite_runtime.interpreter as tflite
from tflite_runtime.interpreter import load_delegate
from frigate.util import EventsPerSecond, listen, SharedMemoryFrameManager
from frigate.util import EventsPerSecond, SharedMemoryFrameManager, listen
logger = logging.getLogger(__name__)
def load_labels(path, encoding='utf-8'):
"""Loads labels from file (with or without index numbers).
@@ -36,7 +43,7 @@ class ObjectDetector(ABC):
pass
class LocalObjectDetector(ObjectDetector):
def __init__(self, tf_device=None, labels=None):
def __init__(self, tf_device=None, num_threads=3, labels=None):
self.fps = EventsPerSecond()
if labels is None:
self.labels = {}
@@ -51,15 +58,15 @@ class LocalObjectDetector(ObjectDetector):
if tf_device != 'cpu':
try:
print(f"Attempting to load TPU as {device_config['device']}")
logger.info(f"Attempting to load TPU as {device_config['device']}")
edge_tpu_delegate = load_delegate('libedgetpu.so.1.0', device_config)
print("TPU found")
logger.info("TPU found")
except ValueError:
print("No EdgeTPU detected. Falling back to CPU.")
logger.info("No EdgeTPU detected. Falling back to CPU.")
if edge_tpu_delegate is None:
self.interpreter = tflite.Interpreter(
model_path='/cpu_model.tflite')
model_path='/cpu_model.tflite', num_threads=num_threads)
else:
self.interpreter = tflite.Interpreter(
model_path='/edgetpu_model.tflite',
@@ -99,11 +106,21 @@ class LocalObjectDetector(ObjectDetector):
return detections
def run_detector(detection_queue, out_events: Dict[str, mp.Event], avg_speed, start, tf_device):
print(f"Starting detection process: {os.getpid()}")
def run_detector(name: str, detection_queue: mp.Queue, out_events: Dict[str, mp.Event], avg_speed, start, model_shape, tf_device, num_threads):
threading.current_thread().name = f"detector:{name}"
logger = logging.getLogger(f"detector.{name}")
logger.info(f"Starting detection process: {os.getpid()}")
listen()
stop_event = mp.Event()
def receiveSignal(signalNumber, frame):
stop_event.set()
signal.signal(signal.SIGTERM, receiveSignal)
signal.signal(signal.SIGINT, receiveSignal)
frame_manager = SharedMemoryFrameManager()
object_detector = LocalObjectDetector(tf_device=tf_device)
object_detector = LocalObjectDetector(tf_device=tf_device, num_threads=num_threads)
outputs = {}
for name in out_events.keys():
@@ -115,8 +132,14 @@ def run_detector(detection_queue, out_events: Dict[str, mp.Event], avg_speed, st
}
while True:
connection_id = detection_queue.get()
input_frame = frame_manager.get(connection_id, (1,300,300,3))
if stop_event.is_set():
break
try:
connection_id = detection_queue.get(timeout=5)
except queue.Empty:
continue
input_frame = frame_manager.get(connection_id, (1,model_shape[0],model_shape[1],3))
if input_frame is None:
continue
@@ -132,21 +155,24 @@ def run_detector(detection_queue, out_events: Dict[str, mp.Event], avg_speed, st
avg_speed.value = (avg_speed.value*9 + duration)/10
class EdgeTPUProcess():
def __init__(self, detection_queue, out_events, tf_device=None):
def __init__(self, name, detection_queue, out_events, model_shape, tf_device=None, num_threads=3):
self.name = name
self.out_events = out_events
self.detection_queue = detection_queue
self.avg_inference_speed = mp.Value('d', 0.01)
self.detection_start = mp.Value('d', 0.0)
self.detect_process = None
self.model_shape = model_shape
self.tf_device = tf_device
self.num_threads = num_threads
self.start_or_restart()
def stop(self):
self.detect_process.terminate()
print("Waiting for detection process to exit gracefully...")
logging.info("Waiting for detection process to exit gracefully...")
self.detect_process.join(timeout=30)
if self.detect_process.exitcode is None:
print("Detection process didnt exit. Force killing...")
logging.info("Detection process didnt exit. Force killing...")
self.detect_process.kill()
self.detect_process.join()
@@ -154,19 +180,19 @@ class EdgeTPUProcess():
self.detection_start.value = 0.0
if (not self.detect_process is None) and self.detect_process.is_alive():
self.stop()
self.detect_process = mp.Process(target=run_detector, args=(self.detection_queue, self.out_events, self.avg_inference_speed, self.detection_start, self.tf_device))
self.detect_process = mp.Process(target=run_detector, name=f"detector:{self.name}", args=(self.name, self.detection_queue, self.out_events, self.avg_inference_speed, self.detection_start, self.model_shape, self.tf_device, self.num_threads))
self.detect_process.daemon = True
self.detect_process.start()
class RemoteObjectDetector():
def __init__(self, name, labels, detection_queue, event):
def __init__(self, name, labels, detection_queue, event, model_shape):
self.labels = load_labels(labels)
self.name = name
self.fps = EventsPerSecond()
self.detection_queue = detection_queue
self.event = event
self.shm = mp.shared_memory.SharedMemory(name=self.name, create=False)
self.np_shm = np.ndarray((1,300,300,3), dtype=np.uint8, buffer=self.shm.buf)
self.np_shm = np.ndarray((1,model_shape[0],model_shape[1],3), dtype=np.uint8, buffer=self.shm.buf)
self.out_shm = mp.shared_memory.SharedMemory(name=f"out-{self.name}", create=False)
self.out_np_shm = np.ndarray((20,6), dtype=np.float32, buffer=self.out_shm.buf)
@@ -196,4 +222,4 @@ class RemoteObjectDetector():
def cleanup(self):
self.shm.unlink()
self.out_shm.unlink()
self.out_shm.unlink()

View File

@@ -1,36 +1,49 @@
import os
import time
import psutil
import threading
from collections import defaultdict
import json
import datetime
import subprocess as sp
import json
import logging
import os
import queue
import subprocess as sp
import threading
import time
from collections import defaultdict
from pathlib import Path
import psutil
from frigate.config import FrigateConfig
from frigate.const import RECORD_DIR, CLIPS_DIR, CACHE_DIR
from frigate.models import Event
from peewee import fn
logger = logging.getLogger(__name__)
class EventProcessor(threading.Thread):
def __init__(self, config, camera_processes, cache_dir, clip_dir, event_queue, stop_event):
def __init__(self, config, camera_processes, event_queue, event_processed_queue, stop_event):
threading.Thread.__init__(self)
self.name = 'event_processor'
self.config = config
self.camera_processes = camera_processes
self.cache_dir = cache_dir
self.clip_dir = clip_dir
self.cached_clips = {}
self.event_queue = event_queue
self.event_processed_queue = event_processed_queue
self.events_in_process = {}
self.stop_event = stop_event
def refresh_cache(self):
cached_files = os.listdir(self.cache_dir)
cached_files = os.listdir(CACHE_DIR)
files_in_use = []
for process_data in self.camera_processes.values():
for process in psutil.process_iter():
try:
ffmpeg_process = psutil.Process(pid=process_data['ffmpeg_pid'].value)
flist = ffmpeg_process.open_files()
if process.name() != 'ffmpeg':
continue
flist = process.open_files()
if flist:
for nt in flist:
if nt.path.startswith(self.cache_dir):
if nt.path.startswith(CACHE_DIR):
files_in_use.append(nt.path.split('/')[-1])
except:
continue
@@ -50,7 +63,7 @@ class EventProcessor(threading.Thread):
'format=duration',
'-of',
'default=noprint_wrappers=1:nokey=1',
f"{os.path.join(self.cache_dir,f)}"
f"{os.path.join(CACHE_DIR,f)}"
])
p = sp.Popen(ffprobe_cmd, stdout=sp.PIPE, shell=True)
(output, err) = p.communicate()
@@ -58,8 +71,8 @@ class EventProcessor(threading.Thread):
if p_status == 0:
duration = float(output.decode('utf-8').strip())
else:
print(f"bad file: {f}")
os.remove(os.path.join(self.cache_dir,f))
logger.info(f"bad file: {f}")
os.remove(os.path.join(CACHE_DIR,f))
continue
self.cached_clips[f] = {
@@ -75,27 +88,27 @@ class EventProcessor(threading.Thread):
earliest_event = datetime.datetime.now().timestamp()
# if the earliest event exceeds the max seconds, cap it
max_seconds = self.config.get('save_clips', {}).get('max_seconds', 300)
max_seconds = self.config.save_clips.max_seconds
if datetime.datetime.now().timestamp()-earliest_event > max_seconds:
earliest_event = datetime.datetime.now().timestamp()-max_seconds
for f, data in list(self.cached_clips.items()):
if earliest_event-90 > data['start_time']+data['duration']:
del self.cached_clips[f]
os.remove(os.path.join(self.cache_dir,f))
os.remove(os.path.join(CACHE_DIR,f))
def create_clip(self, camera, event_data, pre_capture):
def create_clip(self, camera, event_data, pre_capture, post_capture):
# get all clips from the camera with the event sorted
sorted_clips = sorted([c for c in self.cached_clips.values() if c['camera'] == camera], key = lambda i: i['start_time'])
while sorted_clips[-1]['start_time'] + sorted_clips[-1]['duration'] < event_data['end_time']:
while len(sorted_clips) == 0 or sorted_clips[-1]['start_time'] + sorted_clips[-1]['duration'] < event_data['end_time']+post_capture:
time.sleep(5)
self.refresh_cache()
# get all clips from the camera with the event sorted
sorted_clips = sorted([c for c in self.cached_clips.values() if c['camera'] == camera], key = lambda i: i['start_time'])
playlist_start = event_data['start_time']-pre_capture
playlist_end = event_data['end_time']+5
playlist_end = event_data['end_time']+post_capture
playlist_lines = []
for clip in sorted_clips:
# clip ends before playlist start time, skip
@@ -104,7 +117,7 @@ class EventProcessor(threading.Thread):
# clip starts after playlist ends, finish
if clip['start_time'] > playlist_end:
break
playlist_lines.append(f"file '{os.path.join(self.cache_dir,clip['path'])}'")
playlist_lines.append(f"file '{os.path.join(CACHE_DIR,clip['path'])}'")
# if this is the starting clip, add an inpoint
if clip['start_time'] < playlist_start:
playlist_lines.append(f"inpoint {int(playlist_start-clip['start_time'])}")
@@ -126,21 +139,20 @@ class EventProcessor(threading.Thread):
'-',
'-c',
'copy',
f"{os.path.join(self.clip_dir, clip_name)}.mp4"
'-movflags',
'+faststart',
f"{os.path.join(CLIPS_DIR, clip_name)}.mp4"
]
p = sp.run(ffmpeg_cmd, input="\n".join(playlist_lines), encoding='ascii', capture_output=True)
if p.returncode != 0:
print(p.stderr)
logger.error(p.stderr)
return
with open(f"{os.path.join(self.clip_dir, clip_name)}.json", 'w') as outfile:
json.dump(event_data, outfile)
def run(self):
while True:
if self.stop_event.is_set():
print(f"Exiting event processor...")
logger.info(f"Exiting event processor...")
break
try:
@@ -152,23 +164,126 @@ class EventProcessor(threading.Thread):
self.refresh_cache()
save_clips_config = self.config['cameras'][camera].get('save_clips', {})
save_clips_config = self.config.cameras[camera].save_clips
# if save clips is not enabled for this camera, just continue
if not save_clips_config.get('enabled', False):
if not save_clips_config.enabled:
if event_type == 'end':
self.event_processed_queue.put((event_data['id'], camera))
continue
# if specific objects are listed for this camera, only save clips for them
if 'objects' in save_clips_config:
if not event_data['label'] in save_clips_config['objects']:
continue
if not event_data['label'] in save_clips_config.objects:
if event_type == 'end':
self.event_processed_queue.put((event_data['id'], camera))
continue
if event_type == 'start':
self.events_in_process[event_data['id']] = event_data
if event_type == 'end':
if len(self.cached_clips) > 0 and not event_data['false_positive']:
self.create_clip(camera, event_data, save_clips_config.get('pre_capture', 30))
self.create_clip(camera, event_data, save_clips_config.pre_capture, save_clips_config.post_capture)
Event.create(
id=event_data['id'],
label=event_data['label'],
camera=camera,
start_time=event_data['start_time'],
end_time=event_data['end_time'],
top_score=event_data['top_score'],
false_positive=event_data['false_positive'],
zones=list(event_data['entered_zones']),
thumbnail=event_data['thumbnail']
)
del self.events_in_process[event_data['id']]
self.event_processed_queue.put((event_data['id'], camera))
class EventCleanup(threading.Thread):
def __init__(self, config: FrigateConfig, stop_event):
threading.Thread.__init__(self)
self.name = 'event_cleanup'
self.config = config
self.stop_event = stop_event
def run(self):
counter = 0
while(True):
if self.stop_event.is_set():
logger.info(f"Exiting event cleanup...")
break
# only expire events every 10 minutes, but check for stop events every 10 seconds
time.sleep(10)
counter = counter + 1
if counter < 60:
continue
counter = 0
camera_keys = list(self.config.cameras.keys())
# Expire events from unlisted cameras based on the global config
retain_config = self.config.save_clips.retain
distinct_labels = (Event.select(Event.label)
.where(Event.camera.not_in(camera_keys))
.distinct())
# loop over object types in db
for l in distinct_labels:
# get expiration time for this label
expire_days = retain_config.objects.get(l.label, retain_config.default)
expire_after = (datetime.datetime.now() - datetime.timedelta(days=expire_days)).timestamp()
# grab all events after specific time
expired_events = (
Event.select()
.where(Event.camera.not_in(camera_keys),
Event.start_time < expire_after,
Event.label == l.label)
)
# delete the grabbed clips from disk
for event in expired_events:
clip_name = f"{event.camera}-{event.id}"
clip = Path(f"{os.path.join(CLIPS_DIR, clip_name)}.mp4")
clip.unlink(missing_ok=True)
# delete the event for this type from the db
delete_query = (
Event.delete()
.where(Event.camera.not_in(camera_keys),
Event.start_time < expire_after,
Event.label == l.label)
)
delete_query.execute()
# Expire events from cameras based on the camera config
for name, camera in self.config.cameras.items():
retain_config = camera.save_clips.retain
# get distinct objects in database for this camera
distinct_labels = (Event.select(Event.label)
.where(Event.camera == name)
.distinct())
# loop over object types in db
for l in distinct_labels:
# get expiration time for this label
expire_days = retain_config.objects.get(l.label, retain_config.default)
expire_after = (datetime.datetime.now() - datetime.timedelta(days=expire_days)).timestamp()
# grab all events after specific time
expired_events = (
Event.select()
.where(Event.camera == name,
Event.start_time < expire_after,
Event.label == l.label)
)
# delete the grabbed clips from disk
for event in expired_events:
clip_name = f"{event.camera}-{event.id}"
clip = Path(f"{os.path.join(CLIPS_DIR, clip_name)}.mp4")
clip.unlink(missing_ok=True)
# delete the event for this type from the db
delete_query = (
Event.delete()
.where( Event.camera == name,
Event.start_time < expire_after,
Event.label == l.label)
)
delete_query.execute()

269
frigate/http.py Normal file
View File

@@ -0,0 +1,269 @@
import base64
import datetime
import logging
import os
import time
from functools import reduce
import cv2
import numpy as np
from flask import (Blueprint, Flask, Response, current_app, jsonify,
make_response, request)
from peewee import SqliteDatabase, operator, fn, DoesNotExist
from playhouse.shortcuts import model_to_dict
from frigate.models import Event
from frigate.util import calculate_region
from frigate.version import VERSION
logger = logging.getLogger(__name__)
bp = Blueprint('frigate', __name__)
def create_app(frigate_config, database: SqliteDatabase, camera_metrics, detectors, detected_frames_processor):
app = Flask(__name__)
@app.before_request
def _db_connect():
database.connect()
@app.teardown_request
def _db_close(exc):
if not database.is_closed():
database.close()
app.frigate_config = frigate_config
app.camera_metrics = camera_metrics
app.detectors = detectors
app.detected_frames_processor = detected_frames_processor
app.register_blueprint(bp)
return app
@bp.route('/')
def is_healthy():
return "Frigate is running. Alive and healthy!"
@bp.route('/events/summary')
def events_summary():
groups = (
Event
.select(
Event.camera,
Event.label,
fn.strftime('%Y-%m-%d', fn.datetime(Event.start_time, 'unixepoch', 'localtime')).alias('day'),
Event.zones,
fn.COUNT(Event.id).alias('count')
)
.group_by(
Event.camera,
Event.label,
fn.strftime('%Y-%m-%d', fn.datetime(Event.start_time, 'unixepoch', 'localtime')),
Event.zones
)
)
return jsonify([e for e in groups.dicts()])
@bp.route('/events/<id>')
def event(id):
try:
return model_to_dict(Event.get(Event.id == id))
except DoesNotExist:
return "Event not found", 404
@bp.route('/events/<id>/snapshot.jpg')
def event_snapshot(id):
format = request.args.get('format', 'ios')
thumbnail_bytes = None
try:
event = Event.get(Event.id == id)
thumbnail_bytes = base64.b64decode(event.thumbnail)
except DoesNotExist:
# see if the object is currently being tracked
try:
for camera_state in current_app.detected_frames_processor.camera_states.values():
if id in camera_state.tracked_objects:
tracked_obj = camera_state.tracked_objects.get(id)
if not tracked_obj is None:
thumbnail_bytes = tracked_obj.get_jpg_bytes()
except:
return "Event not found", 404
if thumbnail_bytes is None:
return "Event not found", 404
# android notifications prefer a 2:1 ratio
if format == 'android':
jpg_as_np = np.frombuffer(thumbnail_bytes, dtype=np.uint8)
img = cv2.imdecode(jpg_as_np, flags=1)
thumbnail = cv2.copyMakeBorder(img, 0, 0, int(img.shape[1]*0.5), int(img.shape[1]*0.5), cv2.BORDER_CONSTANT, (0,0,0))
ret, jpg = cv2.imencode('.jpg', thumbnail)
thumbnail_bytes = jpg.tobytes()
response = make_response(thumbnail_bytes)
response.headers['Content-Type'] = 'image/jpg'
return response
@bp.route('/events')
def events():
limit = request.args.get('limit', 100)
camera = request.args.get('camera')
label = request.args.get('label')
zone = request.args.get('zone')
after = request.args.get('after', type=int)
before = request.args.get('before', type=int)
clauses = []
if camera:
clauses.append((Event.camera == camera))
if label:
clauses.append((Event.label == label))
if zone:
clauses.append((Event.zones.cast('text') % f"*\"{zone}\"*"))
if after:
clauses.append((Event.start_time >= after))
if before:
clauses.append((Event.start_time <= before))
if len(clauses) == 0:
clauses.append((1 == 1))
events = (Event.select()
.where(reduce(operator.and_, clauses))
.order_by(Event.start_time.desc())
.limit(limit))
return jsonify([model_to_dict(e) for e in events])
@bp.route('/config')
def config():
return jsonify(current_app.frigate_config.to_dict())
@bp.route('/version')
def version():
return VERSION
@bp.route('/stats')
def stats():
camera_metrics = current_app.camera_metrics
stats = {}
total_detection_fps = 0
for name, camera_stats in camera_metrics.items():
total_detection_fps += camera_stats['detection_fps'].value
stats[name] = {
'camera_fps': round(camera_stats['camera_fps'].value, 2),
'process_fps': round(camera_stats['process_fps'].value, 2),
'skipped_fps': round(camera_stats['skipped_fps'].value, 2),
'detection_fps': round(camera_stats['detection_fps'].value, 2),
'pid': camera_stats['process'].pid,
'capture_pid': camera_stats['capture_process'].pid
}
stats['detectors'] = {}
for name, detector in current_app.detectors.items():
stats['detectors'][name] = {
'inference_speed': round(detector.avg_inference_speed.value*1000, 2),
'detection_start': detector.detection_start.value,
'pid': detector.detect_process.pid
}
stats['detection_fps'] = round(total_detection_fps, 2)
return jsonify(stats)
@bp.route('/<camera_name>/<label>/best.jpg')
def best(camera_name, label):
if camera_name in current_app.frigate_config.cameras:
best_object = current_app.detected_frames_processor.get_best(camera_name, label)
best_frame = best_object.get('frame')
if best_frame is None:
best_frame = np.zeros((720,1280,3), np.uint8)
else:
best_frame = cv2.cvtColor(best_frame, cv2.COLOR_YUV2BGR_I420)
crop = bool(request.args.get('crop', 0, type=int))
if crop:
box = best_object.get('box', (0,0,300,300))
region = calculate_region(best_frame.shape, box[0], box[1], box[2], box[3], 1.1)
best_frame = best_frame[region[1]:region[3], region[0]:region[2]]
height = int(request.args.get('h', str(best_frame.shape[0])))
width = int(height*best_frame.shape[1]/best_frame.shape[0])
best_frame = cv2.resize(best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
ret, jpg = cv2.imencode('.jpg', best_frame)
response = make_response(jpg.tobytes())
response.headers['Content-Type'] = 'image/jpg'
return response
else:
return "Camera named {} not found".format(camera_name), 404
@bp.route('/<camera_name>')
def mjpeg_feed(camera_name):
fps = int(request.args.get('fps', '3'))
height = int(request.args.get('h', '360'))
draw_options = {
'bounding_boxes': request.args.get('bbox', type=int),
'timestamp': request.args.get('timestamp', type=int),
'zones': request.args.get('zones', type=int),
'mask': request.args.get('mask', type=int),
'motion_boxes': request.args.get('motion', type=int),
'regions': request.args.get('regions', type=int),
}
if camera_name in current_app.frigate_config.cameras:
# return a multipart response
return Response(imagestream(current_app.detected_frames_processor, camera_name, fps, height, draw_options),
mimetype='multipart/x-mixed-replace; boundary=frame')
else:
return "Camera named {} not found".format(camera_name), 404
@bp.route('/<camera_name>/latest.jpg')
def latest_frame(camera_name):
draw_options = {
'bounding_boxes': request.args.get('bbox', type=int),
'timestamp': request.args.get('timestamp', type=int),
'zones': request.args.get('zones', type=int),
'mask': request.args.get('mask', type=int),
'motion_boxes': request.args.get('motion', type=int),
'regions': request.args.get('regions', type=int),
}
if camera_name in current_app.frigate_config.cameras:
# max out at specified FPS
frame = current_app.detected_frames_processor.get_current_frame(camera_name, draw_options)
if frame is None:
frame = np.zeros((720,1280,3), np.uint8)
height = int(request.args.get('h', str(frame.shape[0])))
width = int(height*frame.shape[1]/frame.shape[0])
frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
ret, jpg = cv2.imencode('.jpg', frame)
response = make_response(jpg.tobytes())
response.headers['Content-Type'] = 'image/jpg'
return response
else:
return "Camera named {} not found".format(camera_name), 404
def imagestream(detected_frames_processor, camera_name, fps, height, draw_options):
while True:
# max out at specified FPS
time.sleep(1/fps)
frame = detected_frames_processor.get_current_frame(camera_name, draw_options)
if frame is None:
frame = np.zeros((height,int(height*16/9),3), np.uint8)
width = int(height*frame.shape[1]/frame.shape[0])
frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_LINEAR)
ret, jpg = cv2.imencode('.jpg', frame)
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')

75
frigate/log.py Normal file
View File

@@ -0,0 +1,75 @@
# adapted from https://medium.com/@jonathonbao/python3-logging-with-multiprocessing-f51f460b8778
import logging
import threading
import os
import signal
import queue
import multiprocessing as mp
from logging import handlers
def listener_configurer():
root = logging.getLogger()
console_handler = logging.StreamHandler()
formatter = logging.Formatter('%(name)-30s %(levelname)-8s: %(message)s')
console_handler.setFormatter(formatter)
root.addHandler(console_handler)
root.setLevel(logging.INFO)
def root_configurer(queue):
h = handlers.QueueHandler(queue)
root = logging.getLogger()
root.addHandler(h)
root.setLevel(logging.INFO)
def log_process(log_queue):
stop_event = mp.Event()
def receiveSignal(signalNumber, frame):
stop_event.set()
signal.signal(signal.SIGTERM, receiveSignal)
signal.signal(signal.SIGINT, receiveSignal)
threading.current_thread().name = f"logger"
listener_configurer()
while True:
if stop_event.is_set() and log_queue.empty():
break
try:
record = log_queue.get(timeout=5)
except queue.Empty:
continue
logger = logging.getLogger(record.name)
logger.handle(record)
# based on https://codereview.stackexchange.com/a/17959
class LogPipe(threading.Thread):
def __init__(self, log_name, level):
"""Setup the object with a logger and a loglevel
and start the thread
"""
threading.Thread.__init__(self)
self.daemon = False
self.logger = logging.getLogger(log_name)
self.level = level
self.fdRead, self.fdWrite = os.pipe()
self.pipeReader = os.fdopen(self.fdRead)
self.start()
def fileno(self):
"""Return the write file descriptor of the pipe
"""
return self.fdWrite
def run(self):
"""Run the thread, logging everything.
"""
for line in iter(self.pipeReader.readline, ''):
self.logger.log(self.level, line.strip('\n'))
self.pipeReader.close()
def close(self):
"""Close the write end of the pipe.
"""
os.close(self.fdWrite)

14
frigate/models.py Normal file
View File

@@ -0,0 +1,14 @@
from peewee import *
from playhouse.sqlite_ext import *
class Event(Model):
id = CharField(null=False, primary_key=True, max_length=30)
label = CharField(index=True, max_length=20)
camera = CharField(index=True, max_length=20)
start_time = DateTimeField()
end_time = DateTimeField()
top_score = FloatField()
false_positive = BooleanField()
zones = JSONField()
thumbnail = TextField()

View File

@@ -1,12 +1,15 @@
import cv2
import imutils
import numpy as np
from frigate.config import MotionConfig
class MotionDetector():
def __init__(self, frame_shape, mask, resize_factor=4):
def __init__(self, frame_shape, mask, config: MotionConfig):
self.config = config
self.frame_shape = frame_shape
self.resize_factor = resize_factor
self.motion_frame_size = (int(frame_shape[0]/resize_factor), int(frame_shape[1]/resize_factor))
self.resize_factor = frame_shape[0]/config.frame_height
self.motion_frame_size = (config.frame_height, config.frame_height*frame_shape[1]//frame_shape[0])
self.avg_frame = np.zeros(self.motion_frame_size, np.float)
self.avg_delta = np.zeros(self.motion_frame_size, np.float)
self.motion_frame_count = 0
@@ -22,6 +25,8 @@ class MotionDetector():
# resize frame
resized_frame = cv2.resize(gray, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR)
# TODO: can I improve the contrast of the grayscale image here?
# convert to grayscale
# resized_frame = cv2.cvtColor(resized_frame, cv2.COLOR_BGR2GRAY)
@@ -37,22 +42,21 @@ class MotionDetector():
frameDelta = cv2.absdiff(resized_frame, cv2.convertScaleAbs(self.avg_frame))
# compute the average delta over the past few frames
# the alpha value can be modified to configure how sensitive the motion detection is.
# higher values mean the current frame impacts the delta a lot, and a single raindrop may
# register as motion, too low and a fast moving person wont be detected as motion
# this also assumes that a person is in the same location across more than a single frame
cv2.accumulateWeighted(frameDelta, self.avg_delta, 0.2)
cv2.accumulateWeighted(frameDelta, self.avg_delta, self.config.delta_alpha)
# compute the threshold image for the current frame
current_thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
# TODO: threshold
current_thresh = cv2.threshold(frameDelta, self.config.threshold, 255, cv2.THRESH_BINARY)[1]
# black out everything in the avg_delta where there isnt motion in the current frame
avg_delta_image = cv2.convertScaleAbs(self.avg_delta)
avg_delta_image[np.where(current_thresh==[0])] = [0]
avg_delta_image = cv2.bitwise_and(avg_delta_image, current_thresh)
# then look for deltas above the threshold, but only in areas where there is a delta
# in the current frame. this prevents deltas from previous frames from being included
thresh = cv2.threshold(avg_delta_image, 25, 255, cv2.THRESH_BINARY)[1]
thresh = cv2.threshold(avg_delta_image, self.config.threshold, 255, cv2.THRESH_BINARY)[1]
# dilate the thresholded image to fill in holes, then find contours
# on thresholded image
@@ -64,19 +68,18 @@ class MotionDetector():
for c in cnts:
# if the contour is big enough, count it as motion
contour_area = cv2.contourArea(c)
if contour_area > 100:
if contour_area > self.config.contour_area:
x, y, w, h = cv2.boundingRect(c)
motion_boxes.append((x*self.resize_factor, y*self.resize_factor, (x+w)*self.resize_factor, (y+h)*self.resize_factor))
motion_boxes.append((int(x*self.resize_factor), int(y*self.resize_factor), int((x+w)*self.resize_factor), int((y+h)*self.resize_factor)))
if len(motion_boxes) > 0:
self.motion_frame_count += 1
# TODO: this really depends on FPS
if self.motion_frame_count >= 10:
# only average in the current frame if the difference persists for at least 3 frames
cv2.accumulateWeighted(resized_frame, self.avg_frame, 0.2)
# only average in the current frame if the difference persists for a bit
cv2.accumulateWeighted(resized_frame, self.avg_frame, self.config.frame_alpha)
else:
# when no motion, just keep averaging the frames together
cv2.accumulateWeighted(resized_frame, self.avg_frame, 0.2)
cv2.accumulateWeighted(resized_frame, self.avg_frame, self.config.frame_alpha)
self.motion_frame_count = 0
return motion_boxes
return motion_boxes

36
frigate/mqtt.py Normal file
View File

@@ -0,0 +1,36 @@
import logging
import threading
import paho.mqtt.client as mqtt
from frigate.config import MqttConfig
logger = logging.getLogger(__name__)
def create_mqtt_client(config: MqttConfig):
client = mqtt.Client(client_id=config.client_id)
def on_connect(client, userdata, flags, rc):
threading.current_thread().name = "mqtt"
if rc != 0:
if rc == 3:
logger.error("MQTT Server unavailable")
elif rc == 4:
logger.error("MQTT Bad username or password")
elif rc == 5:
logger.error("MQTT Not authorized")
else:
logger.error("Unable to connect to MQTT: Connection refused. Error code: " + str(rc))
logger.info("MQTT connected")
client.publish(config.topic_prefix+'/available', 'online', retain=True)
client.on_connect = on_connect
client.will_set(config.topic_prefix+'/available', payload='offline', qos=1, retain=True)
if not config.user is None:
client.username_pw_set(config.user, password=config.password)
try:
client.connect(config.host, config.port, 60)
except Exception as e:
logger.error(f"Unable to connect to MQTT server: {e}")
raise
client.loop_start()
return client

View File

@@ -1,20 +1,28 @@
import json
import hashlib
import copy
import base64
import datetime
import time
import copy
import cv2
import threading
import queue
import copy
import numpy as np
from collections import Counter, defaultdict
import hashlib
import itertools
import matplotlib.pyplot as plt
from frigate.util import draw_box_with_label, SharedMemoryFrameManager
from frigate.edgetpu import load_labels
from typing import Callable, Dict
import json
import logging
import os
import queue
import threading
import time
from collections import Counter, defaultdict
from statistics import mean, median
from typing import Callable, Dict
import cv2
import matplotlib.pyplot as plt
import numpy as np
from frigate.config import FrigateConfig, CameraConfig
from frigate.const import RECORD_DIR, CLIPS_DIR, CACHE_DIR
from frigate.edgetpu import load_labels
from frigate.util import SharedMemoryFrameManager, draw_box_with_label, calculate_region
logger = logging.getLogger(__name__)
PATH_TO_LABELS = '/labelmap.txt'
@@ -25,24 +33,207 @@ COLOR_MAP = {}
for key, val in LABELS.items():
COLOR_MAP[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3])
def zone_filtered(obj, object_config):
object_name = obj['label']
def on_edge(box, frame_shape):
if (
box[0] == 0 or
box[1] == 0 or
box[2] == frame_shape[1]-1 or
box[3] == frame_shape[0]-1
):
return True
def is_better_thumbnail(current_thumb, new_obj, frame_shape) -> bool:
# larger is better
# cutoff images are less ideal, but they should also be smaller?
# better scores are obviously better too
# if the new_thumb is on an edge, and the current thumb is not
if on_edge(new_obj['box'], frame_shape) and not on_edge(current_thumb['box'], frame_shape):
return False
# if the score is better by more than 5%
if new_obj['score'] > current_thumb['score']+.05:
return True
# if the area is 10% larger
if new_obj['area'] > current_thumb['area']*1.1:
return True
return False
class TrackedObject():
def __init__(self, camera, camera_config: CameraConfig, frame_cache, obj_data):
self.obj_data = obj_data
self.camera = camera
self.camera_config = camera_config
self.frame_cache = frame_cache
self.current_zones = []
self.entered_zones = set()
self.false_positive = True
self.top_score = self.computed_score = 0.0
self.thumbnail_data = None
self.frame = None
self.previous = self.to_dict()
self._snapshot_jpg_time = 0
ret, jpg = cv2.imencode('.jpg', np.zeros((300,300,3), np.uint8))
self._snapshot_jpg = jpg.tobytes()
# start the score history
self.score_history = [self.obj_data['score']]
def _is_false_positive(self):
# once a true positive, always a true positive
if not self.false_positive:
return False
threshold = self.camera_config.objects.filters[self.obj_data['label']].threshold
if self.computed_score < threshold:
return True
return False
def compute_score(self):
scores = self.score_history[:]
# pad with zeros if you dont have at least 3 scores
if len(scores) < 3:
scores += [0.0]*(3 - len(scores))
return median(scores)
def update(self, current_frame_time, obj_data):
significant_update = False
self.obj_data.update(obj_data)
# if the object is not in the current frame, add a 0.0 to the score history
if self.obj_data['frame_time'] != current_frame_time:
self.score_history.append(0.0)
else:
self.score_history.append(self.obj_data['score'])
# only keep the last 10 scores
if len(self.score_history) > 10:
self.score_history = self.score_history[-10:]
# calculate if this is a false positive
self.computed_score = self.compute_score()
if self.computed_score > self.top_score:
self.top_score = self.computed_score
self.false_positive = self._is_false_positive()
if not self.false_positive:
# determine if this frame is a better thumbnail
if (
self.thumbnail_data is None
or is_better_thumbnail(self.thumbnail_data, self.obj_data, self.camera_config.frame_shape)
):
self.thumbnail_data = {
'frame_time': self.obj_data['frame_time'],
'box': self.obj_data['box'],
'area': self.obj_data['area'],
'region': self.obj_data['region'],
'score': self.obj_data['score']
}
significant_update = True
# check zones
current_zones = []
bottom_center = (self.obj_data['centroid'][0], self.obj_data['box'][3])
# check each zone
for name, zone in self.camera_config.zones.items():
contour = zone.contour
# check if the object is in the zone
if (cv2.pointPolygonTest(contour, bottom_center, False) >= 0):
# if the object passed the filters once, dont apply again
if name in self.current_zones or not zone_filtered(self, zone.filters):
current_zones.append(name)
self.entered_zones.add(name)
# if the zones changed, signal an update
if not self.false_positive and set(self.current_zones) != set(current_zones):
significant_update = True
self.current_zones = current_zones
return significant_update
def to_dict(self, include_thumbnail: bool = False):
return {
'id': self.obj_data['id'],
'camera': self.camera,
'frame_time': self.obj_data['frame_time'],
'label': self.obj_data['label'],
'top_score': self.top_score,
'false_positive': self.false_positive,
'start_time': self.obj_data['start_time'],
'end_time': self.obj_data.get('end_time', None),
'score': self.obj_data['score'],
'box': self.obj_data['box'],
'area': self.obj_data['area'],
'region': self.obj_data['region'],
'current_zones': self.current_zones.copy(),
'entered_zones': list(self.entered_zones).copy(),
'thumbnail': base64.b64encode(self.get_jpg_bytes()).decode('utf-8') if include_thumbnail else None
}
def get_jpg_bytes(self):
if self.thumbnail_data is None or self._snapshot_jpg_time == self.thumbnail_data['frame_time']:
return self._snapshot_jpg
if not self.thumbnail_data['frame_time'] in self.frame_cache:
logger.error(f"Unable to create thumbnail for {self.obj_data['id']}")
logger.error(f"Looking for frame_time of {self.thumbnail_data['frame_time']}")
logger.error(f"Thumbnail frames: {','.join([str(k) for k in self.frame_cache.keys()])}")
return self._snapshot_jpg
# TODO: crop first to avoid converting the entire frame?
snapshot_config = self.camera_config.snapshots
best_frame = cv2.cvtColor(self.frame_cache[self.thumbnail_data['frame_time']], cv2.COLOR_YUV2BGR_I420)
if snapshot_config.draw_bounding_boxes:
thickness = 2
color = COLOR_MAP[self.obj_data['label']]
box = self.thumbnail_data['box']
draw_box_with_label(best_frame, box[0], box[1], box[2], box[3], self.obj_data['label'],
f"{int(self.thumbnail_data['score']*100)}% {int(self.thumbnail_data['area'])}", thickness=thickness, color=color)
if snapshot_config.crop_to_region:
box = self.thumbnail_data['box']
region = calculate_region(best_frame.shape, box[0], box[1], box[2], box[3], 1.1)
best_frame = best_frame[region[1]:region[3], region[0]:region[2]]
if snapshot_config.height:
height = snapshot_config.height
width = int(height*best_frame.shape[1]/best_frame.shape[0])
best_frame = cv2.resize(best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
if snapshot_config.show_timestamp:
time_to_show = datetime.datetime.fromtimestamp(self.thumbnail_data['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
size = cv2.getTextSize(time_to_show, cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, thickness=2)
text_width = size[0][0]
desired_size = max(150, 0.33*best_frame.shape[1])
font_scale = desired_size/text_width
cv2.putText(best_frame, time_to_show, (5, best_frame.shape[0]-7), cv2.FONT_HERSHEY_SIMPLEX,
fontScale=font_scale, color=(255, 255, 255), thickness=2)
ret, jpg = cv2.imencode('.jpg', best_frame)
if ret:
self._snapshot_jpg = jpg.tobytes()
return self._snapshot_jpg
def zone_filtered(obj: TrackedObject, object_config):
object_name = obj.obj_data['label']
if object_name in object_config:
obj_settings = object_config[object_name]
# if the min area is larger than the
# detected object, don't add it to detected objects
if obj_settings.get('min_area',-1) > obj['area']:
if obj_settings.min_area > obj.obj_data['area']:
return True
# if the detected object is larger than the
# max area, don't add it to detected objects
if obj_settings.get('max_area', 24000000) < obj['area']:
if obj_settings.max_area < obj.obj_data['area']:
return True
# if the score is lower than the threshold, skip
if obj_settings.get('threshold', 0) > obj['computed_score']:
if obj_settings.threshold > obj.computed_score:
return True
return False
@@ -52,27 +243,30 @@ class CameraState():
def __init__(self, name, config, frame_manager):
self.name = name
self.config = config
self.camera_config = config.cameras[name]
self.frame_manager = frame_manager
self.best_objects = {}
self.object_status = defaultdict(lambda: 'OFF')
self.tracked_objects = {}
self.best_objects: Dict[str, TrackedObject] = {}
self.object_counts = defaultdict(lambda: 0)
self.tracked_objects: Dict[str, TrackedObject] = {}
self.frame_cache = {}
self.zone_objects = defaultdict(lambda: [])
self._current_frame = np.zeros((self.config['frame_shape'][0]*3//2, self.config['frame_shape'][1]), np.uint8)
self._current_frame = np.zeros(self.camera_config.frame_shape_yuv, np.uint8)
self.current_frame_lock = threading.Lock()
self.current_frame_time = 0.0
self.previous_frame_id = None
self.callbacks = defaultdict(lambda: [])
def get_current_frame(self, draw=False):
def get_current_frame(self, draw_options={}):
with self.current_frame_lock:
frame_copy = np.copy(self._current_frame)
frame_time = self.current_frame_time
tracked_objects = copy.deepcopy(self.tracked_objects)
tracked_objects = {k: v.to_dict() for k,v in self.tracked_objects.items()}
motion_boxes = self.motion_boxes.copy()
regions = self.regions.copy()
frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_YUV2BGR_I420)
# draw on the frame
if draw:
if draw_options.get('bounding_boxes'):
# draw the bounding boxes on the frame
for obj in tracked_objects.values():
thickness = 2
@@ -85,155 +279,128 @@ class CameraState():
# draw the bounding boxes on the frame
box = obj['box']
draw_box_with_label(frame_copy, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
# draw the regions on the frame
region = obj['region']
cv2.rectangle(frame_copy, (region[0], region[1]), (region[2], region[3]), (0,255,0), 1)
if self.config['snapshots']['show_timestamp']:
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
cv2.putText(frame_copy, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
if self.config['snapshots']['draw_zones']:
for name, zone in self.config['zones'].items():
thickness = 8 if any([name in obj['zones'] for obj in tracked_objects.values()]) else 2
cv2.drawContours(frame_copy, [zone['contour']], -1, zone['color'], thickness)
if draw_options.get('regions'):
for region in regions:
cv2.rectangle(frame_copy, (region[0], region[1]), (region[2], region[3]), (0,255,0), 2)
if draw_options.get('timestamp'):
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
cv2.putText(frame_copy, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
if draw_options.get('zones'):
for name, zone in self.camera_config.zones.items():
thickness = 8 if any([name in obj['current_zones'] for obj in tracked_objects.values()]) else 2
cv2.drawContours(frame_copy, [zone.contour], -1, zone.color, thickness)
if draw_options.get('mask'):
mask_overlay = np.where(self.camera_config.mask==[0])
frame_copy[mask_overlay] = [0,0,0]
if draw_options.get('motion_boxes'):
for m_box in motion_boxes:
cv2.rectangle(frame_copy, (m_box[0], m_box[1]), (m_box[2], m_box[3]), (0,0,255), 2)
return frame_copy
def false_positive(self, obj):
# once a true positive, always a true positive
if not obj.get('false_positive', True):
return False
threshold = self.config['objects'].get('filters', {}).get(obj['label'], {}).get('threshold', 0.85)
if obj['computed_score'] < threshold:
return True
return False
def compute_score(self, obj):
scores = obj['score_history'][:]
# pad with zeros if you dont have at least 3 scores
if len(scores) < 3:
scores += [0.0]*(3 - len(scores))
return median(scores)
def finished(self, obj_id):
del self.tracked_objects[obj_id]
def on(self, event_type: str, callback: Callable[[Dict], None]):
self.callbacks[event_type].append(callback)
def update(self, frame_time, tracked_objects):
def update(self, frame_time, current_detections, motion_boxes, regions):
self.current_frame_time = frame_time
# get the new frame and delete the old frame
self.motion_boxes = motion_boxes
self.regions = regions
# get the new frame
frame_id = f"{self.name}{frame_time}"
current_frame = self.frame_manager.get(frame_id, (self.config['frame_shape'][0]*3//2, self.config['frame_shape'][1]))
current_frame = self.frame_manager.get(frame_id, self.camera_config.frame_shape_yuv)
current_ids = tracked_objects.keys()
current_ids = current_detections.keys()
previous_ids = self.tracked_objects.keys()
removed_ids = list(set(previous_ids).difference(current_ids))
new_ids = list(set(current_ids).difference(previous_ids))
updated_ids = list(set(current_ids).intersection(previous_ids))
for id in new_ids:
self.tracked_objects[id] = tracked_objects[id]
self.tracked_objects[id]['zones'] = []
# start the score history
self.tracked_objects[id]['score_history'] = [self.tracked_objects[id]['score']]
# calculate if this is a false positive
self.tracked_objects[id]['computed_score'] = self.compute_score(self.tracked_objects[id])
self.tracked_objects[id]['false_positive'] = self.false_positive(self.tracked_objects[id])
new_obj = self.tracked_objects[id] = TrackedObject(self.name, self.camera_config, self.frame_cache, current_detections[id])
# call event handlers
for c in self.callbacks['start']:
c(self.name, tracked_objects[id])
c(self.name, new_obj, frame_time)
for id in updated_ids:
self.tracked_objects[id].update(tracked_objects[id])
updated_obj = self.tracked_objects[id]
significant_update = updated_obj.update(frame_time, current_detections[id])
# if the object is not in the current frame, add a 0.0 to the score history
if self.tracked_objects[id]['frame_time'] != self.current_frame_time:
self.tracked_objects[id]['score_history'].append(0.0)
else:
self.tracked_objects[id]['score_history'].append(self.tracked_objects[id]['score'])
# only keep the last 10 scores
if len(self.tracked_objects[id]['score_history']) > 10:
self.tracked_objects[id]['score_history'] = self.tracked_objects[id]['score_history'][-10:]
if significant_update:
# ensure this frame is stored in the cache
if updated_obj.thumbnail_data['frame_time'] == frame_time and frame_time not in self.frame_cache:
self.frame_cache[frame_time] = np.copy(current_frame)
# calculate if this is a false positive
self.tracked_objects[id]['computed_score'] = self.compute_score(self.tracked_objects[id])
self.tracked_objects[id]['false_positive'] = self.false_positive(self.tracked_objects[id])
# call event handlers
for c in self.callbacks['update']:
c(self.name, self.tracked_objects[id])
# call event handlers
for c in self.callbacks['update']:
c(self.name, updated_obj, frame_time)
for id in removed_ids:
# publish events to mqtt
self.tracked_objects[id]['end_time'] = frame_time
for c in self.callbacks['end']:
c(self.name, self.tracked_objects[id])
del self.tracked_objects[id]
# check to see if the objects are in any zones
for obj in self.tracked_objects.values():
current_zones = []
bottom_center = (obj['centroid'][0], obj['box'][3])
# check each zone
for name, zone in self.config['zones'].items():
contour = zone['contour']
# check if the object is in the zone
if (cv2.pointPolygonTest(contour, bottom_center, False) >= 0):
# if the object passed the filters once, dont apply again
if name in obj.get('zones', []) or not zone_filtered(obj, zone.get('filters', {})):
current_zones.append(name)
obj['zones'] = current_zones
removed_obj = self.tracked_objects[id]
if not 'end_time' in removed_obj.obj_data:
removed_obj.obj_data['end_time'] = frame_time
for c in self.callbacks['end']:
c(self.name, removed_obj, frame_time)
# TODO: can i switch to looking this up and only changing when an event ends?
# maintain best objects
for obj in self.tracked_objects.values():
object_type = obj['label']
# if the object wasn't seen on the current frame, skip it
if obj['frame_time'] != self.current_frame_time or obj['false_positive']:
object_type = obj.obj_data['label']
# if the object's thumbnail is not from the current frame
if obj.false_positive or obj.thumbnail_data['frame_time'] != self.current_frame_time:
continue
obj_copy = copy.deepcopy(obj)
if object_type in self.best_objects:
current_best = self.best_objects[object_type]
now = datetime.datetime.now().timestamp()
# if the object is a higher score than the current best score
# or the current object is older than desired, use the new object
if obj_copy['score'] > current_best['score'] or (now - current_best['frame_time']) > self.config.get('best_image_timeout', 60):
obj_copy['frame'] = np.copy(current_frame)
self.best_objects[object_type] = obj_copy
if (is_better_thumbnail(current_best.thumbnail_data, obj.thumbnail_data, self.camera_config.frame_shape)
or (now - current_best.thumbnail_data['frame_time']) > self.camera_config.best_image_timeout):
self.best_objects[object_type] = obj
for c in self.callbacks['snapshot']:
c(self.name, self.best_objects[object_type])
c(self.name, self.best_objects[object_type], frame_time)
else:
obj_copy['frame'] = np.copy(current_frame)
self.best_objects[object_type] = obj_copy
self.best_objects[object_type] = obj
for c in self.callbacks['snapshot']:
c(self.name, self.best_objects[object_type])
c(self.name, self.best_objects[object_type], frame_time)
# update overall camera state for each object type
obj_counter = Counter()
for obj in self.tracked_objects.values():
if not obj['false_positive']:
obj_counter[obj['label']] += 1
if not obj.false_positive:
obj_counter[obj.obj_data['label']] += 1
# report on detected objects
for obj_name, count in obj_counter.items():
new_status = 'ON' if count > 0 else 'OFF'
if new_status != self.object_status[obj_name]:
self.object_status[obj_name] = new_status
if count != self.object_counts[obj_name]:
self.object_counts[obj_name] = count
for c in self.callbacks['object_status']:
c(self.name, obj_name, new_status)
c(self.name, obj_name, count)
# expire any objects that are ON and no longer detected
expired_objects = [obj_name for obj_name, status in self.object_status.items() if status == 'ON' and not obj_name in obj_counter]
# expire any objects that are >0 and no longer detected
expired_objects = [obj_name for obj_name, count in self.object_counts.items() if count > 0 and not obj_name in obj_counter]
for obj_name in expired_objects:
self.object_status[obj_name] = 'OFF'
self.object_counts[obj_name] = 0
for c in self.callbacks['object_status']:
c(self.name, obj_name, 'OFF')
c(self.name, obj_name, 0)
for c in self.callbacks['snapshot']:
c(self.name, self.best_objects[obj_name])
c(self.name, self.best_objects[obj_name], frame_time)
# cleanup thumbnail frame cache
current_thumb_frames = set([obj.thumbnail_data['frame_time'] for obj in self.tracked_objects.values() if not obj.false_positive])
current_best_frames = set([obj.thumbnail_data['frame_time'] for obj in self.best_objects.values()])
thumb_frames_to_delete = [t for t in self.frame_cache.keys() if not t in current_thumb_frames and not t in current_best_frames]
for t in thumb_frames_to_delete:
del self.frame_cache[t]
with self.current_frame_lock:
self._current_frame = current_frame
@@ -242,68 +409,42 @@ class CameraState():
self.previous_frame_id = frame_id
class TrackedObjectProcessor(threading.Thread):
def __init__(self, camera_config, client, topic_prefix, tracked_objects_queue, event_queue, stop_event):
def __init__(self, config: FrigateConfig, client, topic_prefix, tracked_objects_queue, event_queue, event_processed_queue, stop_event):
threading.Thread.__init__(self)
self.camera_config = camera_config
self.name = "detected_frames_processor"
self.config = config
self.client = client
self.topic_prefix = topic_prefix
self.tracked_objects_queue = tracked_objects_queue
self.event_queue = event_queue
self.event_processed_queue = event_processed_queue
self.stop_event = stop_event
self.camera_states: Dict[str, CameraState] = {}
self.frame_manager = SharedMemoryFrameManager()
def start(camera, obj):
# publish events to mqtt
self.client.publish(f"{self.topic_prefix}/{camera}/events/start", json.dumps(obj), retain=False)
self.event_queue.put(('start', camera, obj))
def start(camera, obj: TrackedObject, current_frame_time):
self.event_queue.put(('start', camera, obj.to_dict()))
def update(camera, obj):
pass
def update(camera, obj: TrackedObject, current_frame_time):
after = obj.to_dict()
message = { 'before': obj.previous, 'after': after }
self.client.publish(f"{self.topic_prefix}/events", json.dumps(message), retain=False)
obj.previous = after
def end(camera, obj):
self.client.publish(f"{self.topic_prefix}/{camera}/events/end", json.dumps(obj), retain=False)
self.event_queue.put(('end', camera, obj))
def end(camera, obj: TrackedObject, current_frame_time):
if not obj.false_positive:
message = { 'before': obj.previous, 'after': obj.to_dict() }
self.client.publish(f"{self.topic_prefix}/events", json.dumps(message), retain=False)
self.event_queue.put(('end', camera, obj.to_dict(include_thumbnail=True)))
def snapshot(camera, obj):
if not 'frame' in obj:
return
best_frame = cv2.cvtColor(obj['frame'], cv2.COLOR_YUV2BGR_I420)
if self.camera_config[camera]['snapshots']['draw_bounding_boxes']:
thickness = 2
color = COLOR_MAP[obj['label']]
box = obj['box']
draw_box_with_label(best_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
mqtt_config = self.camera_config[camera].get('mqtt', {'crop_to_region': False})
if mqtt_config.get('crop_to_region'):
region = obj['region']
best_frame = best_frame[region[1]:region[3], region[0]:region[2]]
if 'snapshot_height' in mqtt_config:
height = int(mqtt_config['snapshot_height'])
width = int(height*best_frame.shape[1]/best_frame.shape[0])
best_frame = cv2.resize(best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
if self.camera_config[camera]['snapshots']['show_timestamp']:
time_to_show = datetime.datetime.fromtimestamp(obj['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
size = cv2.getTextSize(time_to_show, cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, thickness=2)
text_width = size[0][0]
text_height = size[0][1]
desired_size = max(200, 0.33*best_frame.shape[1])
font_scale = desired_size/text_width
cv2.putText(best_frame, time_to_show, (5, best_frame.shape[0]-7), cv2.FONT_HERSHEY_SIMPLEX, fontScale=font_scale, color=(255, 255, 255), thickness=2)
ret, jpg = cv2.imencode('.jpg', best_frame)
if ret:
jpg_bytes = jpg.tobytes()
self.client.publish(f"{self.topic_prefix}/{camera}/{obj['label']}/snapshot", jpg_bytes, retain=True)
def snapshot(camera, obj: TrackedObject, current_frame_time):
self.client.publish(f"{self.topic_prefix}/{camera}/{obj.obj_data['label']}/snapshot", obj.get_jpg_bytes(), retain=True)
def object_status(camera, object_name, status):
self.client.publish(f"{self.topic_prefix}/{camera}/{object_name}", status, retain=False)
for camera in self.camera_config.keys():
camera_state = CameraState(camera, self.camera_config[camera], self.frame_manager)
for camera in self.config.cameras.keys():
camera_state = CameraState(camera, self.config, self.frame_manager)
camera_state.on('start', start)
camera_state.on('update', update)
camera_state.on('end', end)
@@ -311,83 +452,71 @@ class TrackedObjectProcessor(threading.Thread):
camera_state.on('object_status', object_status)
self.camera_states[camera] = camera_state
self.camera_data = defaultdict(lambda: {
'best_objects': {},
'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')),
'tracked_objects': {},
'current_frame': np.zeros((720,1280,3), np.uint8),
'current_frame_time': 0.0,
'object_id': None
})
# {
# 'zone_name': {
# 'person': ['camera_1', 'camera_2']
# 'person': {
# 'camera_1': 2,
# 'camera_2': 1
# }
# }
# }
self.zone_data = defaultdict(lambda: defaultdict(lambda: set()))
# set colors for zones
all_zone_names = set([zone for config in self.camera_config.values() for zone in config['zones'].keys()])
zone_colors = {}
colors = plt.cm.get_cmap('tab10', len(all_zone_names))
for i, zone in enumerate(all_zone_names):
zone_colors[zone] = tuple(int(round(255 * c)) for c in colors(i)[:3])
# create zone contours
for camera_config in self.camera_config.values():
for zone_name, zone_config in camera_config['zones'].items():
zone_config['color'] = zone_colors[zone_name]
coordinates = zone_config['coordinates']
if isinstance(coordinates, list):
zone_config['contour'] = np.array([[int(p.split(',')[0]), int(p.split(',')[1])] for p in coordinates])
elif isinstance(coordinates, str):
points = coordinates.split(',')
zone_config['contour'] = np.array([[int(points[i]), int(points[i+1])] for i in range(0, len(points), 2)])
else:
print(f"Unable to parse zone coordinates for {zone_name} - {camera}")
self.zone_data = defaultdict(lambda: defaultdict(lambda: {}))
def get_best(self, camera, label):
best_objects = self.camera_states[camera].best_objects
if label in best_objects:
return best_objects[label]
# TODO: need a lock here
camera_state = self.camera_states[camera]
if label in camera_state.best_objects:
best_obj = camera_state.best_objects[label]
best = best_obj.thumbnail_data.copy()
best['frame'] = camera_state.frame_cache.get(best_obj.thumbnail_data['frame_time'])
return best
else:
return {}
def get_current_frame(self, camera, draw=False):
return self.camera_states[camera].get_current_frame(draw)
def get_current_frame(self, camera, draw_options={}):
return self.camera_states[camera].get_current_frame(draw_options)
def run(self):
while True:
if self.stop_event.is_set():
print(f"Exiting object processor...")
logger.info(f"Exiting object processor...")
break
try:
camera, frame_time, current_tracked_objects = self.tracked_objects_queue.get(True, 10)
camera, frame_time, current_tracked_objects, motion_boxes, regions = self.tracked_objects_queue.get(True, 10)
except queue.Empty:
continue
camera_state = self.camera_states[camera]
camera_state.update(frame_time, current_tracked_objects)
camera_state.update(frame_time, current_tracked_objects, motion_boxes, regions)
# update zone status for each label
for zone in camera_state.config['zones'].keys():
# get labels for current camera and all labels in current zone
labels_for_camera = set([obj['label'] for obj in camera_state.tracked_objects.values() if zone in obj['zones'] and not obj['false_positive']])
labels_to_check = labels_for_camera | set(self.zone_data[zone].keys())
# for each label in zone
for label in labels_to_check:
camera_list = self.zone_data[zone][label]
# remove or add the camera to the list for the current label
previous_state = len(camera_list) > 0
if label in labels_for_camera:
camera_list.add(camera_state.name)
elif camera_state.name in camera_list:
camera_list.remove(camera_state.name)
new_state = len(camera_list) > 0
# if the value is changing, send over MQTT
if previous_state == False and new_state == True:
self.client.publish(f"{self.topic_prefix}/{zone}/{label}", 'ON', retain=False)
elif previous_state == True and new_state == False:
self.client.publish(f"{self.topic_prefix}/{zone}/{label}", 'OFF', retain=False)
# update zone counts for each label
# for each zone in the current camera
for zone in self.config.cameras[camera].zones.keys():
# count labels for the camera in the zone
obj_counter = Counter()
for obj in camera_state.tracked_objects.values():
if zone in obj.current_zones and not obj.false_positive:
obj_counter[obj.obj_data['label']] += 1
# update counts and publish status
for label in set(list(self.zone_data[zone].keys()) + list(obj_counter.keys())):
# if we have previously published a count for this zone/label
zone_label = self.zone_data[zone][label]
if camera in zone_label:
current_count = sum(zone_label.values())
zone_label[camera] = obj_counter[label] if label in obj_counter else 0
new_count = sum(zone_label.values())
if new_count != current_count:
self.client.publish(f"{self.topic_prefix}/{zone}/{label}", new_count, retain=False)
# if this is a new zone/label combo for this camera
else:
if label in obj_counter:
zone_label[camera] = obj_counter[label]
self.client.publish(f"{self.topic_prefix}/{zone}/{label}", obj_counter[label], retain=False)
# cleanup event finished queue
while not self.event_processed_queue.empty():
event_id, camera = self.event_processed_queue.get()
self.camera_states[camera].finished(event_id)

View File

@@ -1,29 +1,32 @@
import time
import datetime
import threading
import cv2
import itertools
import copy
import numpy as np
import datetime
import itertools
import multiprocessing as mp
import random
import string
import multiprocessing as mp
import threading
import time
from collections import defaultdict
import cv2
import numpy as np
from scipy.spatial import distance as dist
from frigate.util import draw_box_with_label, calculate_region
from frigate.config import DetectConfig
from frigate.util import draw_box_with_label
class ObjectTracker():
def __init__(self, max_disappeared):
def __init__(self, config: DetectConfig):
self.tracked_objects = {}
self.disappeared = {}
self.max_disappeared = max_disappeared
self.max_disappeared = config.max_disappeared
def register(self, index, obj):
rand_id = ''.join(random.choices(string.ascii_lowercase + string.digits, k=6))
id = f"{obj['frame_time']}-{rand_id}"
obj['id'] = id
obj['start_time'] = obj['frame_time']
obj['top_score'] = obj['score']
self.tracked_objects[id] = obj
self.disappeared[id] = 0
@@ -34,8 +37,6 @@ class ObjectTracker():
def update(self, id, new_obj):
self.disappeared[id] = 0
self.tracked_objects[id].update(new_obj)
if self.tracked_objects[id]['score'] > self.tracked_objects[id]['top_score']:
self.tracked_objects[id]['top_score'] = self.tracked_objects[id]['score']
def match_and_update(self, frame_time, new_objects):
# group by name

208
frigate/process_clip.py Normal file
View File

@@ -0,0 +1,208 @@
import datetime
import json
import logging
import multiprocessing as mp
import os
import subprocess as sp
import sys
from unittest import TestCase, main
import click
import cv2
import numpy as np
from frigate.config import FRIGATE_CONFIG_SCHEMA, FrigateConfig
from frigate.edgetpu import LocalObjectDetector
from frigate.motion import MotionDetector
from frigate.object_processing import COLOR_MAP, CameraState
from frigate.objects import ObjectTracker
from frigate.util import (DictFrameManager, EventsPerSecond,
SharedMemoryFrameManager, draw_box_with_label)
from frigate.video import (capture_frames, process_frames,
start_or_restart_ffmpeg)
logging.basicConfig()
logging.root.setLevel(logging.DEBUG)
logger = logging.getLogger(__name__)
def get_frame_shape(source):
ffprobe_cmd = " ".join([
'ffprobe',
'-v',
'panic',
'-show_error',
'-show_streams',
'-of',
'json',
'"'+source+'"'
])
p = sp.Popen(ffprobe_cmd, stdout=sp.PIPE, shell=True)
(output, err) = p.communicate()
p_status = p.wait()
info = json.loads(output)
video_info = [s for s in info['streams'] if s['codec_type'] == 'video'][0]
if video_info['height'] != 0 and video_info['width'] != 0:
return (video_info['height'], video_info['width'], 3)
# fallback to using opencv if ffprobe didnt succeed
video = cv2.VideoCapture(source)
ret, frame = video.read()
frame_shape = frame.shape
video.release()
return frame_shape
class ProcessClip():
def __init__(self, clip_path, frame_shape, config: FrigateConfig):
self.clip_path = clip_path
self.camera_name = 'camera'
self.config = config
self.camera_config = self.config.cameras['camera']
self.frame_shape = self.camera_config.frame_shape
self.ffmpeg_cmd = [c['cmd'] for c in self.camera_config.ffmpeg_cmds if 'detect' in c['roles']][0]
self.frame_manager = SharedMemoryFrameManager()
self.frame_queue = mp.Queue()
self.detected_objects_queue = mp.Queue()
self.camera_state = CameraState(self.camera_name, config, self.frame_manager)
def load_frames(self):
fps = EventsPerSecond()
skipped_fps = EventsPerSecond()
current_frame = mp.Value('d', 0.0)
frame_size = self.camera_config.frame_shape_yuv[0] * self.camera_config.frame_shape_yuv[1]
ffmpeg_process = start_or_restart_ffmpeg(self.ffmpeg_cmd, logger, sp.DEVNULL, frame_size)
capture_frames(ffmpeg_process, self.camera_name, self.camera_config.frame_shape_yuv, self.frame_manager,
self.frame_queue, fps, skipped_fps, current_frame)
ffmpeg_process.wait()
ffmpeg_process.communicate()
def process_frames(self, objects_to_track=['person'], object_filters={}):
mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
mask[:] = 255
motion_detector = MotionDetector(self.frame_shape, mask, self.camera_config.motion)
object_detector = LocalObjectDetector(labels='/labelmap.txt')
object_tracker = ObjectTracker(self.camera_config.detect)
process_info = {
'process_fps': mp.Value('d', 0.0),
'detection_fps': mp.Value('d', 0.0),
'detection_frame': mp.Value('d', 0.0)
}
stop_event = mp.Event()
model_shape = (self.config.model.height, self.config.model.width)
process_frames(self.camera_name, self.frame_queue, self.frame_shape, model_shape,
self.frame_manager, motion_detector, object_detector, object_tracker,
self.detected_objects_queue, process_info,
objects_to_track, object_filters, mask, stop_event, exit_on_empty=True)
def top_object(self, debug_path=None):
obj_detected = False
top_computed_score = 0.0
def handle_event(name, obj, frame_time):
nonlocal obj_detected
nonlocal top_computed_score
if obj.computed_score > top_computed_score:
top_computed_score = obj.computed_score
if not obj.false_positive:
obj_detected = True
self.camera_state.on('new', handle_event)
self.camera_state.on('update', handle_event)
while(not self.detected_objects_queue.empty()):
camera_name, frame_time, current_tracked_objects, motion_boxes, regions = self.detected_objects_queue.get()
if not debug_path is None:
self.save_debug_frame(debug_path, frame_time, current_tracked_objects.values())
self.camera_state.update(frame_time, current_tracked_objects, motion_boxes, regions)
self.frame_manager.delete(self.camera_state.previous_frame_id)
return {
'object_detected': obj_detected,
'top_score': top_computed_score
}
def save_debug_frame(self, debug_path, frame_time, tracked_objects):
current_frame = cv2.cvtColor(self.frame_manager.get(f"{self.camera_name}{frame_time}", self.camera_config.frame_shape_yuv), cv2.COLOR_YUV2BGR_I420)
# draw the bounding boxes on the frame
for obj in tracked_objects:
thickness = 2
color = (0,0,175)
if obj['frame_time'] != frame_time:
thickness = 1
color = (255,0,0)
else:
color = (255,255,0)
# draw the bounding boxes on the frame
box = obj['box']
draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['id'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
# draw the regions on the frame
region = obj['region']
draw_box_with_label(current_frame, region[0], region[1], region[2], region[3], 'region', "", thickness=1, color=(0,255,0))
cv2.imwrite(f"{os.path.join(debug_path, os.path.basename(self.clip_path))}.{int(frame_time*1000000)}.jpg", current_frame)
@click.command()
@click.option("-p", "--path", required=True, help="Path to clip or directory to test.")
@click.option("-l", "--label", default='person', help="Label name to detect.")
@click.option("-t", "--threshold", default=0.85, help="Threshold value for objects.")
@click.option("-s", "--scores", default=None, help="File to save csv of top scores")
@click.option("--debug-path", default=None, help="Path to output frames for debugging.")
def process(path, label, threshold, scores, debug_path):
clips = []
if os.path.isdir(path):
files = os.listdir(path)
files.sort()
clips = [os.path.join(path, file) for file in files]
elif os.path.isfile(path):
clips.append(path)
json_config = {
'mqtt': {
'host': 'mqtt'
},
'cameras': {
'camera': {
'ffmpeg': {
'inputs': [
{ 'path': 'path.mp4', 'global_args': '', 'input_args': '', 'roles': ['detect'] }
]
},
'height': 1920,
'width': 1080
}
}
}
results = []
for c in clips:
logger.info(c)
frame_shape = get_frame_shape(c)
json_config['cameras']['camera']['height'] = frame_shape[0]
json_config['cameras']['camera']['width'] = frame_shape[1]
json_config['cameras']['camera']['ffmpeg']['inputs'][0]['path'] = c
config = FrigateConfig(config=FRIGATE_CONFIG_SCHEMA(json_config))
process_clip = ProcessClip(c, frame_shape, config)
process_clip.load_frames()
process_clip.process_frames(objects_to_track=[label])
results.append((c, process_clip.top_object(debug_path)))
if not scores is None:
with open(scores, 'w') as writer:
for result in results:
writer.write(f"{result[0]},{result[1]['top_score']}\n")
positive_count = sum(1 for result in results if result[1]['object_detected'])
print(f"Objects were detected in {positive_count}/{len(results)}({positive_count/len(results)*100:.2f}%) clip(s).")
if __name__ == '__main__':
process()

125
frigate/record.py Normal file
View File

@@ -0,0 +1,125 @@
import datetime
import json
import logging
import os
import queue
import subprocess as sp
import threading
import time
from collections import defaultdict
from pathlib import Path
import psutil
from frigate.config import FrigateConfig
from frigate.const import RECORD_DIR, CLIPS_DIR, CACHE_DIR
logger = logging.getLogger(__name__)
SECONDS_IN_DAY = 60 * 60 * 24
def remove_empty_directories(directory):
# list all directories recursively and sort them by path,
# longest first
paths = sorted(
[x[0] for x in os.walk(RECORD_DIR)],
key=lambda p: len(str(p)),
reverse=True,
)
for path in paths:
# don't delete the parent
if path == RECORD_DIR:
continue
if len(os.listdir(path)) == 0:
os.rmdir(path)
class RecordingMaintainer(threading.Thread):
def __init__(self, config: FrigateConfig, stop_event):
threading.Thread.__init__(self)
self.name = 'recording_maint'
self.config = config
self.stop_event = stop_event
def move_files(self):
recordings = [d for d in os.listdir(RECORD_DIR) if os.path.isfile(os.path.join(RECORD_DIR, d)) and d.endswith(".mp4")]
files_in_use = []
for process in psutil.process_iter():
if process.name() != 'ffmpeg':
continue
try:
flist = process.open_files()
if flist:
for nt in flist:
if nt.path.startswith(RECORD_DIR):
files_in_use.append(nt.path.split('/')[-1])
except:
continue
for f in recordings:
if f in files_in_use:
continue
camera = '-'.join(f.split('-')[:-1])
start_time = datetime.datetime.strptime(f.split('-')[-1].split('.')[0], '%Y%m%d%H%M%S')
ffprobe_cmd = " ".join([
'ffprobe',
'-v',
'error',
'-show_entries',
'format=duration',
'-of',
'default=noprint_wrappers=1:nokey=1',
f"{os.path.join(RECORD_DIR,f)}"
])
p = sp.Popen(ffprobe_cmd, stdout=sp.PIPE, shell=True)
(output, err) = p.communicate()
p_status = p.wait()
if p_status == 0:
duration = float(output.decode('utf-8').strip())
else:
logger.info(f"bad file: {f}")
os.remove(os.path.join(RECORD_DIR,f))
continue
directory = os.path.join(RECORD_DIR, start_time.strftime('%Y-%m/%d/%H'), camera)
if not os.path.exists(directory):
os.makedirs(directory)
file_name = f"{start_time.strftime('%M.%S.mp4')}"
os.rename(os.path.join(RECORD_DIR,f), os.path.join(directory,file_name))
def expire_files(self):
delete_before = {}
for name, camera in self.config.cameras.items():
delete_before[name] = datetime.datetime.now().timestamp() - SECONDS_IN_DAY*camera.record.retain_days
for p in Path('/media/frigate/recordings').rglob("*.mp4"):
if not p.parent.name in delete_before:
continue
if p.stat().st_mtime < delete_before[p.parent.name]:
p.unlink(missing_ok=True)
def run(self):
counter = 0
self.expire_files()
while(True):
if self.stop_event.is_set():
logger.info(f"Exiting recording maintenance...")
break
# only expire events every 10 minutes, but check for new files every 10 seconds
time.sleep(10)
counter = counter + 1
if counter > 60:
self.expire_files()
remove_empty_directories(RECORD_DIR)
counter = 0
self.move_files()

0
frigate/test/__init__.py Normal file
View File

344
frigate/test/test_config.py Normal file
View File

@@ -0,0 +1,344 @@
import json
from unittest import TestCase, main
import voluptuous as vol
from frigate.config import FRIGATE_CONFIG_SCHEMA, FrigateConfig
class TestConfig(TestCase):
def setUp(self):
self.minimal = {
'mqtt': {
'host': 'mqtt'
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920
}
}
}
def test_empty(self):
FRIGATE_CONFIG_SCHEMA({})
def test_minimal(self):
FRIGATE_CONFIG_SCHEMA(self.minimal)
def test_config_class(self):
FrigateConfig(config=self.minimal)
def test_inherit_tracked_objects(self):
config = {
'mqtt': {
'host': 'mqtt'
},
'objects': {
'track': ['person', 'dog']
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920
}
}
}
frigate_config = FrigateConfig(config=config)
assert('dog' in frigate_config.cameras['back'].objects.track)
def test_override_tracked_objects(self):
config = {
'mqtt': {
'host': 'mqtt'
},
'objects': {
'track': ['person', 'dog']
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920,
'objects': {
'track': ['cat']
}
}
}
}
frigate_config = FrigateConfig(config=config)
assert('cat' in frigate_config.cameras['back'].objects.track)
def test_default_object_filters(self):
config = {
'mqtt': {
'host': 'mqtt'
},
'objects': {
'track': ['person', 'dog']
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920
}
}
}
frigate_config = FrigateConfig(config=config)
assert('dog' in frigate_config.cameras['back'].objects.filters)
def test_inherit_object_filters(self):
config = {
'mqtt': {
'host': 'mqtt'
},
'objects': {
'track': ['person', 'dog'],
'filters': {
'dog': {
'threshold': 0.7
}
}
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920
}
}
}
frigate_config = FrigateConfig(config=config)
assert('dog' in frigate_config.cameras['back'].objects.filters)
assert(frigate_config.cameras['back'].objects.filters['dog'].threshold == 0.7)
def test_override_object_filters(self):
config = {
'mqtt': {
'host': 'mqtt'
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920,
'objects': {
'track': ['person', 'dog'],
'filters': {
'dog': {
'threshold': 0.7
}
}
}
}
}
}
frigate_config = FrigateConfig(config=config)
assert('dog' in frigate_config.cameras['back'].objects.filters)
assert(frigate_config.cameras['back'].objects.filters['dog'].threshold == 0.7)
def test_ffmpeg_params(self):
config = {
'ffmpeg': {
'input_args': ['-re']
},
'mqtt': {
'host': 'mqtt'
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920,
'objects': {
'track': ['person', 'dog'],
'filters': {
'dog': {
'threshold': 0.7
}
}
}
}
}
}
frigate_config = FrigateConfig(config=config)
assert('-re' in frigate_config.cameras['back'].ffmpeg_cmds[0]['cmd'])
def test_inherit_save_clips_retention(self):
config = {
'mqtt': {
'host': 'mqtt'
},
'save_clips': {
'retain': {
'default': 20,
'objects': {
'person': 30
}
}
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920
}
}
}
frigate_config = FrigateConfig(config=config)
assert(frigate_config.cameras['back'].save_clips.retain.objects['person'] == 30)
def test_roles_listed_twice_throws_error(self):
config = {
'mqtt': {
'host': 'mqtt'
},
'save_clips': {
'retain': {
'default': 20,
'objects': {
'person': 30
}
}
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] },
{ 'path': 'rtsp://10.0.0.1:554/video2', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920
}
}
}
self.assertRaises(vol.MultipleInvalid, lambda: FrigateConfig(config=config))
def test_zone_matching_camera_name_throws_error(self):
config = {
'mqtt': {
'host': 'mqtt'
},
'save_clips': {
'retain': {
'default': 20,
'objects': {
'person': 30
}
}
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920,
'zones': {
'back': {
'coordinates': '1,1,1,1,1,1'
}
}
}
}
}
self.assertRaises(vol.MultipleInvalid, lambda: FrigateConfig(config=config))
def test_save_clips_should_default_to_global_objects(self):
config = {
'mqtt': {
'host': 'mqtt'
},
'save_clips': {
'retain': {
'default': 20,
'objects': {
'person': 30
}
}
},
'objects': {
'track': ['person', 'dog']
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920,
'save_clips': {
'enabled': True
}
}
}
}
config = FrigateConfig(config=config)
assert(len(config.cameras['back'].save_clips.objects) == 2)
assert('dog' in config.cameras['back'].save_clips.objects)
assert('person' in config.cameras['back'].save_clips.objects)
def test_role_assigned_but_not_enabled(self):
json_config = {
'mqtt': {
'host': 'mqtt'
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect', 'rtmp'] },
{ 'path': 'rtsp://10.0.0.1:554/clips', 'roles': ['clips'] }
]
},
'height': 1080,
'width': 1920
}
}
}
config = FrigateConfig(config=json_config)
ffmpeg_cmds = config.cameras['back'].ffmpeg_cmds
assert(len(ffmpeg_cmds) == 1)
assert(not 'clips' in ffmpeg_cmds[0]['roles'])
if __name__ == '__main__':
main(verbosity=2)

View File

@@ -0,0 +1,39 @@
import cv2
import numpy as np
from unittest import TestCase, main
from frigate.util import yuv_region_2_rgb
class TestYuvRegion2RGB(TestCase):
def setUp(self):
self.bgr_frame = np.zeros((100, 200, 3), np.uint8)
self.bgr_frame[:] = (0, 0, 255)
self.bgr_frame[5:55, 5:55] = (255,0,0)
# cv2.imwrite(f"bgr_frame.jpg", self.bgr_frame)
self.yuv_frame = cv2.cvtColor(self.bgr_frame, cv2.COLOR_BGR2YUV_I420)
def test_crop_yuv(self):
cropped = yuv_region_2_rgb(self.yuv_frame, (10,10,50,50))
# ensure the upper left pixel is blue
assert(np.all(cropped[0, 0] == [0, 0, 255]))
def test_crop_yuv_out_of_bounds(self):
cropped = yuv_region_2_rgb(self.yuv_frame, (0,0,200,200))
# cv2.imwrite(f"cropped.jpg", cv2.cvtColor(cropped, cv2.COLOR_RGB2BGR))
# ensure the upper left pixel is red
# the yuv conversion has some noise
assert(np.all(cropped[0, 0] == [255, 1, 0]))
# ensure the bottom right is black
assert(np.all(cropped[199, 199] == [0, 0, 0]))
def test_crop_yuv_portrait(self):
bgr_frame = np.zeros((1920, 1080, 3), np.uint8)
bgr_frame[:] = (0, 0, 255)
bgr_frame[5:55, 5:55] = (255,0,0)
# cv2.imwrite(f"bgr_frame.jpg", self.bgr_frame)
yuv_frame = cv2.cvtColor(bgr_frame, cv2.COLOR_BGR2YUV_I420)
cropped = yuv_region_2_rgb(yuv_frame, (0, 852, 648, 1500))
# cv2.imwrite(f"cropped.jpg", cv2.cvtColor(cropped, cv2.COLOR_RGB2BGR))
if __name__ == '__main__':
main(verbosity=2)

View File

@@ -1,17 +1,21 @@
from abc import ABC, abstractmethod
import datetime
import time
import signal
import traceback
import collections
import numpy as np
import cv2
import threading
import matplotlib.pyplot as plt
import datetime
import hashlib
import json
import signal
import subprocess as sp
import threading
import time
import traceback
from abc import ABC, abstractmethod
from multiprocessing import shared_memory
from typing import AnyStr
import cv2
import matplotlib.pyplot as plt
import numpy as np
def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thickness=2, color=None, position='ul'):
if color is None:
color = (0,0,255)
@@ -43,14 +47,11 @@ def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thicknes
cv2.putText(frame, display_text, (text_offset_x, text_offset_y + line_height - 3), font, fontScale=font_scale, color=(0, 0, 0), thickness=2)
def calculate_region(frame_shape, xmin, ymin, xmax, ymax, multiplier=2):
# size is larger than longest edge
size = int(max(xmax-xmin, ymax-ymin)*multiplier)
# size is the longest edge and divisible by 4
size = int(max(xmax-xmin, ymax-ymin)//4*4*multiplier)
# dont go any smaller than 300
if size < 300:
size = 300
# if the size is too big to fit in the frame
if size > min(frame_shape[0], frame_shape[1]):
size = min(frame_shape[0], frame_shape[1])
# x_offset is midpoint of bounding box minus half the size
x_offset = int((xmax-xmin)/2.0+xmin-size/2.0)
@@ -58,48 +59,156 @@ def calculate_region(frame_shape, xmin, ymin, xmax, ymax, multiplier=2):
if x_offset < 0:
x_offset = 0
elif x_offset > (frame_shape[1]-size):
x_offset = (frame_shape[1]-size)
x_offset = max(0, (frame_shape[1]-size))
# y_offset is midpoint of bounding box minus half the size
y_offset = int((ymax-ymin)/2.0+ymin-size/2.0)
# if outside the image
# # if outside the image
if y_offset < 0:
y_offset = 0
elif y_offset > (frame_shape[0]-size):
y_offset = (frame_shape[0]-size)
y_offset = max(0, (frame_shape[0]-size))
return (x_offset, y_offset, x_offset+size, y_offset+size)
def get_yuv_crop(frame_shape, crop):
# crop should be (x1,y1,x2,y2)
frame_height = frame_shape[0]//3*2
frame_width = frame_shape[1]
# compute the width/height of the uv channels
uv_width = frame_width//2 # width of the uv channels
uv_height = frame_height//4 # height of the uv channels
# compute the offset for upper left corner of the uv channels
uv_x_offset = crop[0]//2 # x offset of the uv channels
uv_y_offset = crop[1]//4 # y offset of the uv channels
# compute the width/height of the uv crops
uv_crop_width = (crop[2] - crop[0])//2 # width of the cropped uv channels
uv_crop_height = (crop[3] - crop[1])//4 # height of the cropped uv channels
# ensure crop dimensions are multiples of 2 and 4
y = (
crop[0],
crop[1],
crop[0] + uv_crop_width*2,
crop[1] + uv_crop_height*4
)
u1 = (
0 + uv_x_offset,
frame_height + uv_y_offset,
0 + uv_x_offset + uv_crop_width,
frame_height + uv_y_offset + uv_crop_height
)
u2 = (
uv_width + uv_x_offset,
frame_height + uv_y_offset,
uv_width + uv_x_offset + uv_crop_width,
frame_height + uv_y_offset + uv_crop_height
)
v1 = (
0 + uv_x_offset,
frame_height + uv_height + uv_y_offset,
0 + uv_x_offset + uv_crop_width,
frame_height + uv_height + uv_y_offset + uv_crop_height
)
v2 = (
uv_width + uv_x_offset,
frame_height + uv_height + uv_y_offset,
uv_width + uv_x_offset + uv_crop_width,
frame_height + uv_height + uv_y_offset + uv_crop_height
)
return y, u1, u2, v1, v2
def yuv_region_2_rgb(frame, region):
height = frame.shape[0]//3*2
width = frame.shape[1]
# make sure the size is a multiple of 4
size = (region[3] - region[1])//4*4
try:
height = frame.shape[0]//3*2
width = frame.shape[1]
x1 = region[0]
y1 = region[1]
# get the crop box if the region extends beyond the frame
crop_x1 = max(0, region[0])
crop_y1 = max(0, region[1])
# ensure these are a multiple of 4
crop_x2 = min(width, region[2])
crop_y2 = min(height, region[3])
crop_box = (crop_x1, crop_y1, crop_x2, crop_y2)
uv_x1 = x1//2
uv_y1 = y1//4
y, u1, u2, v1, v2 = get_yuv_crop(frame.shape, crop_box)
uv_width = size//2
uv_height = size//4
# if the region starts outside the frame, indent the start point in the cropped frame
y_channel_x_offset = abs(min(0, region[0]))
y_channel_y_offset = abs(min(0, region[1]))
u_y_start = height
v_y_start = height + height//4
two_x_offset = width//2
uv_channel_x_offset = y_channel_x_offset//2
uv_channel_y_offset = y_channel_y_offset//4
yuv_cropped_frame = np.zeros((size+size//2, size), np.uint8)
# y channel
yuv_cropped_frame[0:size, 0:size] = frame[y1:y1+size, x1:x1+size]
# u channel
yuv_cropped_frame[size:size+uv_height, 0:uv_width] = frame[uv_y1+u_y_start:uv_y1+u_y_start+uv_height, uv_x1:uv_x1+uv_width]
yuv_cropped_frame[size:size+uv_height, uv_width:size] = frame[uv_y1+u_y_start:uv_y1+u_y_start+uv_height, uv_x1+two_x_offset:uv_x1+two_x_offset+uv_width]
# v channel
yuv_cropped_frame[size+uv_height:size+uv_height*2, 0:uv_width] = frame[uv_y1+v_y_start:uv_y1+v_y_start+uv_height, uv_x1:uv_x1+uv_width]
yuv_cropped_frame[size+uv_height:size+uv_height*2, uv_width:size] = frame[uv_y1+v_y_start:uv_y1+v_y_start+uv_height, uv_x1+two_x_offset:uv_x1+two_x_offset+uv_width]
# create the yuv region frame
# make sure the size is a multiple of 4
size = (region[3] - region[1])//4*4
yuv_cropped_frame = np.zeros((size+size//2, size), np.uint8)
# fill in black
yuv_cropped_frame[:] = 128
yuv_cropped_frame[0:size,0:size] = 16
return cv2.cvtColor(yuv_cropped_frame, cv2.COLOR_YUV2RGB_I420)
# copy the y channel
yuv_cropped_frame[
y_channel_y_offset:y_channel_y_offset + y[3] - y[1],
y_channel_x_offset:y_channel_x_offset + y[2] - y[0]
] = frame[
y[1]:y[3],
y[0]:y[2]
]
uv_crop_width = u1[2] - u1[0]
uv_crop_height = u1[3] - u1[1]
# copy u1
yuv_cropped_frame[
size + uv_channel_y_offset:size + uv_channel_y_offset + uv_crop_height,
0 + uv_channel_x_offset:0 + uv_channel_x_offset + uv_crop_width
] = frame[
u1[1]:u1[3],
u1[0]:u1[2]
]
# copy u2
yuv_cropped_frame[
size + uv_channel_y_offset:size + uv_channel_y_offset + uv_crop_height,
size//2 + uv_channel_x_offset:size//2 + uv_channel_x_offset + uv_crop_width
] = frame[
u2[1]:u2[3],
u2[0]:u2[2]
]
# copy v1
yuv_cropped_frame[
size+size//4 + uv_channel_y_offset:size+size//4 + uv_channel_y_offset + uv_crop_height,
0 + uv_channel_x_offset:0 + uv_channel_x_offset + uv_crop_width
] = frame[
v1[1]:v1[3],
v1[0]:v1[2]
]
# copy v2
yuv_cropped_frame[
size+size//4 + uv_channel_y_offset:size+size//4 + uv_channel_y_offset + uv_crop_height,
size//2 + uv_channel_x_offset:size//2 + uv_channel_x_offset + uv_crop_width
] = frame[
v2[1]:v2[3],
v2[0]:v2[2]
]
return cv2.cvtColor(yuv_cropped_frame, cv2.COLOR_YUV2RGB_I420)
except:
print(f"frame.shape: {frame.shape}")
print(f"region: {region}")
raise
def intersection(box_a, box_b):
return (
@@ -241,4 +350,4 @@ class SharedMemoryFrameManager(FrameManager):
if name in self.shm_store:
self.shm_store[name].close()
self.shm_store[name].unlink()
del self.shm_store[name]
del self.shm_store[name]

View File

@@ -1,57 +1,34 @@
import os
import time
import datetime
import cv2
import queue
import threading
import ctypes
import multiprocessing as mp
import subprocess as sp
import numpy as np
import base64
import copy
import ctypes
import datetime
import itertools
import json
import base64
from typing import Dict, List
import logging
import multiprocessing as mp
import os
import queue
import subprocess as sp
import signal
import threading
import time
from collections import defaultdict
from frigate.util import draw_box_with_label, yuv_region_2_rgb, area, calculate_region, clipped, intersection_over_union, intersection, EventsPerSecond, listen, FrameManager, SharedMemoryFrameManager
from frigate.objects import ObjectTracker
from typing import Dict, List
import cv2
import numpy as np
from frigate.config import CameraConfig
from frigate.edgetpu import RemoteObjectDetector
from frigate.log import LogPipe
from frigate.motion import MotionDetector
from frigate.objects import ObjectTracker
from frigate.util import (EventsPerSecond, FrameManager,
SharedMemoryFrameManager, area, calculate_region,
clipped, draw_box_with_label, intersection,
intersection_over_union, listen, yuv_region_2_rgb)
def get_frame_shape(source):
ffprobe_cmd = " ".join([
'ffprobe',
'-v',
'panic',
'-show_error',
'-show_streams',
'-of',
'json',
'"'+source+'"'
])
print(ffprobe_cmd)
p = sp.Popen(ffprobe_cmd, stdout=sp.PIPE, shell=True)
(output, err) = p.communicate()
p_status = p.wait()
info = json.loads(output)
print(info)
video_info = [s for s in info['streams'] if s['codec_type'] == 'video'][0]
if video_info['height'] != 0 and video_info['width'] != 0:
return (video_info['height'], video_info['width'], 3)
# fallback to using opencv if ffprobe didnt succeed
video = cv2.VideoCapture(source)
ret, frame = video.read()
frame_shape = frame.shape
video.release()
return frame_shape
def get_ffmpeg_input(ffmpeg_input):
frigate_vars = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')}
return ffmpeg_input.format(**frigate_vars)
logger = logging.getLogger(__name__)
def filtered(obj, objects_to_track, object_filters, mask=None):
object_name = obj[0]
@@ -64,16 +41,16 @@ def filtered(obj, objects_to_track, object_filters, mask=None):
# if the min area is larger than the
# detected object, don't add it to detected objects
if obj_settings.get('min_area',-1) > obj[3]:
if obj_settings.min_area > obj[3]:
return True
# if the detected object is larger than the
# max area, don't add it to detected objects
if obj_settings.get('max_area', 24000000) < obj[3]:
if obj_settings.max_area < obj[3]:
return True
# if the score is lower than the min_score, skip
if obj_settings.get('min_score', 0) > obj[1]:
if obj_settings.min_score > obj[1]:
return True
# compute the coordinates of the object and make sure
@@ -87,40 +64,42 @@ def filtered(obj, objects_to_track, object_filters, mask=None):
return False
def create_tensor_input(frame, region):
def create_tensor_input(frame, model_shape, region):
cropped_frame = yuv_region_2_rgb(frame, region)
# Resize to 300x300 if needed
if cropped_frame.shape != (300, 300, 3):
cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
if cropped_frame.shape != (model_shape[0], model_shape[1], 3):
cropped_frame = cv2.resize(cropped_frame, dsize=model_shape, interpolation=cv2.INTER_LINEAR)
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
# Expand dimensions since the model expects images to have shape: [1, height, width, 3]
return np.expand_dims(cropped_frame, axis=0)
def start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_process=None):
if not ffmpeg_process is None:
print("Terminating the existing ffmpeg process...")
ffmpeg_process.terminate()
try:
print("Waiting for ffmpeg to exit gracefully...")
ffmpeg_process.communicate(timeout=30)
except sp.TimeoutExpired:
print("FFmpeg didnt exit. Force killing...")
ffmpeg_process.kill()
ffmpeg_process.communicate()
ffmpeg_process = None
def stop_ffmpeg(ffmpeg_process, logger):
logger.info("Terminating the existing ffmpeg process...")
ffmpeg_process.terminate()
try:
logger.info("Waiting for ffmpeg to exit gracefully...")
ffmpeg_process.communicate(timeout=30)
except sp.TimeoutExpired:
logger.info("FFmpeg didnt exit. Force killing...")
ffmpeg_process.kill()
ffmpeg_process.communicate()
ffmpeg_process = None
print("Creating ffmpeg process...")
print(" ".join(ffmpeg_cmd))
process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, stdin = sp.DEVNULL, bufsize=frame_size*10, start_new_session=True)
def start_or_restart_ffmpeg(ffmpeg_cmd, logger, logpipe: LogPipe, frame_size=None, ffmpeg_process=None):
if not ffmpeg_process is None:
stop_ffmpeg(ffmpeg_process, logger)
if frame_size is None:
process = sp.Popen(ffmpeg_cmd, stdout = sp.DEVNULL, stderr=logpipe, stdin = sp.DEVNULL, start_new_session=True)
else:
process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, stderr=logpipe, stdin = sp.DEVNULL, bufsize=frame_size*10, start_new_session=True)
return process
def capture_frames(ffmpeg_process, camera_name, frame_shape, frame_manager: FrameManager,
frame_queue, take_frame: int, fps:mp.Value, skipped_fps: mp.Value,
stop_event: mp.Event, current_frame: mp.Value):
frame_queue, fps:mp.Value, skipped_fps: mp.Value, current_frame: mp.Value):
frame_num = 0
frame_size = frame_shape[0] * frame_shape[1] * 3 // 2
frame_size = frame_shape[0] * frame_shape[1]
frame_rate = EventsPerSecond()
frame_rate.start()
skipped_eps = EventsPerSecond()
@@ -128,33 +107,23 @@ def capture_frames(ffmpeg_process, camera_name, frame_shape, frame_manager: Fram
while True:
fps.value = frame_rate.eps()
skipped_fps = skipped_eps.eps()
if stop_event.is_set():
print(f"{camera_name}: stop event set. exiting capture thread...")
break
current_frame.value = datetime.datetime.now().timestamp()
frame_name = f"{camera_name}{current_frame.value}"
frame_buffer = frame_manager.create(frame_name, frame_size)
try:
frame_buffer[:] = ffmpeg_process.stdout.read(frame_size)
except:
print(f"{camera_name}: ffmpeg sent a broken frame. something is wrong.")
frame_buffer[:] = ffmpeg_process.stdout.read(frame_size)
except Exception as e:
logger.info(f"{camera_name}: ffmpeg sent a broken frame. {e}")
if ffmpeg_process.poll() != None:
print(f"{camera_name}: ffmpeg process is not running. exiting capture thread...")
frame_manager.delete(frame_name)
break
continue
if ffmpeg_process.poll() != None:
logger.info(f"{camera_name}: ffmpeg process is not running. exiting capture thread...")
frame_manager.delete(frame_name)
break
continue
frame_rate.update()
frame_num += 1
if (frame_num % take_frame) != 0:
skipped_eps.update()
frame_manager.delete(frame_name)
continue
# if the queue is full, skip this frame
if frame_queue.full():
skipped_eps.update()
@@ -168,123 +137,138 @@ def capture_frames(ffmpeg_process, camera_name, frame_shape, frame_manager: Fram
frame_queue.put(current_frame.value)
class CameraWatchdog(threading.Thread):
def __init__(self, name, config, frame_queue, camera_fps, ffmpeg_pid, stop_event):
def __init__(self, camera_name, config, frame_queue, camera_fps, ffmpeg_pid, stop_event):
threading.Thread.__init__(self)
self.name = name
self.logger = logging.getLogger(f"watchdog.{camera_name}")
self.camera_name = camera_name
self.config = config
self.capture_thread = None
self.ffmpeg_process = None
self.stop_event = stop_event
self.ffmpeg_detect_process = None
self.logpipe = LogPipe(f"ffmpeg.{self.camera_name}.detect", logging.ERROR)
self.ffmpeg_other_processes = []
self.camera_fps = camera_fps
self.ffmpeg_pid = ffmpeg_pid
self.frame_queue = frame_queue
self.frame_shape = self.config['frame_shape']
self.frame_size = self.frame_shape[0] * self.frame_shape[1] * 3 // 2
self.frame_shape = self.config.frame_shape_yuv
self.frame_size = self.frame_shape[0] * self.frame_shape[1]
self.stop_event = stop_event
def run(self):
self.start_ffmpeg()
self.start_ffmpeg_detect()
for c in self.config.ffmpeg_cmds:
if 'detect' in c['roles']:
continue
logpipe = LogPipe(f"ffmpeg.{self.camera_name}.{'_'.join(sorted(c['roles']))}", logging.ERROR)
self.ffmpeg_other_processes.append({
'cmd': c['cmd'],
'logpipe': logpipe,
'process': start_or_restart_ffmpeg(c['cmd'], self.logger, logpipe)
})
time.sleep(10)
while True:
if self.stop_event.is_set():
print(f"Exiting watchdog...")
stop_ffmpeg(self.ffmpeg_detect_process, self.logger)
for p in self.ffmpeg_other_processes:
stop_ffmpeg(p['process'], self.logger)
p['logpipe'].close()
self.logpipe.close()
break
now = datetime.datetime.now().timestamp()
if not self.capture_thread.is_alive():
self.start_ffmpeg()
elif now - self.capture_thread.current_frame.value > 5:
print(f"No frames received from {self.name} in 5 seconds. Exiting ffmpeg...")
self.ffmpeg_process.terminate()
self.start_ffmpeg_detect()
elif now - self.capture_thread.current_frame.value > 20:
self.logger.info(f"No frames received from {self.camera_name} in 20 seconds. Exiting ffmpeg...")
self.ffmpeg_detect_process.terminate()
try:
print("Waiting for ffmpeg to exit gracefully...")
self.ffmpeg_process.communicate(timeout=30)
self.logger.info("Waiting for ffmpeg to exit gracefully...")
self.ffmpeg_detect_process.communicate(timeout=30)
except sp.TimeoutExpired:
print("FFmpeg didnt exit. Force killing...")
self.ffmpeg_process.kill()
self.ffmpeg_process.communicate()
self.logger.info("FFmpeg didnt exit. Force killing...")
self.ffmpeg_detect_process.kill()
self.ffmpeg_detect_process.communicate()
for p in self.ffmpeg_other_processes:
poll = p['process'].poll()
if poll == None:
continue
p['process'] = start_or_restart_ffmpeg(p['cmd'], self.logger, p['logpipe'], ffmpeg_process=p['process'])
# wait a bit before checking again
time.sleep(10)
def start_ffmpeg(self):
self.ffmpeg_process = start_or_restart_ffmpeg(self.config['ffmpeg_cmd'], self.frame_size)
self.ffmpeg_pid.value = self.ffmpeg_process.pid
self.capture_thread = CameraCapture(self.name, self.ffmpeg_process, self.frame_shape, self.frame_queue,
self.config['take_frame'], self.camera_fps, self.stop_event)
self.capture_thread.start()
def start_ffmpeg_detect(self):
ffmpeg_cmd = [c['cmd'] for c in self.config.ffmpeg_cmds if 'detect' in c['roles']][0]
self.ffmpeg_detect_process = start_or_restart_ffmpeg(ffmpeg_cmd, self.logger, self.logpipe, self.frame_size)
self.ffmpeg_pid.value = self.ffmpeg_detect_process.pid
self.capture_thread = CameraCapture(self.camera_name, self.ffmpeg_detect_process, self.frame_shape, self.frame_queue,
self.camera_fps)
self.capture_thread.start()
class CameraCapture(threading.Thread):
def __init__(self, name, ffmpeg_process, frame_shape, frame_queue, take_frame, fps, stop_event):
def __init__(self, camera_name, ffmpeg_process, frame_shape, frame_queue, fps):
threading.Thread.__init__(self)
self.name = name
self.name = f"capture:{camera_name}"
self.camera_name = camera_name
self.frame_shape = frame_shape
self.frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2]
self.frame_queue = frame_queue
self.take_frame = take_frame
self.fps = fps
self.skipped_fps = EventsPerSecond()
self.frame_manager = SharedMemoryFrameManager()
self.ffmpeg_process = ffmpeg_process
self.current_frame = mp.Value('d', 0.0)
self.last_frame = 0
self.stop_event = stop_event
def run(self):
self.skipped_fps.start()
capture_frames(self.ffmpeg_process, self.name, self.frame_shape, self.frame_manager, self.frame_queue, self.take_frame,
self.fps, self.skipped_fps, self.stop_event, self.current_frame)
capture_frames(self.ffmpeg_process, self.camera_name, self.frame_shape, self.frame_manager, self.frame_queue,
self.fps, self.skipped_fps, self.current_frame)
def capture_camera(name, config: CameraConfig, process_info):
stop_event = mp.Event()
def receiveSignal(signalNumber, frame):
stop_event.set()
signal.signal(signal.SIGTERM, receiveSignal)
signal.signal(signal.SIGINT, receiveSignal)
def capture_camera(name, config, process_info, stop_event):
frame_queue = process_info['frame_queue']
camera_watchdog = CameraWatchdog(name, config, frame_queue, process_info['camera_fps'], process_info['ffmpeg_pid'], stop_event)
camera_watchdog.start()
camera_watchdog.join()
def track_camera(name, config, detection_queue, result_connection, detected_objects_queue, process_info, stop_event):
def track_camera(name, config: CameraConfig, model_shape, detection_queue, result_connection, detected_objects_queue, process_info):
stop_event = mp.Event()
def receiveSignal(signalNumber, frame):
stop_event.set()
signal.signal(signal.SIGTERM, receiveSignal)
signal.signal(signal.SIGINT, receiveSignal)
threading.current_thread().name = f"process:{name}"
listen()
frame_queue = process_info['frame_queue']
frame_shape = config['frame_shape']
frame_shape = config.frame_shape
objects_to_track = config.objects.track
object_filters = config.objects.filters
mask = config.mask
# Merge the tracked object config with the global config
camera_objects_config = config.get('objects', {})
objects_to_track = camera_objects_config.get('track', [])
object_filters = camera_objects_config.get('filters', {})
motion_detector = MotionDetector(frame_shape, mask, config.motion)
object_detector = RemoteObjectDetector(name, '/labelmap.txt', detection_queue, result_connection, model_shape)
# load in the mask for object detection
if 'mask' in config:
if config['mask'].startswith('base64,'):
img = base64.b64decode(config['mask'][7:])
npimg = np.fromstring(img, dtype=np.uint8)
mask = cv2.imdecode(npimg, cv2.IMREAD_GRAYSCALE)
elif config['mask'].startswith('poly,'):
points = config['mask'].split(',')[1:]
contour = np.array([[int(points[i]), int(points[i+1])] for i in range(0, len(points), 2)])
mask = np.zeros((frame_shape[0], frame_shape[1]), np.uint8)
mask[:] = 255
cv2.fillPoly(mask, pts=[contour], color=(0))
else:
mask = cv2.imread("/config/{}".format(config['mask']), cv2.IMREAD_GRAYSCALE)
else:
mask = None
if mask is None or mask.size == 0:
mask = np.zeros((frame_shape[0], frame_shape[1]), np.uint8)
mask[:] = 255
motion_detector = MotionDetector(frame_shape, mask, resize_factor=6)
object_detector = RemoteObjectDetector(name, '/labelmap.txt', detection_queue, result_connection)
object_tracker = ObjectTracker(10)
object_tracker = ObjectTracker(config.detect)
frame_manager = SharedMemoryFrameManager()
process_frames(name, frame_queue, frame_shape, frame_manager, motion_detector, object_detector,
process_frames(name, frame_queue, frame_shape, model_shape, frame_manager, motion_detector, object_detector,
object_tracker, detected_objects_queue, process_info, objects_to_track, object_filters, mask, stop_event)
print(f"{name}: exiting subprocess")
logger.info(f"{name}: exiting subprocess")
def reduce_boxes(boxes):
if len(boxes) == 0:
@@ -292,8 +276,8 @@ def reduce_boxes(boxes):
reduced_boxes = cv2.groupRectangles([list(b) for b in itertools.chain(boxes, boxes)], 1, 0.2)[0]
return [tuple(b) for b in reduced_boxes]
def detect(object_detector, frame, region, objects_to_track, object_filters, mask):
tensor_input = create_tensor_input(frame, region)
def detect(object_detector, frame, model_shape, region, objects_to_track, object_filters, mask):
tensor_input = create_tensor_input(frame, model_shape, region)
detections = []
region_detections = object_detector.detect(tensor_input)
@@ -315,11 +299,11 @@ def detect(object_detector, frame, region, objects_to_track, object_filters, mas
detections.append(det)
return detections
def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape,
def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape, model_shape,
frame_manager: FrameManager, motion_detector: MotionDetector,
object_detector: RemoteObjectDetector, object_tracker: ObjectTracker,
detected_objects_queue: mp.Queue, process_info: Dict,
objects_to_track: List[str], object_filters: Dict, mask, stop_event: mp.Event,
objects_to_track: List[str], object_filters, mask, stop_event,
exit_on_empty: bool = False):
fps = process_info['process_fps']
@@ -330,9 +314,12 @@ def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape,
fps_tracker.start()
while True:
if stop_event.is_set() or (exit_on_empty and frame_queue.empty()):
print(f"Exiting track_objects...")
break
if stop_event.is_set():
break
if exit_on_empty and frame_queue.empty():
logger.info(f"Exiting track_objects...")
break
try:
frame_time = frame_queue.get(True, 10)
@@ -344,7 +331,7 @@ def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape,
frame = frame_manager.get(f"{camera_name}{frame_time}", (frame_shape[0]*3//2, frame_shape[1]))
if frame is None:
print(f"{camera_name}: frame {frame_time} is not in memory store.")
logger.info(f"{camera_name}: frame {frame_time} is not in memory store.")
continue
# look for motion
@@ -369,7 +356,7 @@ def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape,
# resize regions and detect
detections = []
for region in regions:
detections.extend(detect(object_detector, frame, region, objects_to_track, object_filters, mask))
detections.extend(detect(object_detector, frame, model_shape, region, objects_to_track, object_filters, mask))
#########
# merge objects, check for clipped objects and look again up to 4 times
@@ -401,8 +388,10 @@ def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape,
region = calculate_region(frame_shape,
box[0], box[1],
box[2], box[3])
regions.append(region)
selected_objects.extend(detect(object_detector, frame, region, objects_to_track, object_filters, mask))
selected_objects.extend(detect(object_detector, frame, model_shape, region, objects_to_track, object_filters, mask))
refining = True
else:
@@ -424,6 +413,6 @@ def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape,
else:
fps_tracker.update()
fps.value = fps_tracker.eps()
detected_objects_queue.put((camera_name, frame_time, object_tracker.tracked_objects))
detected_objects_queue.put((camera_name, frame_time, object_tracker.tracked_objects, motion_boxes, regions))
detection_fps.value = object_detector.fps.eps()
frame_manager.close(f"{camera_name}{frame_time}")

36
frigate/watchdog.py Normal file
View File

@@ -0,0 +1,36 @@
import datetime
import logging
import threading
import time
logger = logging.getLogger(__name__)
class FrigateWatchdog(threading.Thread):
def __init__(self, detectors, stop_event):
threading.Thread.__init__(self)
self.name = 'frigate_watchdog'
self.detectors = detectors
self.stop_event = stop_event
def run(self):
time.sleep(10)
while True:
# wait a bit before checking
time.sleep(10)
if self.stop_event.is_set():
logger.info(f"Exiting watchdog...")
break
now = datetime.datetime.now().timestamp()
# check the detection processes
for detector in self.detectors.values():
detection_start = detector.detection_start.value
if (detection_start > 0.0 and
now - detection_start > 10):
logger.info("Detection appears to be stuck. Restarting detection process")
detector.start_or_restart()
elif not detector.detect_process.is_alive():
logger.info("Detection appears to have stopped. Restarting detection process")
detector.start_or_restart()

58
frigate/zeroconf.py Normal file
View File

@@ -0,0 +1,58 @@
import logging
import socket
from zeroconf import (
ServiceInfo,
NonUniqueNameException,
InterfaceChoice,
IPVersion,
Zeroconf,
)
logger = logging.getLogger(__name__)
ZEROCONF_TYPE = "_frigate._tcp.local."
# Taken from: http://stackoverflow.com/a/11735897
def get_local_ip() -> str:
"""Try to determine the local IP address of the machine."""
try:
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
# Use Google Public DNS server to determine own IP
sock.connect(("8.8.8.8", 80))
return sock.getsockname()[0] # type: ignore
except OSError:
try:
return socket.gethostbyname(socket.gethostname())
except socket.gaierror:
return "127.0.0.1"
finally:
sock.close()
def broadcast_zeroconf(frigate_id):
zeroconf = Zeroconf(interfaces=InterfaceChoice.Default, ip_version=IPVersion.V4Only)
host_ip = get_local_ip()
try:
host_ip_pton = socket.inet_pton(socket.AF_INET, host_ip)
except OSError:
host_ip_pton = socket.inet_pton(socket.AF_INET6, host_ip)
info = ServiceInfo(
ZEROCONF_TYPE,
name=f"{frigate_id}.{ZEROCONF_TYPE}",
addresses=[host_ip_pton],
port=5000,
)
logger.info("Starting Zeroconf broadcast")
try:
zeroconf.register_service(info)
except NonUniqueNameException:
logger.error(
"Frigate instance with identical name present in the local network"
)
return zeroconf

122
nginx/nginx.conf Normal file
View File

@@ -0,0 +1,122 @@
worker_processes 1;
error_log /var/log/nginx/error.log warn;
pid /var/run/nginx.pid;
load_module "modules/ngx_rtmp_module.so";
events {
worker_connections 1024;
}
http {
include /etc/nginx/mime.types;
default_type application/octet-stream;
log_format main '$remote_addr - $remote_user [$time_local] "$request" '
'$status $body_bytes_sent "$http_referer" '
'"$http_user_agent" "$http_x_forwarded_for"';
access_log /var/log/nginx/access.log main;
sendfile on;
keepalive_timeout 65;
upstream frigate_api {
server localhost:5001;
keepalive 1024;
}
server {
listen 5000;
location /stream/ {
add_header 'Cache-Control' 'no-cache';
add_header 'Access-Control-Allow-Origin' "$http_origin" always;
add_header 'Access-Control-Allow-Credentials' 'true';
add_header 'Access-Control-Expose-Headers' 'Content-Length';
if ($request_method = 'OPTIONS') {
add_header 'Access-Control-Allow-Origin' "$http_origin";
add_header 'Access-Control-Max-Age' 1728000;
add_header 'Content-Type' 'text/plain charset=UTF-8';
add_header 'Content-Length' 0;
return 204;
}
types {
application/dash+xml mpd;
application/vnd.apple.mpegurl m3u8;
video/mp2t ts;
image/jpeg jpg;
}
root /tmp;
}
location /clips/ {
add_header 'Access-Control-Allow-Origin' "$http_origin" always;
add_header 'Access-Control-Allow-Credentials' 'true';
add_header 'Access-Control-Expose-Headers' 'Content-Length';
if ($request_method = 'OPTIONS') {
add_header 'Access-Control-Allow-Origin' "$http_origin";
add_header 'Access-Control-Max-Age' 1728000;
add_header 'Content-Type' 'text/plain charset=UTF-8';
add_header 'Content-Length' 0;
return 204;
}
types {
video/mp4 mp4;
image/jpeg jpg;
}
autoindex on;
root /media/frigate;
}
location /recordings/ {
add_header 'Access-Control-Allow-Origin' "$http_origin" always;
add_header 'Access-Control-Allow-Credentials' 'true';
add_header 'Access-Control-Expose-Headers' 'Content-Length';
if ($request_method = 'OPTIONS') {
add_header 'Access-Control-Allow-Origin' "$http_origin";
add_header 'Access-Control-Max-Age' 1728000;
add_header 'Content-Type' 'text/plain charset=UTF-8';
add_header 'Content-Length' 0;
return 204;
}
types {
video/mp4 mp4;
}
autoindex on;
autoindex_format json;
root /media/frigate;
}
location / {
proxy_pass http://frigate_api/;
proxy_pass_request_headers on;
proxy_set_header Host $host;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;
}
}
}
rtmp {
server {
listen 1935;
chunk_size 4096;
allow publish 127.0.0.1;
deny publish all;
allow play all;
application live {
live on;
record off;
meta copy;
}
}
}

View File

@@ -1,152 +0,0 @@
import sys
import click
import os
import datetime
from unittest import TestCase, main
from frigate.video import process_frames, start_or_restart_ffmpeg, capture_frames, get_frame_shape
from frigate.util import DictFrameManager, SharedMemoryFrameManager, EventsPerSecond, draw_box_with_label
from frigate.motion import MotionDetector
from frigate.edgetpu import LocalObjectDetector
from frigate.objects import ObjectTracker
import multiprocessing as mp
import numpy as np
import cv2
from frigate.object_processing import COLOR_MAP, CameraState
class ProcessClip():
def __init__(self, clip_path, frame_shape, config):
self.clip_path = clip_path
self.frame_shape = frame_shape
self.camera_name = 'camera'
self.frame_manager = DictFrameManager()
# self.frame_manager = SharedMemoryFrameManager()
self.frame_queue = mp.Queue()
self.detected_objects_queue = mp.Queue()
self.camera_state = CameraState(self.camera_name, config, self.frame_manager)
def load_frames(self):
fps = EventsPerSecond()
skipped_fps = EventsPerSecond()
stop_event = mp.Event()
detection_frame = mp.Value('d', datetime.datetime.now().timestamp()+100000)
current_frame = mp.Value('d', 0.0)
ffmpeg_cmd = f"ffmpeg -hide_banner -loglevel panic -i {self.clip_path} -f rawvideo -pix_fmt rgb24 pipe:".split(" ")
ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, self.frame_shape[0]*self.frame_shape[1]*self.frame_shape[2])
capture_frames(ffmpeg_process, self.camera_name, self.frame_shape, self.frame_manager, self.frame_queue, 1, fps, skipped_fps, stop_event, detection_frame, current_frame)
ffmpeg_process.wait()
ffmpeg_process.communicate()
def process_frames(self, objects_to_track=['person'], object_filters={}):
mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
mask[:] = 255
motion_detector = MotionDetector(self.frame_shape, mask)
object_detector = LocalObjectDetector(labels='/labelmap.txt')
object_tracker = ObjectTracker(10)
process_fps = mp.Value('d', 0.0)
detection_fps = mp.Value('d', 0.0)
current_frame = mp.Value('d', 0.0)
stop_event = mp.Event()
process_frames(self.camera_name, self.frame_queue, self.frame_shape, self.frame_manager, motion_detector, object_detector, object_tracker, self.detected_objects_queue,
process_fps, detection_fps, current_frame, objects_to_track, object_filters, mask, stop_event, exit_on_empty=True)
def objects_found(self, debug_path=None):
obj_detected = False
top_computed_score = 0.0
def handle_event(name, obj):
nonlocal obj_detected
nonlocal top_computed_score
if obj['computed_score'] > top_computed_score:
top_computed_score = obj['computed_score']
if not obj['false_positive']:
obj_detected = True
self.camera_state.on('new', handle_event)
self.camera_state.on('update', handle_event)
while(not self.detected_objects_queue.empty()):
camera_name, frame_time, current_tracked_objects = self.detected_objects_queue.get()
if not debug_path is None:
self.save_debug_frame(debug_path, frame_time, current_tracked_objects.values())
self.camera_state.update(frame_time, current_tracked_objects)
for obj in self.camera_state.tracked_objects.values():
print(f"{frame_time}: {obj['id']} - {obj['computed_score']} - {obj['score_history']}")
self.frame_manager.delete(self.camera_state.previous_frame_id)
return {
'object_detected': obj_detected,
'top_score': top_computed_score
}
def save_debug_frame(self, debug_path, frame_time, tracked_objects):
current_frame = self.frame_manager.get(f"{self.camera_name}{frame_time}", self.frame_shape)
# draw the bounding boxes on the frame
for obj in tracked_objects:
thickness = 2
color = (0,0,175)
if obj['frame_time'] != frame_time:
thickness = 1
color = (255,0,0)
else:
color = (255,255,0)
# draw the bounding boxes on the frame
box = obj['box']
draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
# draw the regions on the frame
region = obj['region']
draw_box_with_label(current_frame, region[0], region[1], region[2], region[3], 'region', "", thickness=1, color=(0,255,0))
cv2.imwrite(f"{os.path.join(debug_path, os.path.basename(self.clip_path))}.{int(frame_time*1000000)}.jpg", cv2.cvtColor(current_frame, cv2.COLOR_RGB2BGR))
@click.command()
@click.option("-p", "--path", required=True, help="Path to clip or directory to test.")
@click.option("-l", "--label", default='person', help="Label name to detect.")
@click.option("-t", "--threshold", default=0.85, help="Threshold value for objects.")
@click.option("--debug-path", default=None, help="Path to output frames for debugging.")
def process(path, label, threshold, debug_path):
clips = []
if os.path.isdir(path):
files = os.listdir(path)
files.sort()
clips = [os.path.join(path, file) for file in files]
elif os.path.isfile(path):
clips.append(path)
config = {
'snapshots': {
'show_timestamp': False,
'draw_zones': False
},
'zones': {},
'objects': {
'track': [label],
'filters': {
'person': {
'threshold': threshold
}
}
}
}
results = []
for c in clips:
frame_shape = get_frame_shape(c)
config['frame_shape'] = frame_shape
process_clip = ProcessClip(c, frame_shape, config)
process_clip.load_frames()
process_clip.process_frames(objects_to_track=config['objects']['track'])
results.append((c, process_clip.objects_found(debug_path)))
for result in results:
print(f"{result[0]}: {result[1]}")
positive_count = sum(1 for result in results if result[1]['object_detected'])
print(f"Objects were detected in {positive_count}/{len(results)}({positive_count/len(results)*100:.2f}%) clip(s).")
if __name__ == '__main__':
process()

4
run.sh Normal file
View File

@@ -0,0 +1,4 @@
#!/usr/bin/env bash
service nginx start
exec python3 -u -m frigate