Compare commits

...

194 Commits

Author SHA1 Message Date
Blake Blackshear
7b4e510b95 fix initial switch state 2021-01-20 21:56:43 -06:00
Blake Blackshear
bb4f79cdfe handle exception when frame isnt in cache 2021-01-20 21:56:43 -06:00
Paul Armstrong
e32e69c2d0 feat(web): AutoUpdatingCameraImage to replace MJPEG feed 2021-01-20 21:15:25 -06:00
Paul Armstrong
a71ae053e4 fix(web): set default path to cameras view 2021-01-20 06:46:25 -06:00
Blake Blackshear
fcc9cd56cc update index.js to use baseUrl 2021-01-19 21:31:17 -06:00
Blake Blackshear
b981a3110b first pass at subfilter for ingress support 2021-01-19 19:58:42 -06:00
Paul Armstrong
2da50cc538 fix(web): dark mode text color fixes
fixes #544
2021-01-19 18:02:08 -06:00
Blake Blackshear
cb4a0aa594 ensure error message with missing config is printed 2021-01-19 18:00:26 -06:00
Blake Blackshear
52da1fddc7 update notification example 2021-01-19 07:41:45 -06:00
Blake Blackshear
14645ce4f8 fix mqtt switch handling 2021-01-19 07:41:17 -06:00
Blake Blackshear
97ce7f3028 initialize detection correctly from config 2021-01-19 07:40:51 -06:00
Blake Blackshear
3b5302f6ea update wheels version 2021-01-19 06:19:28 -06:00
Blake Blackshear
74eb16f213 pin numpy 2021-01-19 06:16:44 -06:00
Paul Armstrong
a3d6bf214c feat(web): layout & auto-update debug page 2021-01-18 12:57:09 -06:00
Paul Armstrong
16121ffd00 fix(web): ensure button bg colors show in prod builds 2021-01-18 11:39:42 -06:00
Blake Blackshear
91628bd5d8 fix zone config 2021-01-18 06:38:26 -06:00
Blake Blackshear
b10b64bf57 no longer need special aarch64 wheels build 2021-01-17 08:18:54 -06:00
Blake Blackshear
749c34be9f versioning wheels image 2021-01-16 20:03:42 -06:00
Blake Blackshear
8cfdfab985 move wheels to build container 2021-01-16 19:56:21 -06:00
Paul Armstrong
ef25f8a31e fix(web): mask zone editor to handle object filter masks
Includes additional handlers for adding/removing masks, as well as click to copy configs

fixes #523
2021-01-16 19:09:18 -06:00
Paul Armstrong
2a0551a08a feat(web): hash build files to avoid cache issues 2021-01-16 19:09:18 -06:00
Paul Armstrong
0b80419f15 fix(web): ensure mask editing works in firefox 2021-01-16 19:09:18 -06:00
Blake Blackshear
0dc81117aa docs updates for notification changes 2021-01-16 19:09:18 -06:00
Blake Blackshear
49b29d72a7 rename snapshot endpoint to thumbnail 2021-01-16 19:09:18 -06:00
Blake Blackshear
21ece238ff mqtt tweaks for switches 2021-01-16 19:09:18 -06:00
Blake Blackshear
f6ba3f2daa allow summary data to be filtered 2021-01-16 19:09:18 -06:00
Blake Blackshear
bb0d3cb59a update readme 2021-01-16 19:09:18 -06:00
Blake Blackshear
ca9b6d6c5c snapshots config typo 2021-01-16 19:09:18 -06:00
Blake Blackshear
3103ad2bfe update object filters to inherit like motion settings 2021-01-16 19:09:18 -06:00
Blake Blackshear
eab3998ad0 remove support for image masks 2021-01-16 19:09:18 -06:00
Blake Blackshear
a3dfd3a8e0 don't fallback to the CPU
fixes #381
2021-01-16 19:09:18 -06:00
Blake Blackshear
f1c3087775 add change type to events topic
#476
2021-01-16 19:09:18 -06:00
Blake Blackshear
1be91ed3f2 ensure each camera has a detect role set 2021-01-16 19:09:18 -06:00
Blake Blackshear
fd83c4f229 add detection enable to config
fixes #482
2021-01-16 19:09:18 -06:00
Blake Blackshear
de99221ad5 add env vars to config
fixes #509
2021-01-16 19:09:18 -06:00
Blake Blackshear
6892ce56ac enable and disable detection via mqtt 2021-01-16 19:09:18 -06:00
Blake Blackshear
41cea6f62e move setproctitle to prebuilt wheel location 2021-01-16 19:09:18 -06:00
Blake Blackshear
4bbffa97df switch to docker based web builds 2021-01-16 19:09:18 -06:00
Blake Blackshear
614f8abfef handle null thumbnail data 2021-01-16 19:09:18 -06:00
Blake Blackshear
14289b5fd1 add mask as object filter 2021-01-16 19:09:18 -06:00
Blake Blackshear
4164beff1c add object masks and move moton mask 2021-01-16 19:09:18 -06:00
Blake Blackshear
9b3ab486de add missing global shapshots config 2021-01-16 19:09:18 -06:00
Patrick Decat
232a49814a Add missing migrations in docker images 2021-01-16 19:09:18 -06:00
Paul Armstrong
6c61f0b135 fix(web): ensure postcss and postcss-cli are marked as deps 2021-01-16 19:09:18 -06:00
Patrick Decat
c572cec253 Fix Makefile to ignore gpg signatures in commits 2021-01-16 19:09:18 -06:00
Paul Armstrong
d4941f2a5f feat!: web user interface 2021-01-16 19:09:18 -06:00
Blake Blackshear
bf5ec2f65f try to cleanup some migration logging 2021-01-16 19:09:18 -06:00
Blake Blackshear
f8e21584b6 add retention settings for snapshots 2021-01-16 19:09:18 -06:00
Blake Blackshear
3cba83f84b init variables on camera state 2021-01-16 19:09:18 -06:00
Blake Blackshear
dcb4255d7e handle process exit exceptions 2021-01-16 19:09:18 -06:00
Blake Blackshear
9fc3c0dc2f store has_clip and has_snapshot on events 2021-01-16 19:09:18 -06:00
Blake Blackshear
a78830b48e add database migrations 2021-01-16 19:09:18 -06:00
Nat Morris
949fbadcdc Set titles for forked processes 2021-01-16 19:09:18 -06:00
Nat Morris
12c9e63b13 New stats module, refactor stats generation out of http module.
StatsEmitter thread to send stats to MQTT every 60 seconds by default, optional stats_interval config value.

New service stats attribute, containing uptime in seconds and version.
2021-01-16 19:09:18 -06:00
Blake Blackshear
157b230702 turn off snapshots via mqtt 2021-01-16 19:09:18 -06:00
Blake Blackshear
c69299d659 enable turning clips on and off via mqtt 2021-01-16 19:09:18 -06:00
Blake Blackshear
285d630770 cleanup save_Clips/clips inconsistency 2021-01-16 19:09:18 -06:00
Blake Blackshear
b9318092f4 add jpg snapshots to disk and clean up config 2021-01-16 19:09:18 -06:00
Paul Armstrong
905c361d52 fix: ensure timestamp is drawn above mask 2021-01-13 06:55:10 -06:00
Leonardo Merza
4443abbc49 add notes for Blue Iris RTSP support 2020-12-31 08:36:03 -06:00
yllar
dabb36ad93 Update README.md
change tmpfs size from 100MB to 1GB
2020-12-31 08:33:31 -06:00
kluszczyn
2bc8736fd9 Recordings - fix expire_file 2020-12-22 09:58:26 -05:00
Blake Blackshear
e9b3b09cc2 add clips endpoint to readme 2020-12-22 09:58:26 -05:00
Blake Blackshear
ca337c32b4 better mask error handling 2020-12-22 09:58:26 -05:00
Blake Blackshear
24b8bd7c85 fix tmpfs 2020-12-22 09:58:26 -05:00
Blake Blackshear
3ad75a441d remove redundant error output 2020-12-20 08:04:54 -06:00
Blake Blackshear
f006e9be8d use CACHE_DIR constant 2020-12-20 08:04:54 -06:00
Blake Blackshear
03f3ba8008 enable mounting tmpfs volume on start 2020-12-20 08:04:54 -06:00
Blake Blackshear
96a44eb7bf docs and issue template 2020-12-20 07:37:44 -06:00
Blake Blackshear
006782fe3d update process clip for latest changes 2020-12-20 07:37:44 -06:00
Blake Blackshear
ff3e95bbf7 publish event updates on zone change 2020-12-20 07:37:44 -06:00
Blake Blackshear
4b95a37e65 readme updates 2020-12-20 07:37:44 -06:00
Blake Blackshear
38c661b3a8 handle scenario with empty cache 2020-12-20 07:37:44 -06:00
Blake Blackshear
0d6e4f6a66 add qsv support to amd64 image 2020-12-20 07:37:44 -06:00
Blake Blackshear
1ad2219f1c add num_threads fixes #322 2020-12-20 07:37:44 -06:00
Blake Blackshear
dfcdd289c3 optimize clips fixes #299 2020-12-20 07:37:44 -06:00
Blake Blackshear
32f5f2cca9 add post_capture option 2020-12-20 07:37:44 -06:00
Blake Blackshear
24bfe9f3e8 re-crop to the object rather than the region 2020-12-20 07:37:44 -06:00
Blake Blackshear
004667dc99 allow runtime drawing settings for mjpeg and latest 2020-12-20 07:37:44 -06:00
Blake Blackshear
9d785dc781 allow the mask to be a list of masks 2020-12-20 07:37:44 -06:00
Blake Blackshear
cbba5a7af0 adding version endpoint 2020-12-20 07:37:44 -06:00
Blake Blackshear
29b29ee349 configurable motion and detect settings 2020-12-20 07:37:44 -06:00
Blake Blackshear
9ad53e09af update gitignore 2020-12-20 07:37:44 -06:00
Blake Blackshear
c9278991c9 fix test 2020-12-20 07:37:44 -06:00
Blake Blackshear
729de48934 switch default threshold to .7 2020-12-20 07:37:44 -06:00
Blake Blackshear
7476bff5fb allow process clips to output a csv of scores 2020-12-20 07:37:44 -06:00
Blake Blackshear
1e9eae8d9a allow db path to be customized 2020-12-20 07:37:44 -06:00
Blake Blackshear
8113a53381 add telegram example 2020-12-20 07:37:44 -06:00
Blake Blackshear
72833686f1 fix process clip 2020-12-20 07:37:44 -06:00
Blake Blackshear
096c21f105 handle empty string args 2020-12-20 07:37:44 -06:00
Blake Blackshear
181f66357b allow region to extend beyond the frame 2020-12-20 07:37:44 -06:00
tubalainen
a54fbc483c Updated file
ref: https://github.com/blakeblackshear/frigate/issues/373
2020-12-12 10:38:02 -06:00
Blake Blackshear
92d5a002d3 swap width and height to reduce confusion 2020-12-10 19:22:03 -06:00
Blake Blackshear
f9184903d7 updating compose example to reduce confusion 2020-12-10 19:02:08 -06:00
Blake Blackshear
91cde6ce7b allow defining model shape and switch to mobiledet as default model 2020-12-09 07:22:26 -06:00
Blake Blackshear
186a4587c7 add model dimensions to config 2020-12-09 07:22:26 -06:00
Patrick Decat
6049acb1f3 Document beta addon host 2020-12-08 07:25:13 -06:00
Blake Blackshear
2d2ebf313c make shm consistent with compose 2020-12-08 07:24:37 -06:00
tubalainen
3d329dcb52 Updated docker command line...
...to correspond with 0.8.0 feature set.
2020-12-08 07:24:37 -06:00
Blake Blackshear
06854fc34f readme cleanup fixes #332 2020-12-07 18:00:12 -06:00
Blake Blackshear
e01e14d866 handle and warn if roles dont match enabled features 2020-12-07 08:07:35 -06:00
Blake Blackshear
3dfd251ebb camera recommendations 2020-12-07 07:36:29 -06:00
Blake Blackshear
dcea807f77 catch all psutil errors 2020-12-07 07:16:48 -06:00
Blake Blackshear
87d83ff33a clarify height width and fps 2020-12-07 07:16:28 -06:00
Blake Blackshear
1d31cbdf0d readme updates 2020-12-06 14:25:28 -06:00
Blake Blackshear
e05b27b8dc tweak screenshots 2020-12-06 08:27:03 -06:00
Blake Blackshear
7111bd208e readme updates 2020-12-06 08:25:25 -06:00
Blake Blackshear
04a80280da set ffmpeg image versions 2020-12-06 07:09:14 -06:00
Blake Blackshear
3bda092140 comment you zeroconf 2020-12-06 07:05:45 -06:00
Blake Blackshear
9086820479 fix flask logger config 2020-12-05 19:05:03 -06:00
Blake Blackshear
d1da57aedc fix graceful exits 2020-12-05 12:06:07 -06:00
Blake Blackshear
6ded12c566 better exception handling 2020-12-05 12:06:07 -06:00
Blake Blackshear
70352566a7 fix default args 2020-12-05 12:06:07 -06:00
Blake Blackshear
cf5cc86588 fix fontconfig issue 2020-12-05 08:48:46 -06:00
Blake Blackshear
e41db49ab8 doc updates 2020-12-05 08:48:46 -06:00
Blake Blackshear
1b7effafee update some default config values 2020-12-05 08:48:46 -06:00
Blake Blackshear
69e9e0b0bf log level configuration 2020-12-05 08:48:46 -06:00
Blake Blackshear
89624df411 no need to write jpg disk 2020-12-05 08:48:46 -06:00
Blake Blackshear
d1a7405211 dont delete the recordings directory 2020-12-05 08:48:46 -06:00
Blake Blackshear
040f8c7c20 default save_clips objects 2020-12-05 08:48:46 -06:00
Blake Blackshear
6d7acabf4c add logging for directory creation 2020-12-05 08:48:46 -06:00
Blake Blackshear
45a8b42157 exit on config errors 2020-12-05 08:48:46 -06:00
Blake Blackshear
8785be24b7 add zeroconf discovery 2020-12-05 08:48:46 -06:00
Blake Blackshear
cc0812540c optional android notification aspect ratio 2020-12-05 08:48:46 -06:00
Blake Blackshear
5cf38ca4f7 reduce min timestamp size 2020-12-05 08:48:46 -06:00
Blake Blackshear
7e4395c30e publish object counts rather than on/off 2020-12-05 08:48:46 -06:00
Blake Blackshear
598d3aeda2 make directories constants 2020-12-05 08:48:46 -06:00
Blake Blackshear
012dbf81f7 cleanup empty directories 2020-12-05 08:48:46 -06:00
Blake Blackshear
f869def12e serve up recordings with nginx 2020-12-05 08:48:46 -06:00
Blake Blackshear
31f7666337 add recording maintenance 2020-12-05 08:48:46 -06:00
Blake Blackshear
9e339acbca add record settings to config 2020-12-05 08:48:46 -06:00
Blake Blackshear
8f8054a299 fix log timeout 2020-12-05 08:48:46 -06:00
Blake Blackshear
f7021eec4c ensure zones dont have the same name as a camera 2020-12-05 08:48:46 -06:00
Blake Blackshear
c124153da4 graceful exit of subprocesses 2020-12-05 08:48:46 -06:00
Blake Blackshear
706c2f921e add multiple streams per camera 2020-12-05 08:48:46 -06:00
Blake Blackshear
de1d66bcb9 fix fontconfig error 2020-12-05 08:48:46 -06:00
Blake Blackshear
4502ca8e80 add support for rebroadcasting as rtmp 2020-12-05 08:48:46 -06:00
Blake Blackshear
32a66fe5e8 avoid null error 2020-12-05 08:48:46 -06:00
Blake Blackshear
e1251aafdb minimize logging 2020-12-05 08:48:46 -06:00
Blake Blackshear
587494068c oops 2020-12-05 08:48:46 -06:00
Blake Blackshear
7a4d90a47a only publish end events for true positives 2020-12-05 08:48:46 -06:00
Blake Blackshear
d06b587d33 ensure all events are cleaned up 2020-12-05 08:48:46 -06:00
Blake Blackshear
eef70e434b publish events like a change feed 2020-12-05 08:48:46 -06:00
Blake Blackshear
b39da3ee01 pull from memory if event in progress 2020-12-05 08:48:46 -06:00
Blake Blackshear
e07c4e0d8c add endpoint for event thumbnail 2020-12-05 08:48:46 -06:00
Blake Blackshear
2f41ba6f77 add service to get by id 2020-12-05 08:48:46 -06:00
Blake Blackshear
bf95af0f22 add zones to summary data 2020-12-05 08:48:46 -06:00
Blake Blackshear
2e15847f86 sleep in the right place 2020-12-05 08:48:46 -06:00
Blake Blackshear
5992e85dc8 manage events for unlisted cameras 2020-12-05 08:48:46 -06:00
Blake Blackshear
24d416b869 add event cleanup thread 2020-12-05 08:48:46 -06:00
Blake Blackshear
5dbf368c4b add clip retention to config 2020-12-05 08:48:46 -06:00
Blake Blackshear
7d56fe105f use localtime in group by 2020-12-05 08:48:46 -06:00
Blake Blackshear
e9327aa18c new http endpoints 2020-12-05 08:48:46 -06:00
Blake Blackshear
df56e079de add parameters to event query 2020-12-05 08:48:46 -06:00
Blake Blackshear
8c5bfbd187 only save events when a clip is created 2020-12-05 08:48:46 -06:00
Blake Blackshear
2613e74f97 add bas64 encoded thumbnail to the database 2020-12-05 08:48:46 -06:00
Blake Blackshear
9a7fb96357 check for None value thumbnail_data 2020-12-05 08:48:46 -06:00
Blake Blackshear
37f9dfed92 only set thumbnail data if object is a true positive 2020-12-05 08:48:46 -06:00
Blake Blackshear
68c1544808 add some debug logging to frame cache 2020-12-05 08:48:46 -06:00
Blake Blackshear
2b3d3c5824 dont use a property 2020-12-05 08:48:46 -06:00
Blake Blackshear
efea87a3ea attempt to fix missing thumbs 2020-12-05 08:48:46 -06:00
Blake Blackshear
977785fb10 better frame handling for best images 2020-12-05 08:48:46 -06:00
Blake Blackshear
4e113e62c0 cleanup false_positive attribute 2020-12-05 08:48:46 -06:00
Blake Blackshear
5080b2d781 ensure some valid thumbnail is available 2020-12-05 08:48:46 -06:00
Blake Blackshear
5cfd6d1edb don't save thumbnails for false positives 2020-12-05 08:48:46 -06:00
Blake Blackshear
27ae4d8ab0 cleanup 2020-12-05 08:48:46 -06:00
Blake Blackshear
3db33302ec reduce logging 2020-12-05 08:48:46 -06:00
Blake Blackshear
f2910d48e0 fixes 2020-12-05 08:48:46 -06:00
Blake Blackshear
cf0f8892e2 update nginx config 2020-12-05 08:48:46 -06:00
Blake Blackshear
4d22e172ff stop writing json file to disk 2020-12-05 08:48:46 -06:00
Blake Blackshear
8874a55b0f create tracked object class and save thumbnails 2020-12-05 08:48:46 -06:00
Blake Blackshear
24b703a875 maintain thumbnail frames for tracked objects 2020-12-05 08:48:46 -06:00
Blake Blackshear
8b8f5b5c40 sort imports 2020-12-05 08:48:46 -06:00
Blake Blackshear
eac81136d2 naming threads and processes for logs 2020-12-05 08:48:46 -06:00
Blake Blackshear
d1e27b43ea use a queue for logging 2020-12-05 08:48:46 -06:00
Blake Blackshear
105dcb7094 create typed config classes 2020-12-05 08:48:46 -06:00
Blake Blackshear
c0a16efdc1 add nginx and change default file locations 2020-12-05 08:48:46 -06:00
Blake Blackshear
2800c54743 config setup 2020-12-05 08:48:46 -06:00
Blake Blackshear
2a24e8abcb add watchdog 2020-12-05 08:48:46 -06:00
Blake Blackshear
37ee746ebb add back all endpoints 2020-12-05 08:48:46 -06:00
Blake Blackshear
7ee6bfe855 add event processor 2020-12-05 08:48:46 -06:00
Blake Blackshear
40f57a8754 add capture processes 2020-12-05 08:48:46 -06:00
Blake Blackshear
e0da462223 add camera processors 2020-12-05 08:48:46 -06:00
Blake Blackshear
47a9fc4292 add detected_frames_processor 2020-12-05 08:48:46 -06:00
Blake Blackshear
03fe5158db add detector processes 2020-12-05 08:48:46 -06:00
Blake Blackshear
72be6b480d init db/http/mqtt 2020-12-05 08:48:46 -06:00
Blake Blackshear
a8964dcc1f app container and config schema 2020-12-05 08:48:46 -06:00
Blake Blackshear
732e91ee42 move primary script into the module 2020-12-05 08:48:46 -06:00
Blake Blackshear
27da080ce6 saving events and simple endpoint 2020-12-05 08:48:46 -06:00
Blake Blackshear
075d06b108 basic database model and api endpoint 2020-12-05 08:48:46 -06:00
Blake Blackshear
95dc17ffcd store events in tinydb 2020-12-05 08:48:46 -06:00
Blake Blackshear
408b53f8b4 update events model 2020-12-05 08:48:46 -06:00
Marc Seeger
3ef68a297a Add support for AMD Ryzen iGPU (fixes #311)
This package will add support for the iGPU of AMD Ryzen and presumably a few more AMD cards.
See details of the package here: https://packages.ubuntu.com/focal/mesa-va-drivers
It also adds support for the open source Nvidia Nouveau driver according to https://wiki.debian.org/HardwareVideoAcceleration
2020-12-05 07:00:07 -06:00
Michael Wei
3e9b3711dc Use cv2.bitwise_and instead of numpy.where 2020-12-05 06:59:28 -06:00
83 changed files with 14669 additions and 1725 deletions

View File

@@ -3,4 +3,5 @@ docs/
.gitignore
debug
config/
*.pyc
*.pyc
.git

View File

@@ -1,6 +1,6 @@
---
name: Bug report
about: Create a report to help us improve
name: Bug report or Support request
about: ''
title: ''
labels: ''
assignees: ''
@@ -8,10 +8,10 @@ assignees: ''
---
**Describe the bug**
A clear and concise description of what the bug is.
A clear and concise description of what your issue is.
**Version of frigate**
What version are you using?
Output from `/version`
**Config file**
Include your full config file wrapped in triple back ticks.
@@ -19,14 +19,14 @@ Include your full config file wrapped in triple back ticks.
config here
```
**Logs**
**Frigate container logs**
```
Include relevant log output here
```
**Frigate debug stats**
```
Output from frigate's /debug/stats endpoint
**Frigate stats**
```json
Output from frigate's /stats endpoint
```
**FFprobe from your camera**
@@ -41,6 +41,7 @@ If applicable, add screenshots to help explain your problem.
**Computer Hardware**
- OS: [e.g. Ubuntu, Windows]
- Install method: [e.g. Addon, Docker Compose, Docker Command]
- Virtualization: [e.g. Proxmox, Virtualbox]
- Coral Version: [e.g. USB, PCIe, None]
- Network Setup: [e.g. Wired, WiFi]

11
.gitignore vendored
View File

@@ -1,4 +1,11 @@
*.pyc
.DS_Store
*.pyc
debug
.vscode
config/config.yml
config/config.yml
models
*.mp4
*.db
frigate/version.py
web/build
web/node_modules

View File

@@ -1,49 +1,59 @@
default_target: amd64_frigate
COMMIT_HASH := $(shell git log -1 --pretty=format:"%h"|tail -1)
version:
echo "VERSION='0.8.0-$(COMMIT_HASH)'" > frigate/version.py
web:
docker build --tag frigate-web --file docker/Dockerfile.web web/
amd64_wheels:
docker build --tag blakeblackshear/frigate-wheels:amd64 --file docker/Dockerfile.wheels .
docker build --tag blakeblackshear/frigate-wheels:1.0.1-amd64 --file docker/Dockerfile.wheels .
amd64_ffmpeg:
docker build --tag blakeblackshear/frigate-ffmpeg:amd64 --file docker/Dockerfile.ffmpeg.amd64 .
docker build --tag blakeblackshear/frigate-ffmpeg:1.1.0-amd64 --file docker/Dockerfile.ffmpeg.amd64 .
amd64_frigate:
docker build --tag frigate-base --build-arg ARCH=amd64 --file docker/Dockerfile.base .
amd64_frigate: version web
docker build --tag frigate-base --build-arg ARCH=amd64 --build-arg FFMPEG_VERSION=1.1.0 --build-arg WHEELS_VERSION=1.0.1 --file docker/Dockerfile.base .
docker build --tag frigate --file docker/Dockerfile.amd64 .
amd64_all: amd64_wheels amd64_ffmpeg amd64_frigate
amd64nvidia_wheels:
docker build --tag blakeblackshear/frigate-wheels:amd64nvidia --file docker/Dockerfile.wheels .
docker build --tag blakeblackshear/frigate-wheels:1.0.1-amd64nvidia --file docker/Dockerfile.wheels .
amd64nvidia_ffmpeg:
docker build --tag blakeblackshear/frigate-ffmpeg:amd64nvidia --file docker/Dockerfile.ffmpeg.amd64nvidia .
docker build --tag blakeblackshear/frigate-ffmpeg:1.0.0-amd64nvidia --file docker/Dockerfile.ffmpeg.amd64nvidia .
amd64nvidia_frigate:
docker build --tag frigate-base --build-arg ARCH=amd64nvidia --file docker/Dockerfile.base .
amd64nvidia_frigate: version web
docker build --tag frigate-base --build-arg ARCH=amd64nvidia --build-arg FFMPEG_VERSION=1.0.0 --build-arg WHEELS_VERSION=1.0.1 --file docker/Dockerfile.base .
docker build --tag frigate --file docker/Dockerfile.amd64nvidia .
amd64nvidia_all: amd64nvidia_wheels amd64nvidia_ffmpeg amd64nvidia_frigate
aarch64_wheels:
docker build --tag blakeblackshear/frigate-wheels:aarch64 --file docker/Dockerfile.wheels.aarch64 .
docker build --tag blakeblackshear/frigate-wheels:1.0.1-aarch64 --file docker/Dockerfile.wheels .
aarch64_ffmpeg:
docker build --tag blakeblackshear/frigate-ffmpeg:aarch64 --file docker/Dockerfile.ffmpeg.aarch64 .
docker build --tag blakeblackshear/frigate-ffmpeg:1.0.0-aarch64 --file docker/Dockerfile.ffmpeg.aarch64 .
aarch64_frigate:
docker build --tag frigate-base --build-arg ARCH=aarch64 --file docker/Dockerfile.base .
aarch64_frigate: version web
docker build --tag frigate-base --build-arg ARCH=aarch64 --build-arg FFMPEG_VERSION=1.0.0 --build-arg WHEELS_VERSION=1.0.1 --file docker/Dockerfile.base .
docker build --tag frigate --file docker/Dockerfile.aarch64 .
armv7_all: armv7_wheels armv7_ffmpeg armv7_frigate
armv7_wheels:
docker build --tag blakeblackshear/frigate-wheels:armv7 --file docker/Dockerfile.wheels .
docker build --tag blakeblackshear/frigate-wheels:1.0.1-armv7 --file docker/Dockerfile.wheels .
armv7_ffmpeg:
docker build --tag blakeblackshear/frigate-ffmpeg:armv7 --file docker/Dockerfile.ffmpeg.armv7 .
docker build --tag blakeblackshear/frigate-ffmpeg:1.0.0-armv7 --file docker/Dockerfile.ffmpeg.armv7 .
armv7_frigate:
docker build --tag frigate-base --build-arg ARCH=armv7 --file docker/Dockerfile.base .
armv7_frigate: version web
docker build --tag frigate-base --build-arg ARCH=armv7 --build-arg FFMPEG_VERSION=1.0.0 --build-arg WHEELS_VERSION=1.0.1 --file docker/Dockerfile.base .
docker build --tag frigate --file docker/Dockerfile.armv7 .
armv7_all: armv7_wheels armv7_ffmpeg armv7_frigate
.PHONY: web

798
README.md

File diff suppressed because it is too large Load Diff

View File

@@ -1,441 +0,0 @@
import faulthandler; faulthandler.enable()
import os
import signal
import sys
import traceback
import signal
import cv2
import time
import datetime
import queue
import yaml
import json
import threading
import multiprocessing as mp
import subprocess as sp
import numpy as np
import logging
from flask import Flask, Response, make_response, jsonify, request
import paho.mqtt.client as mqtt
from frigate.video import capture_camera, track_camera, get_ffmpeg_input, get_frame_shape, CameraCapture, start_or_restart_ffmpeg
from frigate.object_processing import TrackedObjectProcessor
from frigate.events import EventProcessor
from frigate.util import EventsPerSecond
from frigate.edgetpu import EdgeTPUProcess
FRIGATE_VARS = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')}
CONFIG_FILE = os.environ.get('CONFIG_FILE', '/config/config.yml')
if CONFIG_FILE.endswith(".yml"):
with open(CONFIG_FILE) as f:
CONFIG = yaml.safe_load(f)
elif CONFIG_FILE.endswith(".json"):
with open(CONFIG_FILE) as f:
CONFIG = json.load(f)
CACHE_DIR = CONFIG.get('save_clips', {}).get('cache_dir', '/cache')
CLIPS_DIR = CONFIG.get('save_clips', {}).get('clips_dir', '/clips')
if not os.path.exists(CACHE_DIR) and not os.path.islink(CACHE_DIR):
os.makedirs(CACHE_DIR)
if not os.path.exists(CLIPS_DIR) and not os.path.islink(CLIPS_DIR):
os.makedirs(CLIPS_DIR)
MQTT_HOST = CONFIG['mqtt']['host']
MQTT_PORT = CONFIG.get('mqtt', {}).get('port', 1883)
MQTT_TOPIC_PREFIX = CONFIG.get('mqtt', {}).get('topic_prefix', 'frigate')
MQTT_USER = CONFIG.get('mqtt', {}).get('user')
MQTT_PASS = CONFIG.get('mqtt', {}).get('password')
if not MQTT_PASS is None:
MQTT_PASS = MQTT_PASS.format(**FRIGATE_VARS)
MQTT_CLIENT_ID = CONFIG.get('mqtt', {}).get('client_id', 'frigate')
# Set the default FFmpeg config
FFMPEG_CONFIG = CONFIG.get('ffmpeg', {})
FFMPEG_DEFAULT_CONFIG = {
'global_args': FFMPEG_CONFIG.get('global_args',
['-hide_banner','-loglevel','panic']),
'hwaccel_args': FFMPEG_CONFIG.get('hwaccel_args',
[]),
'input_args': FFMPEG_CONFIG.get('input_args',
['-avoid_negative_ts', 'make_zero',
'-fflags', 'nobuffer',
'-flags', 'low_delay',
'-strict', 'experimental',
'-fflags', '+genpts+discardcorrupt',
'-rtsp_transport', 'tcp',
'-stimeout', '5000000',
'-use_wallclock_as_timestamps', '1']),
'output_args': FFMPEG_CONFIG.get('output_args',
['-f', 'rawvideo',
'-pix_fmt', 'yuv420p'])
}
GLOBAL_OBJECT_CONFIG = CONFIG.get('objects', {})
WEB_PORT = CONFIG.get('web_port', 5000)
DETECTORS = CONFIG.get('detectors', {'coral': {'type': 'edgetpu', 'device': 'usb'}})
class FrigateWatchdog(threading.Thread):
def __init__(self, camera_processes, config, detectors, detection_queue, out_events, tracked_objects_queue, stop_event):
threading.Thread.__init__(self)
self.camera_processes = camera_processes
self.config = config
self.detectors = detectors
self.detection_queue = detection_queue
self.out_events = out_events
self.tracked_objects_queue = tracked_objects_queue
self.stop_event = stop_event
def run(self):
time.sleep(10)
while True:
# wait a bit before checking
time.sleep(10)
if self.stop_event.is_set():
print(f"Exiting watchdog...")
break
now = datetime.datetime.now().timestamp()
# check the detection processes
for detector in self.detectors.values():
detection_start = detector.detection_start.value
if (detection_start > 0.0 and
now - detection_start > 10):
print("Detection appears to be stuck. Restarting detection process")
detector.start_or_restart()
elif not detector.detect_process.is_alive():
print("Detection appears to have stopped. Restarting detection process")
detector.start_or_restart()
# check the camera processes
for name, camera_process in self.camera_processes.items():
process = camera_process['process']
if not process.is_alive():
print(f"Track process for {name} is not alive. Starting again...")
camera_process['camera_fps'].value = 0.0
camera_process['process_fps'].value = 0.0
camera_process['detection_fps'].value = 0.0
camera_process['read_start'].value = 0.0
process = mp.Process(target=track_camera, args=(name, self.config,
self.detection_queue, self.out_events[name], self.tracked_objects_queue, camera_process, self.stop_event))
process.daemon = True
camera_process['process'] = process
process.start()
print(f"Track process started for {name}: {process.pid}")
def main():
stop_event = threading.Event()
# connect to mqtt and setup last will
def on_connect(client, userdata, flags, rc):
print("On connect called")
if rc != 0:
if rc == 3:
print ("MQTT Server unavailable")
elif rc == 4:
print ("MQTT Bad username or password")
elif rc == 5:
print ("MQTT Not authorized")
else:
print ("Unable to connect to MQTT: Connection refused. Error code: " + str(rc))
# publish a message to signal that the service is running
client.publish(MQTT_TOPIC_PREFIX+'/available', 'online', retain=True)
client = mqtt.Client(client_id=MQTT_CLIENT_ID)
client.on_connect = on_connect
client.will_set(MQTT_TOPIC_PREFIX+'/available', payload='offline', qos=1, retain=True)
if not MQTT_USER is None:
client.username_pw_set(MQTT_USER, password=MQTT_PASS)
client.connect(MQTT_HOST, MQTT_PORT, 60)
client.loop_start()
##
# Setup config defaults for cameras
##
for name, config in CONFIG['cameras'].items():
config['snapshots'] = {
'show_timestamp': config.get('snapshots', {}).get('show_timestamp', True),
'draw_zones': config.get('snapshots', {}).get('draw_zones', False),
'draw_bounding_boxes': config.get('snapshots', {}).get('draw_bounding_boxes', True)
}
config['zones'] = config.get('zones', {})
# Queue for cameras to push tracked objects to
tracked_objects_queue = mp.Queue(maxsize=len(CONFIG['cameras'].keys())*2)
# Queue for clip processing
event_queue = mp.Queue()
# create the detection pipes and shms
out_events = {}
camera_shms = []
for name in CONFIG['cameras'].keys():
out_events[name] = mp.Event()
shm_in = mp.shared_memory.SharedMemory(name=name, create=True, size=300*300*3)
shm_out = mp.shared_memory.SharedMemory(name=f"out-{name}", create=True, size=20*6*4)
camera_shms.append(shm_in)
camera_shms.append(shm_out)
detection_queue = mp.Queue()
detectors = {}
for name, detector in DETECTORS.items():
if detector['type'] == 'cpu':
detectors[name] = EdgeTPUProcess(detection_queue, out_events=out_events, tf_device='cpu')
if detector['type'] == 'edgetpu':
detectors[name] = EdgeTPUProcess(detection_queue, out_events=out_events, tf_device=detector['device'])
# create the camera processes
camera_process_info = {}
for name, config in CONFIG['cameras'].items():
# Merge the ffmpeg config with the global config
ffmpeg = config.get('ffmpeg', {})
ffmpeg_input = get_ffmpeg_input(ffmpeg['input'])
ffmpeg_global_args = ffmpeg.get('global_args', FFMPEG_DEFAULT_CONFIG['global_args'])
ffmpeg_hwaccel_args = ffmpeg.get('hwaccel_args', FFMPEG_DEFAULT_CONFIG['hwaccel_args'])
ffmpeg_input_args = ffmpeg.get('input_args', FFMPEG_DEFAULT_CONFIG['input_args'])
ffmpeg_output_args = ffmpeg.get('output_args', FFMPEG_DEFAULT_CONFIG['output_args'])
if not config.get('fps') is None:
ffmpeg_output_args = ["-r", str(config.get('fps'))] + ffmpeg_output_args
if config.get('save_clips', {}).get('enabled', False):
ffmpeg_output_args = [
"-f",
"segment",
"-segment_time",
"10",
"-segment_format",
"mp4",
"-reset_timestamps",
"1",
"-strftime",
"1",
"-c",
"copy",
"-an",
"-map",
"0",
f"{os.path.join(CACHE_DIR, name)}-%Y%m%d%H%M%S.mp4"
] + ffmpeg_output_args
ffmpeg_cmd = (['ffmpeg'] +
ffmpeg_global_args +
ffmpeg_hwaccel_args +
ffmpeg_input_args +
['-i', ffmpeg_input] +
ffmpeg_output_args +
['pipe:'])
config['ffmpeg_cmd'] = ffmpeg_cmd
if 'width' in config and 'height' in config:
frame_shape = (config['height'], config['width'], 3)
else:
frame_shape = get_frame_shape(ffmpeg_input)
config['frame_shape'] = frame_shape
config['take_frame'] = config.get('take_frame', 1)
camera_process_info[name] = {
'camera_fps': mp.Value('d', 0.0),
'skipped_fps': mp.Value('d', 0.0),
'process_fps': mp.Value('d', 0.0),
'detection_fps': mp.Value('d', 0.0),
'detection_frame': mp.Value('d', 0.0),
'read_start': mp.Value('d', 0.0),
'ffmpeg_pid': mp.Value('i', 0),
'frame_queue': mp.Queue(maxsize=2)
}
# merge global object config into camera object config
camera_objects_config = config.get('objects', {})
# get objects to track for camera
objects_to_track = camera_objects_config.get('track', GLOBAL_OBJECT_CONFIG.get('track', ['person']))
# get object filters
object_filters = camera_objects_config.get('filters', GLOBAL_OBJECT_CONFIG.get('filters', {}))
config['objects'] = {
'track': objects_to_track,
'filters': object_filters
}
capture_process = mp.Process(target=capture_camera, args=(name, config,
camera_process_info[name], stop_event))
capture_process.daemon = True
camera_process_info[name]['capture_process'] = capture_process
camera_process = mp.Process(target=track_camera, args=(name, config,
detection_queue, out_events[name], tracked_objects_queue, camera_process_info[name], stop_event))
camera_process.daemon = True
camera_process_info[name]['process'] = camera_process
# start the camera_processes
for name, camera_process in camera_process_info.items():
camera_process['capture_process'].start()
print(f"Camera capture process started for {name}: {camera_process['capture_process'].pid}")
camera_process['process'].start()
print(f"Camera process started for {name}: {camera_process['process'].pid}")
event_processor = EventProcessor(CONFIG, camera_process_info, CACHE_DIR, CLIPS_DIR, event_queue, stop_event)
event_processor.start()
object_processor = TrackedObjectProcessor(CONFIG['cameras'], client, MQTT_TOPIC_PREFIX, tracked_objects_queue, event_queue, stop_event)
object_processor.start()
frigate_watchdog = FrigateWatchdog(camera_process_info, CONFIG['cameras'], detectors, detection_queue, out_events, tracked_objects_queue, stop_event)
frigate_watchdog.start()
def receiveSignal(signalNumber, frame):
print('Received:', signalNumber)
stop_event.set()
event_processor.join()
object_processor.join()
frigate_watchdog.join()
for detector in detectors.values():
detector.stop()
for shm in camera_shms:
shm.close()
shm.unlink()
sys.exit()
signal.signal(signal.SIGTERM, receiveSignal)
signal.signal(signal.SIGINT, receiveSignal)
# create a flask app that encodes frames a mjpeg on demand
app = Flask(__name__)
log = logging.getLogger('werkzeug')
log.setLevel(logging.ERROR)
@app.route('/')
def ishealthy():
# return a healh
return "Frigate is running. Alive and healthy!"
@app.route('/debug/stack')
def processor_stack():
frame = sys._current_frames().get(object_processor.ident, None)
if frame:
return "<br>".join(traceback.format_stack(frame)), 200
else:
return "no frame found", 200
@app.route('/debug/print_stack')
def print_stack():
pid = int(request.args.get('pid', 0))
if pid == 0:
return "missing pid", 200
else:
os.kill(pid, signal.SIGUSR1)
return "check logs", 200
@app.route('/debug/stats')
def stats():
stats = {}
total_detection_fps = 0
for name, camera_stats in camera_process_info.items():
total_detection_fps += camera_stats['detection_fps'].value
stats[name] = {
'camera_fps': round(camera_stats['camera_fps'].value, 2),
'process_fps': round(camera_stats['process_fps'].value, 2),
'skipped_fps': round(camera_stats['skipped_fps'].value, 2),
'detection_fps': round(camera_stats['detection_fps'].value, 2),
'pid': camera_stats['process'].pid,
'capture_pid': camera_stats['capture_process'].pid,
'frame_info': {
'detect': camera_stats['detection_frame'].value,
'process': object_processor.camera_data[name]['current_frame_time']
}
}
stats['detectors'] = {}
for name, detector in detectors.items():
stats['detectors'][name] = {
'inference_speed': round(detector.avg_inference_speed.value*1000, 2),
'detection_start': detector.detection_start.value,
'pid': detector.detect_process.pid
}
stats['detection_fps'] = round(total_detection_fps, 2)
return jsonify(stats)
@app.route('/<camera_name>/<label>/best.jpg')
def best(camera_name, label):
if camera_name in CONFIG['cameras']:
best_object = object_processor.get_best(camera_name, label)
best_frame = best_object.get('frame')
if best_frame is None:
best_frame = np.zeros((720,1280,3), np.uint8)
else:
best_frame = cv2.cvtColor(best_frame, cv2.COLOR_YUV2BGR_I420)
crop = bool(request.args.get('crop', 0, type=int))
if crop:
region = best_object.get('region', [0,0,300,300])
best_frame = best_frame[region[1]:region[3], region[0]:region[2]]
height = int(request.args.get('h', str(best_frame.shape[0])))
width = int(height*best_frame.shape[1]/best_frame.shape[0])
best_frame = cv2.resize(best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
ret, jpg = cv2.imencode('.jpg', best_frame)
response = make_response(jpg.tobytes())
response.headers['Content-Type'] = 'image/jpg'
return response
else:
return "Camera named {} not found".format(camera_name), 404
@app.route('/<camera_name>')
def mjpeg_feed(camera_name):
fps = int(request.args.get('fps', '3'))
height = int(request.args.get('h', '360'))
if camera_name in CONFIG['cameras']:
# return a multipart response
return Response(imagestream(camera_name, fps, height),
mimetype='multipart/x-mixed-replace; boundary=frame')
else:
return "Camera named {} not found".format(camera_name), 404
@app.route('/<camera_name>/latest.jpg')
def latest_frame(camera_name):
if camera_name in CONFIG['cameras']:
# max out at specified FPS
frame = object_processor.get_current_frame(camera_name)
if frame is None:
frame = np.zeros((720,1280,3), np.uint8)
height = int(request.args.get('h', str(frame.shape[0])))
width = int(height*frame.shape[1]/frame.shape[0])
frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
ret, jpg = cv2.imencode('.jpg', frame)
response = make_response(jpg.tobytes())
response.headers['Content-Type'] = 'image/jpg'
return response
else:
return "Camera named {} not found".format(camera_name), 404
def imagestream(camera_name, fps, height):
while True:
# max out at specified FPS
time.sleep(1/fps)
frame = object_processor.get_current_frame(camera_name, draw=True)
if frame is None:
frame = np.zeros((height,int(height*16/9),3), np.uint8)
width = int(height*frame.shape[1]/frame.shape[0])
frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_LINEAR)
ret, jpg = cv2.imencode('.jpg', frame)
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
app.run(host='0.0.0.0', port=WEB_PORT, debug=False)
object_processor.join()
if __name__ == '__main__':
main()

View File

@@ -9,7 +9,7 @@ RUN apt-get -qq update \
# ffmpeg dependencies
libgomp1 \
# VAAPI drivers for Intel hardware accel
libva-drm2 libva2 i965-va-driver vainfo intel-media-va-driver \
libva-drm2 libva2 libmfx1 i965-va-driver vainfo intel-media-va-driver mesa-va-drivers \
## Tensorflow lite
&& wget -q https://github.com/google-coral/pycoral/releases/download/release-frogfish/tflite_runtime-2.5.0-cp38-cp38-linux_x86_64.whl \
&& python3.8 -m pip install tflite_runtime-2.5.0-cp38-cp38-linux_x86_64.whl \

View File

@@ -1,6 +1,9 @@
ARG ARCH=amd64
FROM blakeblackshear/frigate-wheels:${ARCH} as wheels
FROM blakeblackshear/frigate-ffmpeg:${ARCH} as ffmpeg
ARG WHEELS_VERSION
ARG FFMPEG_VERSION
FROM blakeblackshear/frigate-wheels:${WHEELS_VERSION}-${ARCH} as wheels
FROM blakeblackshear/frigate-ffmpeg:${FFMPEG_VERSION}-${ARCH} as ffmpeg
FROM frigate-web as web
FROM ubuntu:20.04
LABEL maintainer "blakeb@blakeshome.com"
@@ -10,12 +13,13 @@ COPY --from=ffmpeg /usr/local /usr/local/
COPY --from=wheels /wheels/. /wheels/
ENV FLASK_ENV=development
# ENV FONTCONFIG_PATH=/etc/fonts
ENV DEBIAN_FRONTEND=noninteractive
# Install packages for apt repo
RUN apt-get -qq update \
&& apt-get upgrade -y \
&& apt-get -qq install --no-install-recommends -y \
gnupg wget unzip tzdata \
gnupg wget unzip tzdata nginx libnginx-mod-rtmp \
&& apt-get -qq install --no-install-recommends -y \
python3-pip \
&& pip3 install -U /wheels/*.whl \
@@ -27,18 +31,28 @@ RUN apt-get -qq update \
&& rm -rf /var/lib/apt/lists/* /wheels \
&& (apt-get autoremove -y; apt-get autoclean -y)
# get model and labels
ARG MODEL_REFS=7064b94dd5b996189242320359dbab8b52c94a84
COPY labelmap.txt /labelmap.txt
RUN wget -q https://github.com/google-coral/edgetpu/raw/$MODEL_REFS/test_data/ssd_mobilenet_v2_coco_quant_postprocess_edgetpu.tflite -O /edgetpu_model.tflite
RUN wget -q https://github.com/google-coral/edgetpu/raw/$MODEL_REFS/test_data/ssd_mobilenet_v2_coco_quant_postprocess.tflite -O /cpu_model.tflite
RUN pip3 install \
peewee_migrate \
zeroconf \
voluptuous
RUN mkdir /cache /clips
COPY nginx/nginx.conf /etc/nginx/nginx.conf
# get model and labels
COPY labelmap.txt /labelmap.txt
RUN wget -q https://github.com/google-coral/test_data/raw/master/ssdlite_mobiledet_coco_qat_postprocess_edgetpu.tflite -O /edgetpu_model.tflite
RUN wget -q https://github.com/google-coral/test_data/raw/master/ssdlite_mobiledet_coco_qat_postprocess.tflite -O /cpu_model.tflite
WORKDIR /opt/frigate/
ADD frigate frigate/
COPY detect_objects.py .
COPY benchmark.py .
COPY process_clip.py .
ADD migrations migrations/
CMD ["python3", "-u", "detect_objects.py"]
COPY --from=web /opt/frigate/build web/
COPY run.sh /run.sh
RUN chmod +x /run.sh
EXPOSE 5000
EXPOSE 1935
CMD ["/run.sh"]

View File

@@ -18,12 +18,10 @@ FROM base as build
ENV FFMPEG_VERSION=4.3.1 \
AOM_VERSION=v1.0.0 \
FDKAAC_VERSION=0.1.5 \
FONTCONFIG_VERSION=2.12.4 \
FREETYPE_VERSION=2.5.5 \
FRIBIDI_VERSION=0.19.7 \
KVAZAAR_VERSION=1.2.0 \
LAME_VERSION=3.100 \
LIBASS_VERSION=0.13.7 \
LIBPTHREAD_STUBS_VERSION=0.4 \
LIBVIDSTAB_VERSION=1.1.0 \
LIBXCB_VERSION=1.13.1 \
@@ -42,22 +40,17 @@ ENV FFMPEG_VERSION=4.3.1 \
XORG_MACROS_VERSION=1.19.2 \
XPROTO_VERSION=7.0.31 \
XVID_VERSION=1.3.4 \
LIBXML2_VERSION=2.9.10 \
LIBBLURAY_VERSION=1.1.2 \
LIBZMQ_VERSION=4.3.2 \
SRC=/usr/local
ARG FREETYPE_SHA256SUM="5d03dd76c2171a7601e9ce10551d52d4471cf92cd205948e60289251daddffa8 freetype-2.5.5.tar.gz"
ARG FRIBIDI_SHA256SUM="3fc96fa9473bd31dcb5500bdf1aa78b337ba13eb8c301e7c28923fea982453a8 0.19.7.tar.gz"
ARG LIBASS_SHA256SUM="8fadf294bf701300d4605e6f1d92929304187fca4b8d8a47889315526adbafd7 0.13.7.tar.gz"
ARG LIBVIDSTAB_SHA256SUM="14d2a053e56edad4f397be0cb3ef8eb1ec3150404ce99a426c4eb641861dc0bb v1.1.0.tar.gz"
ARG OGG_SHA256SUM="e19ee34711d7af328cb26287f4137e70630e7261b17cbe3cd41011d73a654692 libogg-1.3.2.tar.gz"
ARG OPUS_SHA256SUM="77db45a87b51578fbc49555ef1b10926179861d854eb2613207dc79d9ec0a9a9 opus-1.2.tar.gz"
ARG THEORA_SHA256SUM="40952956c47811928d1e7922cda3bc1f427eb75680c3c37249c91e949054916b libtheora-1.1.1.tar.gz"
ARG VORBIS_SHA256SUM="6efbcecdd3e5dfbf090341b485da9d176eb250d893e3eb378c428a2db38301ce libvorbis-1.3.5.tar.gz"
ARG XVID_SHA256SUM="4e9fd62728885855bc5007fe1be58df42e5e274497591fec37249e1052ae316f xvidcore-1.3.4.tar.gz"
ARG LIBXML2_SHA256SUM="f07dab13bf42d2b8db80620cce7419b3b87827cc937c8bb20fe13b8571ee9501 libxml2-v2.9.10.tar.gz"
ARG LIBBLURAY_SHA256SUM="a3dd452239b100dc9da0d01b30e1692693e2a332a7d29917bf84bb10ea7c0b42 libbluray-1.1.2.tar.bz2"
ARG LIBZMQ_SHA256SUM="02ecc88466ae38cf2c8d79f09cfd2675ba299a439680b64ade733e26a349edeb v4.3.2.tar.gz"
@@ -287,30 +280,7 @@ RUN \
make -j1 && \
make -j $(nproc) install && \
rm -rf ${DIR}
## fontconfig https://www.freedesktop.org/wiki/Software/fontconfig/
RUN \
DIR=/tmp/fontconfig && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.freedesktop.org/software/fontconfig/release/fontconfig-${FONTCONFIG_VERSION}.tar.bz2 && \
tar -jx --strip-components=1 -f fontconfig-${FONTCONFIG_VERSION}.tar.bz2 && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## libass https://github.com/libass/libass
RUN \
DIR=/tmp/libass && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/libass/libass/archive/${LIBASS_VERSION}.tar.gz && \
echo ${LIBASS_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f ${LIBASS_VERSION}.tar.gz && \
./autogen.sh && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## kvazaar https://github.com/ultravideo/kvazaar
RUN \
DIR=/tmp/kvazaar && \
@@ -407,32 +377,6 @@ RUN \
make -j $(nproc) install && \
rm -rf ${DIR}
## libxml2 - for libbluray
RUN \
DIR=/tmp/libxml2 && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://gitlab.gnome.org/GNOME/libxml2/-/archive/v${LIBXML2_VERSION}/libxml2-v${LIBXML2_VERSION}.tar.gz && \
echo ${LIBXML2_SHA256SUM} | sha256sum --check && \
tar -xz --strip-components=1 -f libxml2-v${LIBXML2_VERSION}.tar.gz && \
./autogen.sh --prefix="${PREFIX}" --with-ftp=no --with-http=no --with-python=no && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## libbluray - Requires libxml, freetype, and fontconfig
RUN \
DIR=/tmp/libbluray && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://download.videolan.org/pub/videolan/libbluray/${LIBBLURAY_VERSION}/libbluray-${LIBBLURAY_VERSION}.tar.bz2 && \
echo ${LIBBLURAY_SHA256SUM} | sha256sum --check && \
tar -jx --strip-components=1 -f libbluray-${LIBBLURAY_VERSION}.tar.bz2 && \
./configure --prefix="${PREFIX}" --disable-examples --disable-bdjava-jar --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## libzmq https://github.com/zeromq/libzmq/
RUN \
DIR=/tmp/libzmq && \
@@ -465,8 +409,6 @@ RUN \
--enable-libopencore-amrnb \
--enable-libopencore-amrwb \
--enable-gpl \
--enable-libass \
--enable-fontconfig \
--enable-libfreetype \
--enable-libvidstab \
--enable-libmp3lame \
@@ -485,7 +427,6 @@ RUN \
--enable-postproc \
--enable-small \
--enable-version3 \
--enable-libbluray \
--enable-libzmq \
--extra-libs=-ldl \
--prefix="${PREFIX}" \

View File

@@ -17,12 +17,10 @@ FROM base as build
ENV FFMPEG_VERSION=4.3.1 \
AOM_VERSION=v1.0.0 \
FDKAAC_VERSION=0.1.5 \
FONTCONFIG_VERSION=2.12.4 \
FREETYPE_VERSION=2.5.5 \
FRIBIDI_VERSION=0.19.7 \
KVAZAAR_VERSION=1.2.0 \
LAME_VERSION=3.100 \
LIBASS_VERSION=0.13.7 \
LIBPTHREAD_STUBS_VERSION=0.4 \
LIBVIDSTAB_VERSION=1.1.0 \
LIBXCB_VERSION=1.13.1 \
@@ -41,22 +39,17 @@ ENV FFMPEG_VERSION=4.3.1 \
XORG_MACROS_VERSION=1.19.2 \
XPROTO_VERSION=7.0.31 \
XVID_VERSION=1.3.4 \
LIBXML2_VERSION=2.9.10 \
LIBBLURAY_VERSION=1.1.2 \
LIBZMQ_VERSION=4.3.2 \
SRC=/usr/local
ARG FREETYPE_SHA256SUM="5d03dd76c2171a7601e9ce10551d52d4471cf92cd205948e60289251daddffa8 freetype-2.5.5.tar.gz"
ARG FRIBIDI_SHA256SUM="3fc96fa9473bd31dcb5500bdf1aa78b337ba13eb8c301e7c28923fea982453a8 0.19.7.tar.gz"
ARG LIBASS_SHA256SUM="8fadf294bf701300d4605e6f1d92929304187fca4b8d8a47889315526adbafd7 0.13.7.tar.gz"
ARG LIBVIDSTAB_SHA256SUM="14d2a053e56edad4f397be0cb3ef8eb1ec3150404ce99a426c4eb641861dc0bb v1.1.0.tar.gz"
ARG OGG_SHA256SUM="e19ee34711d7af328cb26287f4137e70630e7261b17cbe3cd41011d73a654692 libogg-1.3.2.tar.gz"
ARG OPUS_SHA256SUM="77db45a87b51578fbc49555ef1b10926179861d854eb2613207dc79d9ec0a9a9 opus-1.2.tar.gz"
ARG THEORA_SHA256SUM="40952956c47811928d1e7922cda3bc1f427eb75680c3c37249c91e949054916b libtheora-1.1.1.tar.gz"
ARG VORBIS_SHA256SUM="6efbcecdd3e5dfbf090341b485da9d176eb250d893e3eb378c428a2db38301ce libvorbis-1.3.5.tar.gz"
ARG XVID_SHA256SUM="4e9fd62728885855bc5007fe1be58df42e5e274497591fec37249e1052ae316f xvidcore-1.3.4.tar.gz"
ARG LIBXML2_SHA256SUM="f07dab13bf42d2b8db80620cce7419b3b87827cc937c8bb20fe13b8571ee9501 libxml2-v2.9.10.tar.gz"
ARG LIBBLURAY_SHA256SUM="a3dd452239b100dc9da0d01b30e1692693e2a332a7d29917bf84bb10ea7c0b42 libbluray-1.1.2.tar.bz2"
ARG LIBZMQ_SHA256SUM="02ecc88466ae38cf2c8d79f09cfd2675ba299a439680b64ade733e26a349edeb v4.3.2.tar.gz"
@@ -86,6 +79,7 @@ RUN buildDeps="autoconf \
libssl-dev \
yasm \
libva-dev \
libmfx-dev \
zlib1g-dev" && \
apt-get -yqq update && \
apt-get install -yq --no-install-recommends ${buildDeps}
@@ -281,30 +275,6 @@ RUN \
make -j1 && \
make install && \
rm -rf ${DIR}
## fontconfig https://www.freedesktop.org/wiki/Software/fontconfig/
RUN \
DIR=/tmp/fontconfig && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.freedesktop.org/software/fontconfig/release/fontconfig-${FONTCONFIG_VERSION}.tar.bz2 && \
tar -jx --strip-components=1 -f fontconfig-${FONTCONFIG_VERSION}.tar.bz2 && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
## libass https://github.com/libass/libass
RUN \
DIR=/tmp/libass && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/libass/libass/archive/${LIBASS_VERSION}.tar.gz && \
echo ${LIBASS_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f ${LIBASS_VERSION}.tar.gz && \
./autogen.sh && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
## kvazaar https://github.com/ultravideo/kvazaar
RUN \
DIR=/tmp/kvazaar && \
@@ -399,32 +369,6 @@ RUN \
make install && \
rm -rf ${DIR}
## libxml2 - for libbluray
RUN \
DIR=/tmp/libxml2 && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://gitlab.gnome.org/GNOME/libxml2/-/archive/v${LIBXML2_VERSION}/libxml2-v${LIBXML2_VERSION}.tar.gz && \
echo ${LIBXML2_SHA256SUM} | sha256sum --check && \
tar -xz --strip-components=1 -f libxml2-v${LIBXML2_VERSION}.tar.gz && \
./autogen.sh --prefix="${PREFIX}" --with-ftp=no --with-http=no --with-python=no && \
make && \
make install && \
rm -rf ${DIR}
## libbluray - Requires libxml, freetype, and fontconfig
RUN \
DIR=/tmp/libbluray && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://download.videolan.org/pub/videolan/libbluray/${LIBBLURAY_VERSION}/libbluray-${LIBBLURAY_VERSION}.tar.bz2 && \
echo ${LIBBLURAY_SHA256SUM} | sha256sum --check && \
tar -jx --strip-components=1 -f libbluray-${LIBBLURAY_VERSION}.tar.bz2 && \
./configure --prefix="${PREFIX}" --disable-examples --disable-bdjava-jar --disable-static --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
## libzmq https://github.com/zeromq/libzmq/
RUN \
DIR=/tmp/libzmq && \
@@ -459,10 +403,9 @@ RUN \
--enable-libopencore-amrnb \
--enable-libopencore-amrwb \
--enable-gpl \
--enable-libass \
--enable-fontconfig \
--enable-libfreetype \
--enable-libvidstab \
--enable-libmfx \
--enable-libmp3lame \
--enable-libopus \
--enable-libtheora \
@@ -479,7 +422,6 @@ RUN \
--enable-postproc \
--enable-small \
--enable-version3 \
--enable-libbluray \
--enable-libzmq \
--extra-libs=-ldl \
--prefix="${PREFIX}" \
@@ -522,5 +464,5 @@ COPY --from=build /usr/local /usr/local/
RUN \
apt-get update -y && \
apt-get install -y --no-install-recommends libva-drm2 libva2 i965-va-driver && \
apt-get install -y --no-install-recommends libva-drm2 libva2 i965-va-driver mesa-va-drivers && \
rm -rf /var/lib/apt/lists/*

View File

@@ -40,12 +40,10 @@ ENV NVIDIA_HEADERS_VERSION=9.1.23.1
ENV FFMPEG_VERSION=4.3.1 \
AOM_VERSION=v1.0.0 \
FDKAAC_VERSION=0.1.5 \
FONTCONFIG_VERSION=2.12.4 \
FREETYPE_VERSION=2.5.5 \
FRIBIDI_VERSION=0.19.7 \
KVAZAAR_VERSION=1.2.0 \
LAME_VERSION=3.100 \
LIBASS_VERSION=0.13.7 \
LIBPTHREAD_STUBS_VERSION=0.4 \
LIBVIDSTAB_VERSION=1.1.0 \
LIBXCB_VERSION=1.13.1 \
@@ -64,8 +62,6 @@ ENV FFMPEG_VERSION=4.3.1 \
XORG_MACROS_VERSION=1.19.2 \
XPROTO_VERSION=7.0.31 \
XVID_VERSION=1.3.4 \
LIBXML2_VERSION=2.9.10 \
LIBBLURAY_VERSION=1.1.2 \
LIBZMQ_VERSION=4.3.2 \
LIBSRT_VERSION=1.4.1 \
LIBARIBB24_VERSION=1.0.3 \
@@ -74,15 +70,12 @@ ENV FFMPEG_VERSION=4.3.1 \
ARG FREETYPE_SHA256SUM="5d03dd76c2171a7601e9ce10551d52d4471cf92cd205948e60289251daddffa8 freetype-2.5.5.tar.gz"
ARG FRIBIDI_SHA256SUM="3fc96fa9473bd31dcb5500bdf1aa78b337ba13eb8c301e7c28923fea982453a8 0.19.7.tar.gz"
ARG LIBASS_SHA256SUM="8fadf294bf701300d4605e6f1d92929304187fca4b8d8a47889315526adbafd7 0.13.7.tar.gz"
ARG LIBVIDSTAB_SHA256SUM="14d2a053e56edad4f397be0cb3ef8eb1ec3150404ce99a426c4eb641861dc0bb v1.1.0.tar.gz"
ARG OGG_SHA256SUM="e19ee34711d7af328cb26287f4137e70630e7261b17cbe3cd41011d73a654692 libogg-1.3.2.tar.gz"
ARG OPUS_SHA256SUM="77db45a87b51578fbc49555ef1b10926179861d854eb2613207dc79d9ec0a9a9 opus-1.2.tar.gz"
ARG THEORA_SHA256SUM="40952956c47811928d1e7922cda3bc1f427eb75680c3c37249c91e949054916b libtheora-1.1.1.tar.gz"
ARG VORBIS_SHA256SUM="6efbcecdd3e5dfbf090341b485da9d176eb250d893e3eb378c428a2db38301ce libvorbis-1.3.5.tar.gz"
ARG XVID_SHA256SUM="4e9fd62728885855bc5007fe1be58df42e5e274497591fec37249e1052ae316f xvidcore-1.3.4.tar.gz"
ARG LIBXML2_SHA256SUM="f07dab13bf42d2b8db80620cce7419b3b87827cc937c8bb20fe13b8571ee9501 libxml2-v2.9.10.tar.gz"
ARG LIBBLURAY_SHA256SUM="a3dd452239b100dc9da0d01b30e1692693e2a332a7d29917bf84bb10ea7c0b42 libbluray-1.1.2.tar.bz2"
ARG LIBZMQ_SHA256SUM="02ecc88466ae38cf2c8d79f09cfd2675ba299a439680b64ade733e26a349edeb v4.3.2.tar.gz"
ARG LIBARIBB24_SHA256SUM="f61560738926e57f9173510389634d8c06cabedfa857db4b28fb7704707ff128 v1.0.3.tar.gz"
@@ -317,30 +310,6 @@ RUN \
make -j1 && \
make install && \
rm -rf ${DIR}
## fontconfig https://www.freedesktop.org/wiki/Software/fontconfig/
RUN \
DIR=/tmp/fontconfig && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.freedesktop.org/software/fontconfig/release/fontconfig-${FONTCONFIG_VERSION}.tar.bz2 && \
tar -jx --strip-components=1 -f fontconfig-${FONTCONFIG_VERSION}.tar.bz2 && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
## libass https://github.com/libass/libass
RUN \
DIR=/tmp/libass && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/libass/libass/archive/${LIBASS_VERSION}.tar.gz && \
echo ${LIBASS_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f ${LIBASS_VERSION}.tar.gz && \
./autogen.sh && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
## kvazaar https://github.com/ultravideo/kvazaar
RUN \
DIR=/tmp/kvazaar && \
@@ -435,32 +404,6 @@ RUN \
make install && \
rm -rf ${DIR}
## libxml2 - for libbluray
RUN \
DIR=/tmp/libxml2 && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://gitlab.gnome.org/GNOME/libxml2/-/archive/v${LIBXML2_VERSION}/libxml2-v${LIBXML2_VERSION}.tar.gz && \
echo ${LIBXML2_SHA256SUM} | sha256sum --check && \
tar -xz --strip-components=1 -f libxml2-v${LIBXML2_VERSION}.tar.gz && \
./autogen.sh --prefix="${PREFIX}" --with-ftp=no --with-http=no --with-python=no && \
make && \
make install && \
rm -rf ${DIR}
## libbluray - Requires libxml, freetype, and fontconfig
RUN \
DIR=/tmp/libbluray && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://download.videolan.org/pub/videolan/libbluray/${LIBBLURAY_VERSION}/libbluray-${LIBBLURAY_VERSION}.tar.bz2 && \
echo ${LIBBLURAY_SHA256SUM} | sha256sum --check && \
tar -jx --strip-components=1 -f libbluray-${LIBBLURAY_VERSION}.tar.bz2 && \
./configure --prefix="${PREFIX}" --disable-examples --disable-bdjava-jar --disable-static --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
## libzmq https://github.com/zeromq/libzmq/
RUN \
DIR=/tmp/libzmq && \
@@ -533,8 +476,6 @@ RUN \
--enable-libopencore-amrnb \
--enable-libopencore-amrwb \
--enable-gpl \
--enable-libass \
--enable-fontconfig \
--enable-libfreetype \
--enable-libvidstab \
--enable-libmp3lame \
@@ -553,7 +494,6 @@ RUN \
--enable-postproc \
--enable-small \
--enable-version3 \
--enable-libbluray \
--enable-libzmq \
--extra-libs=-ldl \
--prefix="${PREFIX}" \
@@ -593,7 +533,6 @@ RUN \
FROM runtime-base AS release
MAINTAINER Julien Rottenberg <julien@rottenberg.info>
ENV LD_LIBRARY_PATH=/usr/local/lib:/usr/local/lib64

View File

@@ -18,12 +18,10 @@ FROM base as build
ENV FFMPEG_VERSION=4.3.1 \
AOM_VERSION=v1.0.0 \
FDKAAC_VERSION=0.1.5 \
FONTCONFIG_VERSION=2.12.4 \
FREETYPE_VERSION=2.5.5 \
FRIBIDI_VERSION=0.19.7 \
KVAZAAR_VERSION=1.2.0 \
LAME_VERSION=3.100 \
LIBASS_VERSION=0.13.7 \
LIBPTHREAD_STUBS_VERSION=0.4 \
LIBVIDSTAB_VERSION=1.1.0 \
LIBXCB_VERSION=1.13.1 \
@@ -42,22 +40,17 @@ ENV FFMPEG_VERSION=4.3.1 \
XORG_MACROS_VERSION=1.19.2 \
XPROTO_VERSION=7.0.31 \
XVID_VERSION=1.3.4 \
LIBXML2_VERSION=2.9.10 \
LIBBLURAY_VERSION=1.1.2 \
LIBZMQ_VERSION=4.3.3 \
SRC=/usr/local
ARG FREETYPE_SHA256SUM="5d03dd76c2171a7601e9ce10551d52d4471cf92cd205948e60289251daddffa8 freetype-2.5.5.tar.gz"
ARG FRIBIDI_SHA256SUM="3fc96fa9473bd31dcb5500bdf1aa78b337ba13eb8c301e7c28923fea982453a8 0.19.7.tar.gz"
ARG LIBASS_SHA256SUM="8fadf294bf701300d4605e6f1d92929304187fca4b8d8a47889315526adbafd7 0.13.7.tar.gz"
ARG LIBVIDSTAB_SHA256SUM="14d2a053e56edad4f397be0cb3ef8eb1ec3150404ce99a426c4eb641861dc0bb v1.1.0.tar.gz"
ARG OGG_SHA256SUM="e19ee34711d7af328cb26287f4137e70630e7261b17cbe3cd41011d73a654692 libogg-1.3.2.tar.gz"
ARG OPUS_SHA256SUM="77db45a87b51578fbc49555ef1b10926179861d854eb2613207dc79d9ec0a9a9 opus-1.2.tar.gz"
ARG THEORA_SHA256SUM="40952956c47811928d1e7922cda3bc1f427eb75680c3c37249c91e949054916b libtheora-1.1.1.tar.gz"
ARG VORBIS_SHA256SUM="6efbcecdd3e5dfbf090341b485da9d176eb250d893e3eb378c428a2db38301ce libvorbis-1.3.5.tar.gz"
ARG XVID_SHA256SUM="4e9fd62728885855bc5007fe1be58df42e5e274497591fec37249e1052ae316f xvidcore-1.3.4.tar.gz"
ARG LIBXML2_SHA256SUM="f07dab13bf42d2b8db80620cce7419b3b87827cc937c8bb20fe13b8571ee9501 libxml2-v2.9.10.tar.gz"
ARG LIBBLURAY_SHA256SUM="a3dd452239b100dc9da0d01b30e1692693e2a332a7d29917bf84bb10ea7c0b42 libbluray-1.1.2.tar.bz2"
ARG LD_LIBRARY_PATH=/opt/ffmpeg/lib
@@ -289,30 +282,7 @@ RUN \
make -j1 && \
make -j $(nproc) install && \
rm -rf ${DIR}
## fontconfig https://www.freedesktop.org/wiki/Software/fontconfig/
RUN \
DIR=/tmp/fontconfig && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.freedesktop.org/software/fontconfig/release/fontconfig-${FONTCONFIG_VERSION}.tar.bz2 && \
tar -jx --strip-components=1 -f fontconfig-${FONTCONFIG_VERSION}.tar.bz2 && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## libass https://github.com/libass/libass
RUN \
DIR=/tmp/libass && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/libass/libass/archive/${LIBASS_VERSION}.tar.gz && \
echo ${LIBASS_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f ${LIBASS_VERSION}.tar.gz && \
./autogen.sh && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## kvazaar https://github.com/ultravideo/kvazaar
RUN \
DIR=/tmp/kvazaar && \
@@ -409,32 +379,6 @@ RUN \
make -j $(nproc) install && \
rm -rf ${DIR}
## libxml2 - for libbluray
RUN \
DIR=/tmp/libxml2 && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://gitlab.gnome.org/GNOME/libxml2/-/archive/v${LIBXML2_VERSION}/libxml2-v${LIBXML2_VERSION}.tar.gz && \
echo ${LIBXML2_SHA256SUM} | sha256sum --check && \
tar -xz --strip-components=1 -f libxml2-v${LIBXML2_VERSION}.tar.gz && \
./autogen.sh --prefix="${PREFIX}" --with-ftp=no --with-http=no --with-python=no && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## libbluray - Requires libxml, freetype, and fontconfig
RUN \
DIR=/tmp/libbluray && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://download.videolan.org/pub/videolan/libbluray/${LIBBLURAY_VERSION}/libbluray-${LIBBLURAY_VERSION}.tar.bz2 && \
echo ${LIBBLURAY_SHA256SUM} | sha256sum --check && \
tar -jx --strip-components=1 -f libbluray-${LIBBLURAY_VERSION}.tar.bz2 && \
./configure --prefix="${PREFIX}" --disable-examples --disable-bdjava-jar --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## libzmq https://github.com/zeromq/libzmq/
RUN \
DIR=/tmp/libzmq && \
@@ -475,8 +419,6 @@ RUN \
--enable-libopencore-amrnb \
--enable-libopencore-amrwb \
--enable-gpl \
--enable-libass \
--enable-fontconfig \
--enable-libfreetype \
--enable-libvidstab \
--enable-libmp3lame \
@@ -495,7 +437,6 @@ RUN \
--enable-postproc \
--enable-small \
--enable-version3 \
--enable-libbluray \
--enable-libzmq \
--extra-libs=-ldl \
--prefix="${PREFIX}" \

9
docker/Dockerfile.web Normal file
View File

@@ -0,0 +1,9 @@
ARG NODE_VERSION=14.0
FROM node:${NODE_VERSION}
WORKDIR /opt/frigate
COPY . .
RUN npm install && npm run build

View File

@@ -18,13 +18,14 @@ RUN apt-get -qq update \
gcc gfortran libopenblas-dev liblapack-dev cython
RUN wget -q https://bootstrap.pypa.io/get-pip.py -O get-pip.py \
&& python3 get-pip.py
&& python3 get-pip.py "pip==20.2.4"
RUN pip3 install scikit-build
RUN pip3 wheel --wheel-dir=/wheels \
opencv-python-headless \
numpy \
# pinning due to issue in 1.19.5 https://github.com/numpy/numpy/issues/18131
numpy==1.19.4 \
imutils \
scipy \
psutil \
@@ -32,7 +33,9 @@ RUN pip3 wheel --wheel-dir=/wheels \
paho-mqtt \
PyYAML \
matplotlib \
click
click \
setproctitle \
peewee
FROM scratch

View File

@@ -1,49 +0,0 @@
FROM ubuntu:20.04 as build
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get -qq update \
&& apt-get -qq install -y \
python3 \
python3-dev \
wget \
# opencv dependencies
build-essential cmake git pkg-config libgtk-3-dev \
libavcodec-dev libavformat-dev libswscale-dev libv4l-dev \
libxvidcore-dev libx264-dev libjpeg-dev libpng-dev libtiff-dev \
gfortran openexr libatlas-base-dev libssl-dev\
libtbb2 libtbb-dev libdc1394-22-dev libopenexr-dev \
libgstreamer-plugins-base1.0-dev libgstreamer1.0-dev \
# scipy dependencies
gcc gfortran libopenblas-dev liblapack-dev cython
RUN wget -q https://bootstrap.pypa.io/get-pip.py -O get-pip.py \
&& python3 get-pip.py
# need to build cmake from source because binary distribution is broken for arm64
# https://github.com/scikit-build/cmake-python-distributions/issues/115
# https://github.com/skvark/opencv-python/issues/366
# https://github.com/scikit-build/cmake-python-distributions/issues/96#issuecomment-663062358
RUN pip3 install scikit-build
RUN git clone https://github.com/scikit-build/cmake-python-distributions.git \
&& cd cmake-python-distributions/ \
&& python3 setup.py bdist_wheel
RUN pip3 install cmake-python-distributions/dist/*.whl
RUN pip3 wheel --wheel-dir=/wheels \
opencv-python-headless \
numpy \
imutils \
scipy \
psutil \
Flask \
paho-mqtt \
PyYAML \
matplotlib \
click
FROM scratch
COPY --from=build /wheels /wheels

View File

@@ -5,7 +5,7 @@ Frigate should work with most RTSP cameras and h264 feeds such as Dahua.
The input parameters need to be adjusted for RTMP cameras
```yaml
ffmpeg:
input_args:
input_args:
- -avoid_negative_ts
- make_zero
- -fflags
@@ -18,4 +18,25 @@ input_args:
- +genpts+discardcorrupt
- -use_wallclock_as_timestamps
- '1'
```
```
## Blue Iris RTSP Cameras
You will need to remove `nobuffer` flag for Blue Iris RTSP cameras
```yaml
ffmpeg:
input_args:
- -avoid_negative_ts
- make_zero
- -flags
- low_delay
- -strict
- experimental
- -fflags
- +genpts+discardcorrupt
- -rtsp_transport
- tcp
- -stimeout
- "5000000"
- -use_wallclock_as_timestamps
- "1"
```

BIN
docs/media_browser.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 781 KiB

View File

@@ -0,0 +1,71 @@
# Notification examples
Here are some examples of notifications for the HomeAssistant android companion app:
```yaml
automation:
- alias: When a person enters a zone named yard
trigger:
platform: mqtt
topic: frigate/events
conditions:
- "{{ trigger.payload_json['after']['label'] == 'person' }}"
- "{{ 'yard' in trigger.payload_json['after']['entered_zones'] }}"
action:
- service: notify.mobile_app_pixel_3
data_template:
message: "A {{trigger.payload_json['after']['label']}} has entered the yard."
data:
image: "https://url.com/api/frigate/notifications/{{trigger.payload_json['after']['id']}}/thumbnail.jpg"
tag: "{{trigger.payload_json['after']['id']}}"
- alias: When a person leaves a zone named yard
trigger:
platform: mqtt
topic: frigate/events
conditions:
- "{{ trigger.payload_json['after']['label'] == 'person' }}"
- "{{ 'yard' in trigger.payload_json['before']['current_zones'] }}"
- "{{ not 'yard' in trigger.payload_json['after']['current_zones'] }}"
action:
- service: notify.mobile_app_pixel_3
data_template:
message: "A {{trigger.payload_json['after']['label']}} has left the yard."
data:
image: "https://url.com/api/frigate/notifications/{{trigger.payload_json['after']['id']}}/thumbnail.jpg"
tag: "{{trigger.payload_json['after']['id']}}"
- alias: Notify for dogs in the front with a high top score
trigger:
platform: mqtt
topic: frigate/events
conditions:
- "{{ trigger.payload_json['after']['label'] == 'dog' }}"
- "{{ trigger.payload_json['after']['camera'] == 'front' }}"
- "{{ trigger.payload_json['after']['top_score'] > 0.98 }}"
action:
- service: notify.mobile_app_pixel_3
data_template:
message: 'High confidence dog detection.'
data:
image: "https://url.com/api/frigate/notifications/{{trigger.payload_json['after']['id']}}/thumbnail.jpg"
tag: "{{trigger.payload_json['after']['id']}}"
```
If you are using telegram, you can fetch the image directly from Frigate:
```yaml
automation:
- alias: Notify of events
trigger:
platform: mqtt
topic: frigate/events
action:
- service: notify.telegram_full
data_template:
message: 'A {{trigger.payload_json["after"]["label"]}} was detected.'
data:
photo:
# this url should work for addon users
- url: 'http://ccab4aaf-frigate:5000/api/events/{{trigger.payload_json["after"]["id"]}}/thumbnail.jpg'
caption : 'A {{trigger.payload_json["after"]["label"]}} was detected on {{ trigger.payload_json["after"]["camera"] }} camera'
```

BIN
docs/notification.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.5 MiB

15
frigate/__main__.py Normal file
View File

@@ -0,0 +1,15 @@
import faulthandler; faulthandler.enable()
import sys
import threading
threading.current_thread().name = "frigate"
from frigate.app import FrigateApp
cli = sys.modules['flask.cli']
cli.show_server_banner = lambda *x: None
if __name__ == '__main__':
frigate_app = FrigateApp()
frigate_app.start()

258
frigate/app.py Normal file
View File

@@ -0,0 +1,258 @@
import json
import logging
import multiprocessing as mp
import os
from logging.handlers import QueueHandler
from typing import Dict, List
import sys
import signal
import yaml
from peewee_migrate import Router
from playhouse.sqlite_ext import SqliteExtDatabase
from frigate.config import FrigateConfig
from frigate.const import RECORD_DIR, CLIPS_DIR, CACHE_DIR
from frigate.edgetpu import EdgeTPUProcess
from frigate.events import EventProcessor, EventCleanup
from frigate.http import create_app
from frigate.log import log_process, root_configurer
from frigate.models import Event
from frigate.mqtt import create_mqtt_client
from frigate.object_processing import TrackedObjectProcessor
from frigate.record import RecordingMaintainer
from frigate.stats import StatsEmitter, stats_init
from frigate.video import capture_camera, track_camera
from frigate.watchdog import FrigateWatchdog
from frigate.zeroconf import broadcast_zeroconf
logger = logging.getLogger(__name__)
class FrigateApp():
def __init__(self):
self.stop_event = mp.Event()
self.config: FrigateConfig = None
self.detection_queue = mp.Queue()
self.detectors: Dict[str, EdgeTPUProcess] = {}
self.detection_out_events: Dict[str, mp.Event] = {}
self.detection_shms: List[mp.shared_memory.SharedMemory] = []
self.log_queue = mp.Queue()
self.camera_metrics = {}
def set_environment_vars(self):
for key, value in self.config.environment_vars.items():
os.environ[key] = value
def ensure_dirs(self):
for d in [RECORD_DIR, CLIPS_DIR, CACHE_DIR]:
if not os.path.exists(d) and not os.path.islink(d):
logger.info(f"Creating directory: {d}")
os.makedirs(d)
else:
logger.debug(f"Skipping directory: {d}")
tmpfs_size = self.config.clips.tmpfs_cache_size
if tmpfs_size:
logger.info(f"Creating tmpfs of size {tmpfs_size}")
rc = os.system(f"mount -t tmpfs -o size={tmpfs_size} tmpfs {CACHE_DIR}")
if rc != 0:
logger.error(f"Failed to create tmpfs, error code: {rc}")
def init_logger(self):
self.log_process = mp.Process(target=log_process, args=(self.log_queue,), name='log_process')
self.log_process.daemon = True
self.log_process.start()
root_configurer(self.log_queue)
def init_config(self):
config_file = os.environ.get('CONFIG_FILE', '/config/config.yml')
self.config = FrigateConfig(config_file=config_file)
for camera_name in self.config.cameras.keys():
# create camera_metrics
self.camera_metrics[camera_name] = {
'camera_fps': mp.Value('d', 0.0),
'skipped_fps': mp.Value('d', 0.0),
'process_fps': mp.Value('d', 0.0),
'detection_enabled': mp.Value('i', self.config.cameras[camera_name].detect.enabled),
'detection_fps': mp.Value('d', 0.0),
'detection_frame': mp.Value('d', 0.0),
'read_start': mp.Value('d', 0.0),
'ffmpeg_pid': mp.Value('i', 0),
'frame_queue': mp.Queue(maxsize=2),
}
def check_config(self):
for name, camera in self.config.cameras.items():
assigned_roles = list(set([r for i in camera.ffmpeg.inputs for r in i.roles]))
if not camera.clips.enabled and 'clips' in assigned_roles:
logger.warning(f"Camera {name} has clips assigned to an input, but clips is not enabled.")
elif camera.clips.enabled and not 'clips' in assigned_roles:
logger.warning(f"Camera {name} has clips enabled, but clips is not assigned to an input.")
if not camera.record.enabled and 'record' in assigned_roles:
logger.warning(f"Camera {name} has record assigned to an input, but record is not enabled.")
elif camera.record.enabled and not 'record' in assigned_roles:
logger.warning(f"Camera {name} has record enabled, but record is not assigned to an input.")
if not camera.rtmp.enabled and 'rtmp' in assigned_roles:
logger.warning(f"Camera {name} has rtmp assigned to an input, but rtmp is not enabled.")
elif camera.rtmp.enabled and not 'rtmp' in assigned_roles:
logger.warning(f"Camera {name} has rtmp enabled, but rtmp is not assigned to an input.")
def set_log_levels(self):
logging.getLogger().setLevel(self.config.logger.default)
for log, level in self.config.logger.logs.items():
logging.getLogger(log).setLevel(level)
if not 'werkzeug' in self.config.logger.logs:
logging.getLogger('werkzeug').setLevel('ERROR')
def init_queues(self):
# Queues for clip processing
self.event_queue = mp.Queue()
self.event_processed_queue = mp.Queue()
# Queue for cameras to push tracked objects to
self.detected_frames_queue = mp.Queue(maxsize=len(self.config.cameras.keys())*2)
def init_database(self):
self.db = SqliteExtDatabase(self.config.database.path)
# Run migrations
del(logging.getLogger('peewee_migrate').handlers[:])
router = Router(self.db)
router.run()
models = [Event]
self.db.bind(models)
def init_stats(self):
self.stats_tracking = stats_init(self.camera_metrics, self.detectors)
def init_web_server(self):
self.flask_app = create_app(self.config, self.db, self.stats_tracking, self.detected_frames_processor)
def init_mqtt(self):
self.mqtt_client = create_mqtt_client(self.config, self.camera_metrics)
def start_detectors(self):
model_shape = (self.config.model.height, self.config.model.width)
for name in self.config.cameras.keys():
self.detection_out_events[name] = mp.Event()
shm_in = mp.shared_memory.SharedMemory(name=name, create=True, size=self.config.model.height*self.config.model.width*3)
shm_out = mp.shared_memory.SharedMemory(name=f"out-{name}", create=True, size=20*6*4)
self.detection_shms.append(shm_in)
self.detection_shms.append(shm_out)
for name, detector in self.config.detectors.items():
if detector.type == 'cpu':
self.detectors[name] = EdgeTPUProcess(name, self.detection_queue, self.detection_out_events, model_shape, 'cpu', detector.num_threads)
if detector.type == 'edgetpu':
self.detectors[name] = EdgeTPUProcess(name, self.detection_queue, self.detection_out_events, model_shape, detector.device, detector.num_threads)
def start_detected_frames_processor(self):
self.detected_frames_processor = TrackedObjectProcessor(self.config, self.mqtt_client, self.config.mqtt.topic_prefix,
self.detected_frames_queue, self.event_queue, self.event_processed_queue, self.stop_event)
self.detected_frames_processor.start()
def start_camera_processors(self):
model_shape = (self.config.model.height, self.config.model.width)
for name, config in self.config.cameras.items():
camera_process = mp.Process(target=track_camera, name=f"camera_processor:{name}", args=(name, config, model_shape,
self.detection_queue, self.detection_out_events[name], self.detected_frames_queue,
self.camera_metrics[name]))
camera_process.daemon = True
self.camera_metrics[name]['process'] = camera_process
camera_process.start()
logger.info(f"Camera processor started for {name}: {camera_process.pid}")
def start_camera_capture_processes(self):
for name, config in self.config.cameras.items():
capture_process = mp.Process(target=capture_camera, name=f"camera_capture:{name}", args=(name, config,
self.camera_metrics[name]))
capture_process.daemon = True
self.camera_metrics[name]['capture_process'] = capture_process
capture_process.start()
logger.info(f"Capture process started for {name}: {capture_process.pid}")
def start_event_processor(self):
self.event_processor = EventProcessor(self.config, self.camera_metrics, self.event_queue, self.event_processed_queue, self.stop_event)
self.event_processor.start()
def start_event_cleanup(self):
self.event_cleanup = EventCleanup(self.config, self.stop_event)
self.event_cleanup.start()
def start_recording_maintainer(self):
self.recording_maintainer = RecordingMaintainer(self.config, self.stop_event)
self.recording_maintainer.start()
def start_stats_emitter(self):
self.stats_emitter = StatsEmitter(self.config, self.stats_tracking, self.mqtt_client, self.config.mqtt.topic_prefix, self.stop_event)
self.stats_emitter.start()
def start_watchdog(self):
self.frigate_watchdog = FrigateWatchdog(self.detectors, self.stop_event)
self.frigate_watchdog.start()
def start(self):
self.init_logger()
try:
try:
self.init_config()
except Exception as e:
print(f"Error parsing config: {e}")
self.log_process.terminate()
sys.exit(1)
self.set_environment_vars()
self.ensure_dirs()
self.check_config()
self.set_log_levels()
self.init_queues()
self.init_database()
self.init_mqtt()
except Exception as e:
print(e)
self.log_process.terminate()
sys.exit(1)
self.start_detectors()
self.start_detected_frames_processor()
self.start_camera_processors()
self.start_camera_capture_processes()
self.init_stats()
self.init_web_server()
self.start_event_processor()
self.start_event_cleanup()
self.start_recording_maintainer()
self.start_stats_emitter()
self.start_watchdog()
# self.zeroconf = broadcast_zeroconf(self.config.mqtt.client_id)
def receiveSignal(signalNumber, frame):
self.stop()
sys.exit()
signal.signal(signal.SIGTERM, receiveSignal)
self.flask_app.run(host='127.0.0.1', port=5001, debug=False)
self.stop()
def stop(self):
logger.info(f"Stopping...")
self.stop_event.set()
self.detected_frames_processor.join()
self.event_processor.join()
self.event_cleanup.join()
self.recording_maintainer.join()
self.stats_emitter.join()
self.frigate_watchdog.join()
for detector in self.detectors.values():
detector.stop()
while len(self.detection_shms) > 0:
shm = self.detection_shms.pop()
shm.close()
shm.unlink()

1072
frigate/config.py Normal file

File diff suppressed because it is too large Load Diff

3
frigate/const.py Normal file
View File

@@ -0,0 +1,3 @@
CLIPS_DIR = '/media/frigate/clips'
RECORD_DIR = '/media/frigate/recordings'
CACHE_DIR = '/tmp/cache'

View File

@@ -1,15 +1,23 @@
import os
import datetime
import hashlib
import logging
import multiprocessing as mp
import os
import queue
from multiprocessing.connection import Connection
import threading
import signal
from abc import ABC, abstractmethod
from multiprocessing.connection import Connection
from setproctitle import setproctitle
from typing import Dict
import numpy as np
import tflite_runtime.interpreter as tflite
from tflite_runtime.interpreter import load_delegate
from frigate.util import EventsPerSecond, listen, SharedMemoryFrameManager
from frigate.util import EventsPerSecond, SharedMemoryFrameManager, listen
logger = logging.getLogger(__name__)
def load_labels(path, encoding='utf-8'):
"""Loads labels from file (with or without index numbers).
@@ -36,7 +44,7 @@ class ObjectDetector(ABC):
pass
class LocalObjectDetector(ObjectDetector):
def __init__(self, tf_device=None, labels=None):
def __init__(self, tf_device=None, num_threads=3, labels=None):
self.fps = EventsPerSecond()
if labels is None:
self.labels = {}
@@ -51,19 +59,18 @@ class LocalObjectDetector(ObjectDetector):
if tf_device != 'cpu':
try:
print(f"Attempting to load TPU as {device_config['device']}")
logger.info(f"Attempting to load TPU as {device_config['device']}")
edge_tpu_delegate = load_delegate('libedgetpu.so.1.0', device_config)
print("TPU found")
logger.info("TPU found")
self.interpreter = tflite.Interpreter(
model_path='/edgetpu_model.tflite',
experimental_delegates=[edge_tpu_delegate])
except ValueError:
print("No EdgeTPU detected. Falling back to CPU.")
if edge_tpu_delegate is None:
self.interpreter = tflite.Interpreter(
model_path='/cpu_model.tflite')
logger.info("No EdgeTPU detected.")
raise
else:
self.interpreter = tflite.Interpreter(
model_path='/edgetpu_model.tflite',
experimental_delegates=[edge_tpu_delegate])
model_path='/cpu_model.tflite', num_threads=num_threads)
self.interpreter.allocate_tensors()
@@ -99,11 +106,22 @@ class LocalObjectDetector(ObjectDetector):
return detections
def run_detector(detection_queue, out_events: Dict[str, mp.Event], avg_speed, start, tf_device):
print(f"Starting detection process: {os.getpid()}")
def run_detector(name: str, detection_queue: mp.Queue, out_events: Dict[str, mp.Event], avg_speed, start, model_shape, tf_device, num_threads):
threading.current_thread().name = f"detector:{name}"
logger = logging.getLogger(f"detector.{name}")
logger.info(f"Starting detection process: {os.getpid()}")
setproctitle(f"frigate.detector.{name}")
listen()
stop_event = mp.Event()
def receiveSignal(signalNumber, frame):
stop_event.set()
signal.signal(signal.SIGTERM, receiveSignal)
signal.signal(signal.SIGINT, receiveSignal)
frame_manager = SharedMemoryFrameManager()
object_detector = LocalObjectDetector(tf_device=tf_device)
object_detector = LocalObjectDetector(tf_device=tf_device, num_threads=num_threads)
outputs = {}
for name in out_events.keys():
@@ -115,8 +133,14 @@ def run_detector(detection_queue, out_events: Dict[str, mp.Event], avg_speed, st
}
while True:
connection_id = detection_queue.get()
input_frame = frame_manager.get(connection_id, (1,300,300,3))
if stop_event.is_set():
break
try:
connection_id = detection_queue.get(timeout=5)
except queue.Empty:
continue
input_frame = frame_manager.get(connection_id, (1,model_shape[0],model_shape[1],3))
if input_frame is None:
continue
@@ -132,21 +156,24 @@ def run_detector(detection_queue, out_events: Dict[str, mp.Event], avg_speed, st
avg_speed.value = (avg_speed.value*9 + duration)/10
class EdgeTPUProcess():
def __init__(self, detection_queue, out_events, tf_device=None):
def __init__(self, name, detection_queue, out_events, model_shape, tf_device=None, num_threads=3):
self.name = name
self.out_events = out_events
self.detection_queue = detection_queue
self.avg_inference_speed = mp.Value('d', 0.01)
self.detection_start = mp.Value('d', 0.0)
self.detect_process = None
self.model_shape = model_shape
self.tf_device = tf_device
self.num_threads = num_threads
self.start_or_restart()
def stop(self):
self.detect_process.terminate()
print("Waiting for detection process to exit gracefully...")
logging.info("Waiting for detection process to exit gracefully...")
self.detect_process.join(timeout=30)
if self.detect_process.exitcode is None:
print("Detection process didnt exit. Force killing...")
logging.info("Detection process didnt exit. Force killing...")
self.detect_process.kill()
self.detect_process.join()
@@ -154,19 +181,19 @@ class EdgeTPUProcess():
self.detection_start.value = 0.0
if (not self.detect_process is None) and self.detect_process.is_alive():
self.stop()
self.detect_process = mp.Process(target=run_detector, args=(self.detection_queue, self.out_events, self.avg_inference_speed, self.detection_start, self.tf_device))
self.detect_process = mp.Process(target=run_detector, name=f"detector:{self.name}", args=(self.name, self.detection_queue, self.out_events, self.avg_inference_speed, self.detection_start, self.model_shape, self.tf_device, self.num_threads))
self.detect_process.daemon = True
self.detect_process.start()
class RemoteObjectDetector():
def __init__(self, name, labels, detection_queue, event):
def __init__(self, name, labels, detection_queue, event, model_shape):
self.labels = load_labels(labels)
self.name = name
self.fps = EventsPerSecond()
self.detection_queue = detection_queue
self.event = event
self.shm = mp.shared_memory.SharedMemory(name=self.name, create=False)
self.np_shm = np.ndarray((1,300,300,3), dtype=np.uint8, buffer=self.shm.buf)
self.np_shm = np.ndarray((1,model_shape[0],model_shape[1],3), dtype=np.uint8, buffer=self.shm.buf)
self.out_shm = mp.shared_memory.SharedMemory(name=f"out-{self.name}", create=False)
self.out_np_shm = np.ndarray((20,6), dtype=np.float32, buffer=self.out_shm.buf)
@@ -196,4 +223,4 @@ class RemoteObjectDetector():
def cleanup(self):
self.shm.unlink()
self.out_shm.unlink()
self.out_shm.unlink()

View File

@@ -1,36 +1,49 @@
import os
import time
import psutil
import threading
from collections import defaultdict
import json
import datetime
import subprocess as sp
import json
import logging
import os
import queue
import subprocess as sp
import threading
import time
from collections import defaultdict
from pathlib import Path
import psutil
from frigate.config import FrigateConfig
from frigate.const import RECORD_DIR, CLIPS_DIR, CACHE_DIR
from frigate.models import Event
from peewee import fn
logger = logging.getLogger(__name__)
class EventProcessor(threading.Thread):
def __init__(self, config, camera_processes, cache_dir, clip_dir, event_queue, stop_event):
def __init__(self, config, camera_processes, event_queue, event_processed_queue, stop_event):
threading.Thread.__init__(self)
self.name = 'event_processor'
self.config = config
self.camera_processes = camera_processes
self.cache_dir = cache_dir
self.clip_dir = clip_dir
self.cached_clips = {}
self.event_queue = event_queue
self.event_processed_queue = event_processed_queue
self.events_in_process = {}
self.stop_event = stop_event
def refresh_cache(self):
cached_files = os.listdir(self.cache_dir)
cached_files = os.listdir(CACHE_DIR)
files_in_use = []
for process_data in self.camera_processes.values():
for process in psutil.process_iter():
try:
ffmpeg_process = psutil.Process(pid=process_data['ffmpeg_pid'].value)
flist = ffmpeg_process.open_files()
if process.name() != 'ffmpeg':
continue
flist = process.open_files()
if flist:
for nt in flist:
if nt.path.startswith(self.cache_dir):
if nt.path.startswith(CACHE_DIR):
files_in_use.append(nt.path.split('/')[-1])
except:
continue
@@ -50,7 +63,7 @@ class EventProcessor(threading.Thread):
'format=duration',
'-of',
'default=noprint_wrappers=1:nokey=1',
f"{os.path.join(self.cache_dir,f)}"
f"{os.path.join(CACHE_DIR,f)}"
])
p = sp.Popen(ffprobe_cmd, stdout=sp.PIPE, shell=True)
(output, err) = p.communicate()
@@ -58,8 +71,8 @@ class EventProcessor(threading.Thread):
if p_status == 0:
duration = float(output.decode('utf-8').strip())
else:
print(f"bad file: {f}")
os.remove(os.path.join(self.cache_dir,f))
logger.info(f"bad file: {f}")
os.remove(os.path.join(CACHE_DIR,f))
continue
self.cached_clips[f] = {
@@ -75,27 +88,28 @@ class EventProcessor(threading.Thread):
earliest_event = datetime.datetime.now().timestamp()
# if the earliest event exceeds the max seconds, cap it
max_seconds = self.config.get('save_clips', {}).get('max_seconds', 300)
max_seconds = self.config.clips.max_seconds
if datetime.datetime.now().timestamp()-earliest_event > max_seconds:
earliest_event = datetime.datetime.now().timestamp()-max_seconds
for f, data in list(self.cached_clips.items()):
if earliest_event-90 > data['start_time']+data['duration']:
del self.cached_clips[f]
os.remove(os.path.join(self.cache_dir,f))
os.remove(os.path.join(CACHE_DIR,f))
def create_clip(self, camera, event_data, pre_capture):
def create_clip(self, camera, event_data, pre_capture, post_capture):
# get all clips from the camera with the event sorted
sorted_clips = sorted([c for c in self.cached_clips.values() if c['camera'] == camera], key = lambda i: i['start_time'])
while sorted_clips[-1]['start_time'] + sorted_clips[-1]['duration'] < event_data['end_time']:
while len(sorted_clips) == 0 or sorted_clips[-1]['start_time'] + sorted_clips[-1]['duration'] < event_data['end_time']+post_capture:
logger.debug(f"No cache clips for {camera}. Waiting...")
time.sleep(5)
self.refresh_cache()
# get all clips from the camera with the event sorted
sorted_clips = sorted([c for c in self.cached_clips.values() if c['camera'] == camera], key = lambda i: i['start_time'])
playlist_start = event_data['start_time']-pre_capture
playlist_end = event_data['end_time']+5
playlist_end = event_data['end_time']+post_capture
playlist_lines = []
for clip in sorted_clips:
# clip ends before playlist start time, skip
@@ -104,7 +118,7 @@ class EventProcessor(threading.Thread):
# clip starts after playlist ends, finish
if clip['start_time'] > playlist_end:
break
playlist_lines.append(f"file '{os.path.join(self.cache_dir,clip['path'])}'")
playlist_lines.append(f"file '{os.path.join(CACHE_DIR,clip['path'])}'")
# if this is the starting clip, add an inpoint
if clip['start_time'] < playlist_start:
playlist_lines.append(f"inpoint {int(playlist_start-clip['start_time'])}")
@@ -126,21 +140,21 @@ class EventProcessor(threading.Thread):
'-',
'-c',
'copy',
f"{os.path.join(self.clip_dir, clip_name)}.mp4"
'-movflags',
'+faststart',
f"{os.path.join(CLIPS_DIR, clip_name)}.mp4"
]
p = sp.run(ffmpeg_cmd, input="\n".join(playlist_lines), encoding='ascii', capture_output=True)
if p.returncode != 0:
print(p.stderr)
return
with open(f"{os.path.join(self.clip_dir, clip_name)}.json", 'w') as outfile:
json.dump(event_data, outfile)
logger.error(p.stderr)
return False
return True
def run(self):
while True:
if self.stop_event.is_set():
print(f"Exiting event processor...")
logger.info(f"Exiting event processor...")
break
try:
@@ -150,25 +164,143 @@ class EventProcessor(threading.Thread):
self.refresh_cache()
continue
logger.debug(f"Event received: {event_type} {camera} {event_data['id']}")
self.refresh_cache()
save_clips_config = self.config['cameras'][camera].get('save_clips', {})
# if save clips is not enabled for this camera, just continue
if not save_clips_config.get('enabled', False):
continue
# if specific objects are listed for this camera, only save clips for them
if 'objects' in save_clips_config:
if not event_data['label'] in save_clips_config['objects']:
continue
if event_type == 'start':
self.events_in_process[event_data['id']] = event_data
if event_type == 'end':
if len(self.cached_clips) > 0 and not event_data['false_positive']:
self.create_clip(camera, event_data, save_clips_config.get('pre_capture', 30))
del self.events_in_process[event_data['id']]
clips_config = self.config.cameras[camera].clips
if not event_data['false_positive']:
clip_created = False
if clips_config.enabled and (clips_config.objects is None or event_data['label'] in clips_config.objects):
clip_created = self.create_clip(camera, event_data, clips_config.pre_capture, clips_config.post_capture)
Event.create(
id=event_data['id'],
label=event_data['label'],
camera=camera,
start_time=event_data['start_time'],
end_time=event_data['end_time'],
top_score=event_data['top_score'],
false_positive=event_data['false_positive'],
zones=list(event_data['entered_zones']),
thumbnail=event_data['thumbnail'],
has_clip=clip_created,
has_snapshot=event_data['has_snapshot'],
)
del self.events_in_process[event_data['id']]
self.event_processed_queue.put((event_data['id'], camera))
class EventCleanup(threading.Thread):
def __init__(self, config: FrigateConfig, stop_event):
threading.Thread.__init__(self)
self.name = 'event_cleanup'
self.config = config
self.stop_event = stop_event
self.camera_keys = list(self.config.cameras.keys())
def expire(self, media):
## Expire events from unlisted cameras based on the global config
if media == 'clips':
retain_config = self.config.clips.retain
file_extension = 'mp4'
update_params = {'has_clip': False}
else:
retain_config = self.config.snapshots.retain
file_extension = 'jpg'
update_params = {'has_snapshot': False}
distinct_labels = (Event.select(Event.label)
.where(Event.camera.not_in(self.camera_keys))
.distinct())
# loop over object types in db
for l in distinct_labels:
# get expiration time for this label
expire_days = retain_config.objects.get(l.label, retain_config.default)
expire_after = (datetime.datetime.now() - datetime.timedelta(days=expire_days)).timestamp()
# grab all events after specific time
expired_events = (
Event.select()
.where(Event.camera.not_in(self.camera_keys),
Event.start_time < expire_after,
Event.label == l.label)
)
# delete the media from disk
for event in expired_events:
media_name = f"{event.camera}-{event.id}"
media = Path(f"{os.path.join(CLIPS_DIR, media_name)}.{file_extension}")
media.unlink(missing_ok=True)
# update the clips attribute for the db entry
update_query = (
Event.update(update_params)
.where(Event.camera.not_in(self.camera_keys),
Event.start_time < expire_after,
Event.label == l.label)
)
update_query.execute()
## Expire events from cameras based on the camera config
for name, camera in self.config.cameras.items():
if media == 'clips':
retain_config = camera.clips.retain
else:
retain_config = camera.snapshots.retain
# get distinct objects in database for this camera
distinct_labels = (Event.select(Event.label)
.where(Event.camera == name)
.distinct())
# loop over object types in db
for l in distinct_labels:
# get expiration time for this label
expire_days = retain_config.objects.get(l.label, retain_config.default)
expire_after = (datetime.datetime.now() - datetime.timedelta(days=expire_days)).timestamp()
# grab all events after specific time
expired_events = (
Event.select()
.where(Event.camera == name,
Event.start_time < expire_after,
Event.label == l.label)
)
# delete the grabbed clips from disk
for event in expired_events:
media_name = f"{event.camera}-{event.id}"
media = Path(f"{os.path.join(CLIPS_DIR, media_name)}.{file_extension}")
media.unlink(missing_ok=True)
# update the clips attribute for the db entry
update_query = (
Event.update(update_params)
.where( Event.camera == name,
Event.start_time < expire_after,
Event.label == l.label)
)
update_query.execute()
def run(self):
counter = 0
while(True):
if self.stop_event.is_set():
logger.info(f"Exiting event cleanup...")
break
# only expire events every 10 minutes, but check for stop events every 10 seconds
time.sleep(10)
counter = counter + 1
if counter < 60:
continue
counter = 0
self.expire('clips')
self.expire('snapshots')
# drop events from db where has_clip and has_snapshot are false
delete_query = (
Event.delete()
.where( Event.has_clip == False,
Event.has_snapshot == False)
)
delete_query.execute()

268
frigate/http.py Normal file
View File

@@ -0,0 +1,268 @@
import base64
import datetime
import logging
import os
import time
from functools import reduce
import cv2
import numpy as np
from flask import (Blueprint, Flask, Response, current_app, jsonify,
make_response, request)
from peewee import SqliteDatabase, operator, fn, DoesNotExist
from playhouse.shortcuts import model_to_dict
from frigate.models import Event
from frigate.stats import stats_snapshot
from frigate.util import calculate_region
from frigate.version import VERSION
logger = logging.getLogger(__name__)
bp = Blueprint('frigate', __name__)
def create_app(frigate_config, database: SqliteDatabase, stats_tracking, detected_frames_processor):
app = Flask(__name__)
@app.before_request
def _db_connect():
database.connect()
@app.teardown_request
def _db_close(exc):
if not database.is_closed():
database.close()
app.frigate_config = frigate_config
app.stats_tracking = stats_tracking
app.detected_frames_processor = detected_frames_processor
app.register_blueprint(bp)
return app
@bp.route('/')
def is_healthy():
return "Frigate is running. Alive and healthy!"
@bp.route('/events/summary')
def events_summary():
has_clip = request.args.get('has_clip', type=int)
has_snapshot = request.args.get('has_snapshot', type=int)
clauses = []
if not has_clip is None:
clauses.append((Event.has_clip == has_clip))
if not has_snapshot is None:
clauses.append((Event.has_snapshot == has_snapshot))
if len(clauses) == 0:
clauses.append((1 == 1))
groups = (
Event
.select(
Event.camera,
Event.label,
fn.strftime('%Y-%m-%d', fn.datetime(Event.start_time, 'unixepoch', 'localtime')).alias('day'),
Event.zones,
fn.COUNT(Event.id).alias('count')
)
.where(reduce(operator.and_, clauses))
.group_by(
Event.camera,
Event.label,
fn.strftime('%Y-%m-%d', fn.datetime(Event.start_time, 'unixepoch', 'localtime')),
Event.zones
)
)
return jsonify([e for e in groups.dicts()])
@bp.route('/events/<id>')
def event(id):
try:
return model_to_dict(Event.get(Event.id == id))
except DoesNotExist:
return "Event not found", 404
@bp.route('/events/<id>/thumbnail.jpg')
def event_snapshot(id):
format = request.args.get('format', 'ios')
thumbnail_bytes = None
try:
event = Event.get(Event.id == id)
thumbnail_bytes = base64.b64decode(event.thumbnail)
except DoesNotExist:
# see if the object is currently being tracked
try:
for camera_state in current_app.detected_frames_processor.camera_states.values():
if id in camera_state.tracked_objects:
tracked_obj = camera_state.tracked_objects.get(id)
if not tracked_obj is None:
thumbnail_bytes = tracked_obj.get_jpg_bytes()
except:
return "Event not found", 404
if thumbnail_bytes is None:
return "Event not found", 404
# android notifications prefer a 2:1 ratio
if format == 'android':
jpg_as_np = np.frombuffer(thumbnail_bytes, dtype=np.uint8)
img = cv2.imdecode(jpg_as_np, flags=1)
thumbnail = cv2.copyMakeBorder(img, 0, 0, int(img.shape[1]*0.5), int(img.shape[1]*0.5), cv2.BORDER_CONSTANT, (0,0,0))
ret, jpg = cv2.imencode('.jpg', thumbnail)
thumbnail_bytes = jpg.tobytes()
response = make_response(thumbnail_bytes)
response.headers['Content-Type'] = 'image/jpg'
return response
@bp.route('/events')
def events():
limit = request.args.get('limit', 100)
camera = request.args.get('camera')
label = request.args.get('label')
zone = request.args.get('zone')
after = request.args.get('after', type=int)
before = request.args.get('before', type=int)
has_clip = request.args.get('has_clip', type=int)
has_snapshot = request.args.get('has_snapshot', type=int)
clauses = []
if camera:
clauses.append((Event.camera == camera))
if label:
clauses.append((Event.label == label))
if zone:
clauses.append((Event.zones.cast('text') % f"*\"{zone}\"*"))
if after:
clauses.append((Event.start_time >= after))
if before:
clauses.append((Event.start_time <= before))
if not has_clip is None:
clauses.append((Event.has_clip == has_clip))
if not has_snapshot is None:
clauses.append((Event.has_snapshot == has_snapshot))
if len(clauses) == 0:
clauses.append((1 == 1))
events = (Event.select()
.where(reduce(operator.and_, clauses))
.order_by(Event.start_time.desc())
.limit(limit))
return jsonify([model_to_dict(e) for e in events])
@bp.route('/config')
def config():
return jsonify(current_app.frigate_config.to_dict())
@bp.route('/version')
def version():
return VERSION
@bp.route('/stats')
def stats():
stats = stats_snapshot(current_app.stats_tracking)
return jsonify(stats)
@bp.route('/<camera_name>/<label>/best.jpg')
def best(camera_name, label):
if camera_name in current_app.frigate_config.cameras:
best_object = current_app.detected_frames_processor.get_best(camera_name, label)
best_frame = best_object.get('frame')
if best_frame is None:
best_frame = np.zeros((720,1280,3), np.uint8)
else:
best_frame = cv2.cvtColor(best_frame, cv2.COLOR_YUV2BGR_I420)
crop = bool(request.args.get('crop', 0, type=int))
if crop:
box = best_object.get('box', (0,0,300,300))
region = calculate_region(best_frame.shape, box[0], box[1], box[2], box[3], 1.1)
best_frame = best_frame[region[1]:region[3], region[0]:region[2]]
height = int(request.args.get('h', str(best_frame.shape[0])))
width = int(height*best_frame.shape[1]/best_frame.shape[0])
best_frame = cv2.resize(best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
ret, jpg = cv2.imencode('.jpg', best_frame)
response = make_response(jpg.tobytes())
response.headers['Content-Type'] = 'image/jpg'
return response
else:
return "Camera named {} not found".format(camera_name), 404
@bp.route('/<camera_name>')
def mjpeg_feed(camera_name):
fps = int(request.args.get('fps', '3'))
height = int(request.args.get('h', '360'))
draw_options = {
'bounding_boxes': request.args.get('bbox', type=int),
'timestamp': request.args.get('timestamp', type=int),
'zones': request.args.get('zones', type=int),
'mask': request.args.get('mask', type=int),
'motion_boxes': request.args.get('motion', type=int),
'regions': request.args.get('regions', type=int),
}
if camera_name in current_app.frigate_config.cameras:
# return a multipart response
return Response(imagestream(current_app.detected_frames_processor, camera_name, fps, height, draw_options),
mimetype='multipart/x-mixed-replace; boundary=frame')
else:
return "Camera named {} not found".format(camera_name), 404
@bp.route('/<camera_name>/latest.jpg')
def latest_frame(camera_name):
draw_options = {
'bounding_boxes': request.args.get('bbox', type=int),
'timestamp': request.args.get('timestamp', type=int),
'zones': request.args.get('zones', type=int),
'mask': request.args.get('mask', type=int),
'motion_boxes': request.args.get('motion', type=int),
'regions': request.args.get('regions', type=int),
}
if camera_name in current_app.frigate_config.cameras:
# max out at specified FPS
frame = current_app.detected_frames_processor.get_current_frame(camera_name, draw_options)
if frame is None:
frame = np.zeros((720,1280,3), np.uint8)
height = int(request.args.get('h', str(frame.shape[0])))
width = int(height*frame.shape[1]/frame.shape[0])
frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
ret, jpg = cv2.imencode('.jpg', frame)
response = make_response(jpg.tobytes())
response.headers['Content-Type'] = 'image/jpg'
return response
else:
return "Camera named {} not found".format(camera_name), 404
def imagestream(detected_frames_processor, camera_name, fps, height, draw_options):
while True:
# max out at specified FPS
time.sleep(1/fps)
frame = detected_frames_processor.get_current_frame(camera_name, draw_options)
if frame is None:
frame = np.zeros((height,int(height*16/9),3), np.uint8)
width = int(height*frame.shape[1]/frame.shape[0])
frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_LINEAR)
ret, jpg = cv2.imencode('.jpg', frame)
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')

77
frigate/log.py Normal file
View File

@@ -0,0 +1,77 @@
# adapted from https://medium.com/@jonathonbao/python3-logging-with-multiprocessing-f51f460b8778
import logging
import threading
import os
import signal
import queue
import multiprocessing as mp
from logging import handlers
from setproctitle import setproctitle
def listener_configurer():
root = logging.getLogger()
console_handler = logging.StreamHandler()
formatter = logging.Formatter('%(name)-30s %(levelname)-8s: %(message)s')
console_handler.setFormatter(formatter)
root.addHandler(console_handler)
root.setLevel(logging.INFO)
def root_configurer(queue):
h = handlers.QueueHandler(queue)
root = logging.getLogger()
root.addHandler(h)
root.setLevel(logging.INFO)
def log_process(log_queue):
stop_event = mp.Event()
def receiveSignal(signalNumber, frame):
stop_event.set()
signal.signal(signal.SIGTERM, receiveSignal)
signal.signal(signal.SIGINT, receiveSignal)
threading.current_thread().name = f"logger"
setproctitle("frigate.logger")
listener_configurer()
while True:
if stop_event.is_set() and log_queue.empty():
break
try:
record = log_queue.get(timeout=5)
except queue.Empty:
continue
logger = logging.getLogger(record.name)
logger.handle(record)
# based on https://codereview.stackexchange.com/a/17959
class LogPipe(threading.Thread):
def __init__(self, log_name, level):
"""Setup the object with a logger and a loglevel
and start the thread
"""
threading.Thread.__init__(self)
self.daemon = False
self.logger = logging.getLogger(log_name)
self.level = level
self.fdRead, self.fdWrite = os.pipe()
self.pipeReader = os.fdopen(self.fdRead)
self.start()
def fileno(self):
"""Return the write file descriptor of the pipe
"""
return self.fdWrite
def run(self):
"""Run the thread, logging everything.
"""
for line in iter(self.pipeReader.readline, ''):
self.logger.log(self.level, line.strip('\n'))
self.pipeReader.close()
def close(self):
"""Close the write end of the pipe.
"""
os.close(self.fdWrite)

16
frigate/models.py Normal file
View File

@@ -0,0 +1,16 @@
from peewee import *
from playhouse.sqlite_ext import *
class Event(Model):
id = CharField(null=False, primary_key=True, max_length=30)
label = CharField(index=True, max_length=20)
camera = CharField(index=True, max_length=20)
start_time = DateTimeField()
end_time = DateTimeField()
top_score = FloatField()
false_positive = BooleanField()
zones = JSONField()
thumbnail = TextField()
has_clip = BooleanField(default=True)
has_snapshot = BooleanField(default=True)

View File

@@ -1,17 +1,20 @@
import cv2
import imutils
import numpy as np
from frigate.config import MotionConfig
class MotionDetector():
def __init__(self, frame_shape, mask, resize_factor=4):
def __init__(self, frame_shape, config: MotionConfig):
self.config = config
self.frame_shape = frame_shape
self.resize_factor = resize_factor
self.motion_frame_size = (int(frame_shape[0]/resize_factor), int(frame_shape[1]/resize_factor))
self.resize_factor = frame_shape[0]/config.frame_height
self.motion_frame_size = (config.frame_height, config.frame_height*frame_shape[1]//frame_shape[0])
self.avg_frame = np.zeros(self.motion_frame_size, np.float)
self.avg_delta = np.zeros(self.motion_frame_size, np.float)
self.motion_frame_count = 0
self.frame_counter = 0
resized_mask = cv2.resize(mask, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR)
resized_mask = cv2.resize(config.mask, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR)
self.mask = np.where(resized_mask==[0])
def detect(self, frame):
@@ -22,6 +25,8 @@ class MotionDetector():
# resize frame
resized_frame = cv2.resize(gray, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR)
# TODO: can I improve the contrast of the grayscale image here?
# convert to grayscale
# resized_frame = cv2.cvtColor(resized_frame, cv2.COLOR_BGR2GRAY)
@@ -37,22 +42,21 @@ class MotionDetector():
frameDelta = cv2.absdiff(resized_frame, cv2.convertScaleAbs(self.avg_frame))
# compute the average delta over the past few frames
# the alpha value can be modified to configure how sensitive the motion detection is.
# higher values mean the current frame impacts the delta a lot, and a single raindrop may
# register as motion, too low and a fast moving person wont be detected as motion
# this also assumes that a person is in the same location across more than a single frame
cv2.accumulateWeighted(frameDelta, self.avg_delta, 0.2)
cv2.accumulateWeighted(frameDelta, self.avg_delta, self.config.delta_alpha)
# compute the threshold image for the current frame
current_thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
# TODO: threshold
current_thresh = cv2.threshold(frameDelta, self.config.threshold, 255, cv2.THRESH_BINARY)[1]
# black out everything in the avg_delta where there isnt motion in the current frame
avg_delta_image = cv2.convertScaleAbs(self.avg_delta)
avg_delta_image[np.where(current_thresh==[0])] = [0]
avg_delta_image = cv2.bitwise_and(avg_delta_image, current_thresh)
# then look for deltas above the threshold, but only in areas where there is a delta
# in the current frame. this prevents deltas from previous frames from being included
thresh = cv2.threshold(avg_delta_image, 25, 255, cv2.THRESH_BINARY)[1]
thresh = cv2.threshold(avg_delta_image, self.config.threshold, 255, cv2.THRESH_BINARY)[1]
# dilate the thresholded image to fill in holes, then find contours
# on thresholded image
@@ -64,19 +68,18 @@ class MotionDetector():
for c in cnts:
# if the contour is big enough, count it as motion
contour_area = cv2.contourArea(c)
if contour_area > 100:
if contour_area > self.config.contour_area:
x, y, w, h = cv2.boundingRect(c)
motion_boxes.append((x*self.resize_factor, y*self.resize_factor, (x+w)*self.resize_factor, (y+h)*self.resize_factor))
motion_boxes.append((int(x*self.resize_factor), int(y*self.resize_factor), int((x+w)*self.resize_factor), int((y+h)*self.resize_factor)))
if len(motion_boxes) > 0:
self.motion_frame_count += 1
# TODO: this really depends on FPS
if self.motion_frame_count >= 10:
# only average in the current frame if the difference persists for at least 3 frames
cv2.accumulateWeighted(resized_frame, self.avg_frame, 0.2)
# only average in the current frame if the difference persists for a bit
cv2.accumulateWeighted(resized_frame, self.avg_frame, self.config.frame_alpha)
else:
# when no motion, just keep averaging the frames together
cv2.accumulateWeighted(resized_frame, self.avg_frame, 0.2)
cv2.accumulateWeighted(resized_frame, self.avg_frame, self.config.frame_alpha)
self.motion_frame_count = 0
return motion_boxes
return motion_boxes

125
frigate/mqtt.py Normal file
View File

@@ -0,0 +1,125 @@
import logging
import threading
import paho.mqtt.client as mqtt
from frigate.config import FrigateConfig
logger = logging.getLogger(__name__)
def create_mqtt_client(config: FrigateConfig, camera_metrics):
mqtt_config = config.mqtt
def on_clips_command(client, userdata, message):
payload = message.payload.decode()
logger.debug(f"on_clips_toggle: {message.topic} {payload}")
camera_name = message.topic.split('/')[-3]
clips_settings = config.cameras[camera_name].clips
if payload == 'ON':
if not clips_settings.enabled:
logger.info(f"Turning on clips for {camera_name} via mqtt")
clips_settings._enabled = True
elif payload == 'OFF':
if clips_settings.enabled:
logger.info(f"Turning off clips for {camera_name} via mqtt")
clips_settings._enabled = False
else:
logger.warning(f"Received unsupported value at {message.topic}: {payload}")
state_topic = f"{message.topic[:-4]}/state"
client.publish(state_topic, payload, retain=True)
def on_snapshots_command(client, userdata, message):
payload = message.payload.decode()
logger.debug(f"on_snapshots_toggle: {message.topic} {payload}")
camera_name = message.topic.split('/')[-3]
snapshots_settings = config.cameras[camera_name].snapshots
if payload == 'ON':
if not snapshots_settings.enabled:
logger.info(f"Turning on snapshots for {camera_name} via mqtt")
snapshots_settings._enabled = True
elif payload == 'OFF':
if snapshots_settings.enabled:
logger.info(f"Turning off snapshots for {camera_name} via mqtt")
snapshots_settings._enabled = False
else:
logger.warning(f"Received unsupported value at {message.topic}: {payload}")
state_topic = f"{message.topic[:-4]}/state"
client.publish(state_topic, payload, retain=True)
def on_detect_command(client, userdata, message):
payload = message.payload.decode()
logger.debug(f"on_detect_toggle: {message.topic} {payload}")
camera_name = message.topic.split('/')[-3]
detect_settings = config.cameras[camera_name].detect
if payload == 'ON':
if not camera_metrics[camera_name]["detection_enabled"].value:
logger.info(f"Turning on detection for {camera_name} via mqtt")
camera_metrics[camera_name]["detection_enabled"].value = True
detect_settings._enabled = True
elif payload == 'OFF':
if camera_metrics[camera_name]["detection_enabled"].value:
logger.info(f"Turning off detection for {camera_name} via mqtt")
camera_metrics[camera_name]["detection_enabled"].value = False
detect_settings._enabled = False
else:
logger.warning(f"Received unsupported value at {message.topic}: {payload}")
state_topic = f"{message.topic[:-4]}/state"
client.publish(state_topic, payload, retain=True)
def on_connect(client, userdata, flags, rc):
threading.current_thread().name = "mqtt"
if rc != 0:
if rc == 3:
logger.error("MQTT Server unavailable")
elif rc == 4:
logger.error("MQTT Bad username or password")
elif rc == 5:
logger.error("MQTT Not authorized")
else:
logger.error("Unable to connect to MQTT: Connection refused. Error code: " + str(rc))
logger.info("MQTT connected")
client.publish(mqtt_config.topic_prefix+'/available', 'online', retain=True)
client = mqtt.Client(client_id=mqtt_config.client_id)
client.on_connect = on_connect
client.will_set(mqtt_config.topic_prefix+'/available', payload='offline', qos=1, retain=True)
# register callbacks
for name in config.cameras.keys():
client.message_callback_add(f"{mqtt_config.topic_prefix}/{name}/clips/set", on_clips_command)
client.message_callback_add(f"{mqtt_config.topic_prefix}/{name}/snapshots/set", on_snapshots_command)
client.message_callback_add(f"{mqtt_config.topic_prefix}/{name}/detect/set", on_detect_command)
if not mqtt_config.user is None:
client.username_pw_set(mqtt_config.user, password=mqtt_config.password)
try:
client.connect(mqtt_config.host, mqtt_config.port, 60)
except Exception as e:
logger.error(f"Unable to connect to MQTT server: {e}")
raise
client.loop_start()
for name in config.cameras.keys():
client.publish(f"{mqtt_config.topic_prefix}/{name}/clips/state", 'ON' if config.cameras[name].clips.enabled else 'OFF', retain=True)
client.publish(f"{mqtt_config.topic_prefix}/{name}/snapshots/state", 'ON' if config.cameras[name].snapshots.enabled else 'OFF', retain=True)
client.publish(f"{mqtt_config.topic_prefix}/{name}/detect/state", 'ON' if config.cameras[name].detect.enabled else 'OFF', retain=True)
client.subscribe(f"{mqtt_config.topic_prefix}/+/clips/set")
client.subscribe(f"{mqtt_config.topic_prefix}/+/snapshots/set")
client.subscribe(f"{mqtt_config.topic_prefix}/+/detect/set")
return client

View File

@@ -1,20 +1,28 @@
import json
import hashlib
import copy
import base64
import datetime
import time
import copy
import cv2
import threading
import queue
import copy
import numpy as np
from collections import Counter, defaultdict
import hashlib
import itertools
import matplotlib.pyplot as plt
from frigate.util import draw_box_with_label, SharedMemoryFrameManager
from frigate.edgetpu import load_labels
from typing import Callable, Dict
import json
import logging
import os
import queue
import threading
import time
from collections import Counter, defaultdict
from statistics import mean, median
from typing import Callable, Dict
import cv2
import matplotlib.pyplot as plt
import numpy as np
from frigate.config import FrigateConfig, CameraConfig
from frigate.const import RECORD_DIR, CLIPS_DIR, CACHE_DIR
from frigate.edgetpu import load_labels
from frigate.util import SharedMemoryFrameManager, draw_box_with_label, calculate_region
logger = logging.getLogger(__name__)
PATH_TO_LABELS = '/labelmap.txt'
@@ -25,26 +33,214 @@ COLOR_MAP = {}
for key, val in LABELS.items():
COLOR_MAP[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3])
def zone_filtered(obj, object_config):
object_name = obj['label']
def on_edge(box, frame_shape):
if (
box[0] == 0 or
box[1] == 0 or
box[2] == frame_shape[1]-1 or
box[3] == frame_shape[0]-1
):
return True
def is_better_thumbnail(current_thumb, new_obj, frame_shape) -> bool:
# larger is better
# cutoff images are less ideal, but they should also be smaller?
# better scores are obviously better too
# if the new_thumb is on an edge, and the current thumb is not
if on_edge(new_obj['box'], frame_shape) and not on_edge(current_thumb['box'], frame_shape):
return False
# if the score is better by more than 5%
if new_obj['score'] > current_thumb['score']+.05:
return True
# if the area is 10% larger
if new_obj['area'] > current_thumb['area']*1.1:
return True
return False
class TrackedObject():
def __init__(self, camera, camera_config: CameraConfig, frame_cache, obj_data):
self.obj_data = obj_data
self.camera = camera
self.camera_config = camera_config
self.frame_cache = frame_cache
self.current_zones = []
self.entered_zones = set()
self.false_positive = True
self.top_score = self.computed_score = 0.0
self.thumbnail_data = None
self.frame = None
self.previous = self.to_dict()
# start the score history
self.score_history = [self.obj_data['score']]
def _is_false_positive(self):
# once a true positive, always a true positive
if not self.false_positive:
return False
threshold = self.camera_config.objects.filters[self.obj_data['label']].threshold
if self.computed_score < threshold:
return True
return False
def compute_score(self):
scores = self.score_history[:]
# pad with zeros if you dont have at least 3 scores
if len(scores) < 3:
scores += [0.0]*(3 - len(scores))
return median(scores)
def update(self, current_frame_time, obj_data):
significant_update = False
self.obj_data.update(obj_data)
# if the object is not in the current frame, add a 0.0 to the score history
if self.obj_data['frame_time'] != current_frame_time:
self.score_history.append(0.0)
else:
self.score_history.append(self.obj_data['score'])
# only keep the last 10 scores
if len(self.score_history) > 10:
self.score_history = self.score_history[-10:]
# calculate if this is a false positive
self.computed_score = self.compute_score()
if self.computed_score > self.top_score:
self.top_score = self.computed_score
self.false_positive = self._is_false_positive()
if not self.false_positive:
# determine if this frame is a better thumbnail
if (
self.thumbnail_data is None
or is_better_thumbnail(self.thumbnail_data, self.obj_data, self.camera_config.frame_shape)
):
self.thumbnail_data = {
'frame_time': self.obj_data['frame_time'],
'box': self.obj_data['box'],
'area': self.obj_data['area'],
'region': self.obj_data['region'],
'score': self.obj_data['score']
}
significant_update = True
# check zones
current_zones = []
bottom_center = (self.obj_data['centroid'][0], self.obj_data['box'][3])
# check each zone
for name, zone in self.camera_config.zones.items():
contour = zone.contour
# check if the object is in the zone
if (cv2.pointPolygonTest(contour, bottom_center, False) >= 0):
# if the object passed the filters once, dont apply again
if name in self.current_zones or not zone_filtered(self, zone.filters):
current_zones.append(name)
self.entered_zones.add(name)
# if the zones changed, signal an update
if not self.false_positive and set(self.current_zones) != set(current_zones):
significant_update = True
self.current_zones = current_zones
return significant_update
def to_dict(self, include_thumbnail: bool = False):
return {
'id': self.obj_data['id'],
'camera': self.camera,
'frame_time': self.obj_data['frame_time'],
'label': self.obj_data['label'],
'top_score': self.top_score,
'false_positive': self.false_positive,
'start_time': self.obj_data['start_time'],
'end_time': self.obj_data.get('end_time', None),
'score': self.obj_data['score'],
'box': self.obj_data['box'],
'area': self.obj_data['area'],
'region': self.obj_data['region'],
'current_zones': self.current_zones.copy(),
'entered_zones': list(self.entered_zones).copy(),
'thumbnail': base64.b64encode(self.get_thumbnail()).decode('utf-8') if include_thumbnail else None
}
def get_thumbnail(self):
if self.thumbnail_data is None or not self.thumbnail_data['frame_time'] in self.frame_cache:
ret, jpg = cv2.imencode('.jpg', np.zeros((175,175,3), np.uint8))
jpg_bytes = self.get_jpg_bytes(timestamp=False, bounding_box=False, crop=True, height=175)
if jpg_bytes:
return jpg_bytes
else:
ret, jpg = cv2.imencode('.jpg', np.zeros((175,175,3), np.uint8))
return jpg.tobytes()
def get_jpg_bytes(self, timestamp=False, bounding_box=False, crop=False, height=None):
if self.thumbnail_data is None:
return None
try:
best_frame = cv2.cvtColor(self.frame_cache[self.thumbnail_data['frame_time']], cv2.COLOR_YUV2BGR_I420)
except KeyError:
logger.warning(f"Unable to create jpg because frame {self.thumbnail_data['frame_time']} is not in the cache")
return None
if bounding_box:
thickness = 2
color = COLOR_MAP[self.obj_data['label']]
# draw the bounding boxes on the frame
box = self.thumbnail_data['box']
draw_box_with_label(best_frame, box[0], box[1], box[2], box[3], self.obj_data['label'], f"{int(self.thumbnail_data['score']*100)}% {int(self.thumbnail_data['area'])}", thickness=thickness, color=color)
if crop:
box = self.thumbnail_data['box']
region = calculate_region(best_frame.shape, box[0], box[1], box[2], box[3], 1.1)
best_frame = best_frame[region[1]:region[3], region[0]:region[2]]
if height:
width = int(height*best_frame.shape[1]/best_frame.shape[0])
best_frame = cv2.resize(best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
if timestamp:
time_to_show = datetime.datetime.fromtimestamp(self.thumbnail_data['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
size = cv2.getTextSize(time_to_show, cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, thickness=2)
text_width = size[0][0]
desired_size = max(150, 0.33*best_frame.shape[1])
font_scale = desired_size/text_width
cv2.putText(best_frame, time_to_show, (5, best_frame.shape[0]-7), cv2.FONT_HERSHEY_SIMPLEX,
fontScale=font_scale, color=(255, 255, 255), thickness=2)
ret, jpg = cv2.imencode('.jpg', best_frame)
if ret:
return jpg.tobytes()
else:
return None
def zone_filtered(obj: TrackedObject, object_config):
object_name = obj.obj_data['label']
if object_name in object_config:
obj_settings = object_config[object_name]
# if the min area is larger than the
# detected object, don't add it to detected objects
if obj_settings.get('min_area',-1) > obj['area']:
if obj_settings.min_area > obj.obj_data['area']:
return True
# if the detected object is larger than the
# max area, don't add it to detected objects
if obj_settings.get('max_area', 24000000) < obj['area']:
if obj_settings.max_area < obj.obj_data['area']:
return True
# if the score is lower than the threshold, skip
if obj_settings.get('threshold', 0) > obj['computed_score']:
if obj_settings.threshold > obj.computed_score:
return True
return False
# Maintains the state of a camera
@@ -52,32 +248,37 @@ class CameraState():
def __init__(self, name, config, frame_manager):
self.name = name
self.config = config
self.camera_config = config.cameras[name]
self.frame_manager = frame_manager
self.best_objects = {}
self.object_status = defaultdict(lambda: 'OFF')
self.tracked_objects = {}
self.best_objects: Dict[str, TrackedObject] = {}
self.object_counts = defaultdict(lambda: 0)
self.tracked_objects: Dict[str, TrackedObject] = {}
self.frame_cache = {}
self.zone_objects = defaultdict(lambda: [])
self._current_frame = np.zeros((self.config['frame_shape'][0]*3//2, self.config['frame_shape'][1]), np.uint8)
self._current_frame = np.zeros(self.camera_config.frame_shape_yuv, np.uint8)
self.current_frame_lock = threading.Lock()
self.current_frame_time = 0.0
self.motion_boxes = []
self.regions = []
self.previous_frame_id = None
self.callbacks = defaultdict(lambda: [])
def get_current_frame(self, draw=False):
def get_current_frame(self, draw_options={}):
with self.current_frame_lock:
frame_copy = np.copy(self._current_frame)
frame_time = self.current_frame_time
tracked_objects = copy.deepcopy(self.tracked_objects)
tracked_objects = {k: v.to_dict() for k,v in self.tracked_objects.items()}
motion_boxes = self.motion_boxes.copy()
regions = self.regions.copy()
frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_YUV2BGR_I420)
# draw on the frame
if draw:
if draw_options.get('bounding_boxes'):
# draw the bounding boxes on the frame
for obj in tracked_objects.values():
thickness = 2
color = COLOR_MAP[obj['label']]
if obj['frame_time'] != frame_time:
thickness = 1
color = (255,0,0)
@@ -85,156 +286,129 @@ class CameraState():
# draw the bounding boxes on the frame
box = obj['box']
draw_box_with_label(frame_copy, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
# draw the regions on the frame
region = obj['region']
cv2.rectangle(frame_copy, (region[0], region[1]), (region[2], region[3]), (0,255,0), 1)
if self.config['snapshots']['show_timestamp']:
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
cv2.putText(frame_copy, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
if self.config['snapshots']['draw_zones']:
for name, zone in self.config['zones'].items():
thickness = 8 if any([name in obj['zones'] for obj in tracked_objects.values()]) else 2
cv2.drawContours(frame_copy, [zone['contour']], -1, zone['color'], thickness)
if draw_options.get('regions'):
for region in regions:
cv2.rectangle(frame_copy, (region[0], region[1]), (region[2], region[3]), (0,255,0), 2)
if draw_options.get('zones'):
for name, zone in self.camera_config.zones.items():
thickness = 8 if any([name in obj['current_zones'] for obj in tracked_objects.values()]) else 2
cv2.drawContours(frame_copy, [zone.contour], -1, zone.color, thickness)
if draw_options.get('mask'):
mask_overlay = np.where(self.camera_config.motion.mask==[0])
frame_copy[mask_overlay] = [0,0,0]
if draw_options.get('motion_boxes'):
for m_box in motion_boxes:
cv2.rectangle(frame_copy, (m_box[0], m_box[1]), (m_box[2], m_box[3]), (0,0,255), 2)
if draw_options.get('timestamp'):
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
cv2.putText(frame_copy, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
return frame_copy
def false_positive(self, obj):
# once a true positive, always a true positive
if not obj.get('false_positive', True):
return False
threshold = self.config['objects'].get('filters', {}).get(obj['label'], {}).get('threshold', 0.85)
if obj['computed_score'] < threshold:
return True
return False
def compute_score(self, obj):
scores = obj['score_history'][:]
# pad with zeros if you dont have at least 3 scores
if len(scores) < 3:
scores += [0.0]*(3 - len(scores))
return median(scores)
def finished(self, obj_id):
del self.tracked_objects[obj_id]
def on(self, event_type: str, callback: Callable[[Dict], None]):
self.callbacks[event_type].append(callback)
def update(self, frame_time, tracked_objects):
def update(self, frame_time, current_detections, motion_boxes, regions):
self.current_frame_time = frame_time
# get the new frame and delete the old frame
self.motion_boxes = motion_boxes
self.regions = regions
# get the new frame
frame_id = f"{self.name}{frame_time}"
current_frame = self.frame_manager.get(frame_id, (self.config['frame_shape'][0]*3//2, self.config['frame_shape'][1]))
current_frame = self.frame_manager.get(frame_id, self.camera_config.frame_shape_yuv)
current_ids = tracked_objects.keys()
current_ids = current_detections.keys()
previous_ids = self.tracked_objects.keys()
removed_ids = list(set(previous_ids).difference(current_ids))
new_ids = list(set(current_ids).difference(previous_ids))
updated_ids = list(set(current_ids).intersection(previous_ids))
for id in new_ids:
self.tracked_objects[id] = tracked_objects[id]
self.tracked_objects[id]['zones'] = []
# start the score history
self.tracked_objects[id]['score_history'] = [self.tracked_objects[id]['score']]
# calculate if this is a false positive
self.tracked_objects[id]['computed_score'] = self.compute_score(self.tracked_objects[id])
self.tracked_objects[id]['false_positive'] = self.false_positive(self.tracked_objects[id])
new_obj = self.tracked_objects[id] = TrackedObject(self.name, self.camera_config, self.frame_cache, current_detections[id])
# call event handlers
for c in self.callbacks['start']:
c(self.name, tracked_objects[id])
c(self.name, new_obj, frame_time)
for id in updated_ids:
self.tracked_objects[id].update(tracked_objects[id])
updated_obj = self.tracked_objects[id]
significant_update = updated_obj.update(frame_time, current_detections[id])
# if the object is not in the current frame, add a 0.0 to the score history
if self.tracked_objects[id]['frame_time'] != self.current_frame_time:
self.tracked_objects[id]['score_history'].append(0.0)
else:
self.tracked_objects[id]['score_history'].append(self.tracked_objects[id]['score'])
# only keep the last 10 scores
if len(self.tracked_objects[id]['score_history']) > 10:
self.tracked_objects[id]['score_history'] = self.tracked_objects[id]['score_history'][-10:]
if significant_update:
# ensure this frame is stored in the cache
if updated_obj.thumbnail_data['frame_time'] == frame_time and frame_time not in self.frame_cache:
self.frame_cache[frame_time] = np.copy(current_frame)
# calculate if this is a false positive
self.tracked_objects[id]['computed_score'] = self.compute_score(self.tracked_objects[id])
self.tracked_objects[id]['false_positive'] = self.false_positive(self.tracked_objects[id])
# call event handlers
for c in self.callbacks['update']:
c(self.name, updated_obj, frame_time)
# call event handlers
for c in self.callbacks['update']:
c(self.name, self.tracked_objects[id])
for id in removed_ids:
# publish events to mqtt
self.tracked_objects[id]['end_time'] = frame_time
for c in self.callbacks['end']:
c(self.name, self.tracked_objects[id])
del self.tracked_objects[id]
# check to see if the objects are in any zones
for obj in self.tracked_objects.values():
current_zones = []
bottom_center = (obj['centroid'][0], obj['box'][3])
# check each zone
for name, zone in self.config['zones'].items():
contour = zone['contour']
# check if the object is in the zone
if (cv2.pointPolygonTest(contour, bottom_center, False) >= 0):
# if the object passed the filters once, dont apply again
if name in obj.get('zones', []) or not zone_filtered(obj, zone.get('filters', {})):
current_zones.append(name)
obj['zones'] = current_zones
removed_obj = self.tracked_objects[id]
if not 'end_time' in removed_obj.obj_data:
removed_obj.obj_data['end_time'] = frame_time
for c in self.callbacks['end']:
c(self.name, removed_obj, frame_time)
# TODO: can i switch to looking this up and only changing when an event ends?
# maintain best objects
for obj in self.tracked_objects.values():
object_type = obj['label']
# if the object wasn't seen on the current frame, skip it
if obj['frame_time'] != self.current_frame_time or obj['false_positive']:
object_type = obj.obj_data['label']
# if the object's thumbnail is not from the current frame
if obj.false_positive or obj.thumbnail_data['frame_time'] != self.current_frame_time:
continue
obj_copy = copy.deepcopy(obj)
if object_type in self.best_objects:
current_best = self.best_objects[object_type]
now = datetime.datetime.now().timestamp()
# if the object is a higher score than the current best score
# if the object is a higher score than the current best score
# or the current object is older than desired, use the new object
if obj_copy['score'] > current_best['score'] or (now - current_best['frame_time']) > self.config.get('best_image_timeout', 60):
obj_copy['frame'] = np.copy(current_frame)
self.best_objects[object_type] = obj_copy
if (is_better_thumbnail(current_best.thumbnail_data, obj.thumbnail_data, self.camera_config.frame_shape)
or (now - current_best.thumbnail_data['frame_time']) > self.camera_config.best_image_timeout):
self.best_objects[object_type] = obj
for c in self.callbacks['snapshot']:
c(self.name, self.best_objects[object_type])
c(self.name, self.best_objects[object_type], frame_time)
else:
obj_copy['frame'] = np.copy(current_frame)
self.best_objects[object_type] = obj_copy
self.best_objects[object_type] = obj
for c in self.callbacks['snapshot']:
c(self.name, self.best_objects[object_type])
c(self.name, self.best_objects[object_type], frame_time)
# update overall camera state for each object type
obj_counter = Counter()
for obj in self.tracked_objects.values():
if not obj['false_positive']:
obj_counter[obj['label']] += 1
if not obj.false_positive:
obj_counter[obj.obj_data['label']] += 1
# report on detected objects
for obj_name, count in obj_counter.items():
new_status = 'ON' if count > 0 else 'OFF'
if new_status != self.object_status[obj_name]:
self.object_status[obj_name] = new_status
if count != self.object_counts[obj_name]:
self.object_counts[obj_name] = count
for c in self.callbacks['object_status']:
c(self.name, obj_name, new_status)
c(self.name, obj_name, count)
# expire any objects that are ON and no longer detected
expired_objects = [obj_name for obj_name, status in self.object_status.items() if status == 'ON' and not obj_name in obj_counter]
# expire any objects that are >0 and no longer detected
expired_objects = [obj_name for obj_name, count in self.object_counts.items() if count > 0 and not obj_name in obj_counter]
for obj_name in expired_objects:
self.object_status[obj_name] = 'OFF'
self.object_counts[obj_name] = 0
for c in self.callbacks['object_status']:
c(self.name, obj_name, 'OFF')
c(self.name, obj_name, 0)
for c in self.callbacks['snapshot']:
c(self.name, self.best_objects[obj_name])
c(self.name, self.best_objects[obj_name], frame_time)
# cleanup thumbnail frame cache
current_thumb_frames = set([obj.thumbnail_data['frame_time'] for obj in self.tracked_objects.values() if not obj.false_positive])
current_best_frames = set([obj.thumbnail_data['frame_time'] for obj in self.best_objects.values()])
thumb_frames_to_delete = [t for t in self.frame_cache.keys() if not t in current_thumb_frames and not t in current_best_frames]
for t in thumb_frames_to_delete:
del self.frame_cache[t]
with self.current_frame_lock:
self._current_frame = current_frame
if not self.previous_frame_id is None:
@@ -242,68 +416,64 @@ class CameraState():
self.previous_frame_id = frame_id
class TrackedObjectProcessor(threading.Thread):
def __init__(self, camera_config, client, topic_prefix, tracked_objects_queue, event_queue, stop_event):
def __init__(self, config: FrigateConfig, client, topic_prefix, tracked_objects_queue, event_queue, event_processed_queue, stop_event):
threading.Thread.__init__(self)
self.camera_config = camera_config
self.name = "detected_frames_processor"
self.config = config
self.client = client
self.topic_prefix = topic_prefix
self.tracked_objects_queue = tracked_objects_queue
self.event_queue = event_queue
self.event_processed_queue = event_processed_queue
self.stop_event = stop_event
self.camera_states: Dict[str, CameraState] = {}
self.frame_manager = SharedMemoryFrameManager()
def start(camera, obj):
# publish events to mqtt
self.client.publish(f"{self.topic_prefix}/{camera}/events/start", json.dumps(obj), retain=False)
self.event_queue.put(('start', camera, obj))
def start(camera, obj: TrackedObject, current_frame_time):
self.event_queue.put(('start', camera, obj.to_dict()))
def update(camera, obj):
pass
def update(camera, obj: TrackedObject, current_frame_time):
after = obj.to_dict()
message = { 'before': obj.previous, 'after': after, 'type': 'new' if obj.previous['false_positive'] else 'update' }
self.client.publish(f"{self.topic_prefix}/events", json.dumps(message), retain=False)
obj.previous = after
def end(camera, obj):
self.client.publish(f"{self.topic_prefix}/{camera}/events/end", json.dumps(obj), retain=False)
self.event_queue.put(('end', camera, obj))
def end(camera, obj: TrackedObject, current_frame_time):
snapshot_config = self.config.cameras[camera].snapshots
event_data = obj.to_dict(include_thumbnail=True)
event_data['has_snapshot'] = False
if not obj.false_positive:
message = { 'before': obj.previous, 'after': obj.to_dict(), 'type': 'end' }
self.client.publish(f"{self.topic_prefix}/events", json.dumps(message), retain=False)
# write snapshot to disk if enabled
if snapshot_config.enabled:
jpg_bytes = obj.get_jpg_bytes(
timestamp=snapshot_config.timestamp,
bounding_box=snapshot_config.bounding_box,
crop=snapshot_config.crop,
height=snapshot_config.height
)
with open(os.path.join(CLIPS_DIR, f"{camera}-{obj.obj_data['id']}.jpg"), 'wb') as j:
j.write(jpg_bytes)
event_data['has_snapshot'] = True
self.event_queue.put(('end', camera, event_data))
def snapshot(camera, obj):
if not 'frame' in obj:
return
best_frame = cv2.cvtColor(obj['frame'], cv2.COLOR_YUV2BGR_I420)
if self.camera_config[camera]['snapshots']['draw_bounding_boxes']:
thickness = 2
color = COLOR_MAP[obj['label']]
box = obj['box']
draw_box_with_label(best_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
mqtt_config = self.camera_config[camera].get('mqtt', {'crop_to_region': False})
if mqtt_config.get('crop_to_region'):
region = obj['region']
best_frame = best_frame[region[1]:region[3], region[0]:region[2]]
if 'snapshot_height' in mqtt_config:
height = int(mqtt_config['snapshot_height'])
width = int(height*best_frame.shape[1]/best_frame.shape[0])
best_frame = cv2.resize(best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
if self.camera_config[camera]['snapshots']['show_timestamp']:
time_to_show = datetime.datetime.fromtimestamp(obj['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
size = cv2.getTextSize(time_to_show, cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, thickness=2)
text_width = size[0][0]
text_height = size[0][1]
desired_size = max(200, 0.33*best_frame.shape[1])
font_scale = desired_size/text_width
cv2.putText(best_frame, time_to_show, (5, best_frame.shape[0]-7), cv2.FONT_HERSHEY_SIMPLEX, fontScale=font_scale, color=(255, 255, 255), thickness=2)
ret, jpg = cv2.imencode('.jpg', best_frame)
if ret:
jpg_bytes = jpg.tobytes()
self.client.publish(f"{self.topic_prefix}/{camera}/{obj['label']}/snapshot", jpg_bytes, retain=True)
def snapshot(camera, obj: TrackedObject, current_frame_time):
mqtt_config = self.config.cameras[camera].mqtt
if mqtt_config.enabled:
jpg_bytes = obj.get_jpg_bytes(
timestamp=mqtt_config.timestamp,
bounding_box=mqtt_config.bounding_box,
crop=mqtt_config.crop,
height=mqtt_config.height
)
self.client.publish(f"{self.topic_prefix}/{camera}/{obj.obj_data['label']}/snapshot", jpg_bytes, retain=True)
def object_status(camera, object_name, status):
self.client.publish(f"{self.topic_prefix}/{camera}/{object_name}", status, retain=False)
for camera in self.camera_config.keys():
camera_state = CameraState(camera, self.camera_config[camera], self.frame_manager)
for camera in self.config.cameras.keys():
camera_state = CameraState(camera, self.config, self.frame_manager)
camera_state.on('start', start)
camera_state.on('update', update)
camera_state.on('end', end)
@@ -311,83 +481,71 @@ class TrackedObjectProcessor(threading.Thread):
camera_state.on('object_status', object_status)
self.camera_states[camera] = camera_state
self.camera_data = defaultdict(lambda: {
'best_objects': {},
'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')),
'tracked_objects': {},
'current_frame': np.zeros((720,1280,3), np.uint8),
'current_frame_time': 0.0,
'object_id': None
})
# {
# 'zone_name': {
# 'person': ['camera_1', 'camera_2']
# 'person': {
# 'camera_1': 2,
# 'camera_2': 1
# }
# }
# }
self.zone_data = defaultdict(lambda: defaultdict(lambda: set()))
self.zone_data = defaultdict(lambda: defaultdict(lambda: {}))
# set colors for zones
all_zone_names = set([zone for config in self.camera_config.values() for zone in config['zones'].keys()])
zone_colors = {}
colors = plt.cm.get_cmap('tab10', len(all_zone_names))
for i, zone in enumerate(all_zone_names):
zone_colors[zone] = tuple(int(round(255 * c)) for c in colors(i)[:3])
# create zone contours
for camera_config in self.camera_config.values():
for zone_name, zone_config in camera_config['zones'].items():
zone_config['color'] = zone_colors[zone_name]
coordinates = zone_config['coordinates']
if isinstance(coordinates, list):
zone_config['contour'] = np.array([[int(p.split(',')[0]), int(p.split(',')[1])] for p in coordinates])
elif isinstance(coordinates, str):
points = coordinates.split(',')
zone_config['contour'] = np.array([[int(points[i]), int(points[i+1])] for i in range(0, len(points), 2)])
else:
print(f"Unable to parse zone coordinates for {zone_name} - {camera}")
def get_best(self, camera, label):
best_objects = self.camera_states[camera].best_objects
if label in best_objects:
return best_objects[label]
# TODO: need a lock here
camera_state = self.camera_states[camera]
if label in camera_state.best_objects:
best_obj = camera_state.best_objects[label]
best = best_obj.thumbnail_data.copy()
best['frame'] = camera_state.frame_cache.get(best_obj.thumbnail_data['frame_time'])
return best
else:
return {}
def get_current_frame(self, camera, draw=False):
return self.camera_states[camera].get_current_frame(draw)
def get_current_frame(self, camera, draw_options={}):
return self.camera_states[camera].get_current_frame(draw_options)
def run(self):
while True:
if self.stop_event.is_set():
print(f"Exiting object processor...")
logger.info(f"Exiting object processor...")
break
try:
camera, frame_time, current_tracked_objects = self.tracked_objects_queue.get(True, 10)
camera, frame_time, current_tracked_objects, motion_boxes, regions = self.tracked_objects_queue.get(True, 10)
except queue.Empty:
continue
camera_state = self.camera_states[camera]
camera_state.update(frame_time, current_tracked_objects)
camera_state.update(frame_time, current_tracked_objects, motion_boxes, regions)
# update zone status for each label
for zone in camera_state.config['zones'].keys():
# get labels for current camera and all labels in current zone
labels_for_camera = set([obj['label'] for obj in camera_state.tracked_objects.values() if zone in obj['zones'] and not obj['false_positive']])
labels_to_check = labels_for_camera | set(self.zone_data[zone].keys())
# for each label in zone
for label in labels_to_check:
camera_list = self.zone_data[zone][label]
# remove or add the camera to the list for the current label
previous_state = len(camera_list) > 0
if label in labels_for_camera:
camera_list.add(camera_state.name)
elif camera_state.name in camera_list:
camera_list.remove(camera_state.name)
new_state = len(camera_list) > 0
# if the value is changing, send over MQTT
if previous_state == False and new_state == True:
self.client.publish(f"{self.topic_prefix}/{zone}/{label}", 'ON', retain=False)
elif previous_state == True and new_state == False:
self.client.publish(f"{self.topic_prefix}/{zone}/{label}", 'OFF', retain=False)
# update zone counts for each label
# for each zone in the current camera
for zone in self.config.cameras[camera].zones.keys():
# count labels for the camera in the zone
obj_counter = Counter()
for obj in camera_state.tracked_objects.values():
if zone in obj.current_zones and not obj.false_positive:
obj_counter[obj.obj_data['label']] += 1
# update counts and publish status
for label in set(list(self.zone_data[zone].keys()) + list(obj_counter.keys())):
# if we have previously published a count for this zone/label
zone_label = self.zone_data[zone][label]
if camera in zone_label:
current_count = sum(zone_label.values())
zone_label[camera] = obj_counter[label] if label in obj_counter else 0
new_count = sum(zone_label.values())
if new_count != current_count:
self.client.publish(f"{self.topic_prefix}/{zone}/{label}", new_count, retain=False)
# if this is a new zone/label combo for this camera
else:
if label in obj_counter:
zone_label[camera] = obj_counter[label]
self.client.publish(f"{self.topic_prefix}/{zone}/{label}", obj_counter[label], retain=False)
# cleanup event finished queue
while not self.event_processed_queue.empty():
event_id, camera = self.event_processed_queue.get()
self.camera_states[camera].finished(event_id)

View File

@@ -1,29 +1,32 @@
import time
import datetime
import threading
import cv2
import itertools
import copy
import numpy as np
import datetime
import itertools
import multiprocessing as mp
import random
import string
import multiprocessing as mp
import threading
import time
from collections import defaultdict
import cv2
import numpy as np
from scipy.spatial import distance as dist
from frigate.util import draw_box_with_label, calculate_region
from frigate.config import DetectConfig
from frigate.util import draw_box_with_label
class ObjectTracker():
def __init__(self, max_disappeared):
def __init__(self, config: DetectConfig):
self.tracked_objects = {}
self.disappeared = {}
self.max_disappeared = max_disappeared
self.max_disappeared = config.max_disappeared
def register(self, index, obj):
rand_id = ''.join(random.choices(string.ascii_lowercase + string.digits, k=6))
id = f"{obj['frame_time']}-{rand_id}"
obj['id'] = id
obj['start_time'] = obj['frame_time']
obj['top_score'] = obj['score']
self.tracked_objects[id] = obj
self.disappeared[id] = 0
@@ -34,8 +37,6 @@ class ObjectTracker():
def update(self, id, new_obj):
self.disappeared[id] = 0
self.tracked_objects[id].update(new_obj)
if self.tracked_objects[id]['score'] > self.tracked_objects[id]['top_score']:
self.tracked_objects[id]['top_score'] = self.tracked_objects[id]['score']
def match_and_update(self, frame_time, new_objects):
# group by name

208
frigate/process_clip.py Normal file
View File

@@ -0,0 +1,208 @@
import datetime
import json
import logging
import multiprocessing as mp
import os
import subprocess as sp
import sys
from unittest import TestCase, main
import click
import cv2
import numpy as np
from frigate.config import FRIGATE_CONFIG_SCHEMA, FrigateConfig
from frigate.edgetpu import LocalObjectDetector
from frigate.motion import MotionDetector
from frigate.object_processing import COLOR_MAP, CameraState
from frigate.objects import ObjectTracker
from frigate.util import (DictFrameManager, EventsPerSecond,
SharedMemoryFrameManager, draw_box_with_label)
from frigate.video import (capture_frames, process_frames,
start_or_restart_ffmpeg)
logging.basicConfig()
logging.root.setLevel(logging.DEBUG)
logger = logging.getLogger(__name__)
def get_frame_shape(source):
ffprobe_cmd = " ".join([
'ffprobe',
'-v',
'panic',
'-show_error',
'-show_streams',
'-of',
'json',
'"'+source+'"'
])
p = sp.Popen(ffprobe_cmd, stdout=sp.PIPE, shell=True)
(output, err) = p.communicate()
p_status = p.wait()
info = json.loads(output)
video_info = [s for s in info['streams'] if s['codec_type'] == 'video'][0]
if video_info['height'] != 0 and video_info['width'] != 0:
return (video_info['height'], video_info['width'], 3)
# fallback to using opencv if ffprobe didnt succeed
video = cv2.VideoCapture(source)
ret, frame = video.read()
frame_shape = frame.shape
video.release()
return frame_shape
class ProcessClip():
def __init__(self, clip_path, frame_shape, config: FrigateConfig):
self.clip_path = clip_path
self.camera_name = 'camera'
self.config = config
self.camera_config = self.config.cameras['camera']
self.frame_shape = self.camera_config.frame_shape
self.ffmpeg_cmd = [c['cmd'] for c in self.camera_config.ffmpeg_cmds if 'detect' in c['roles']][0]
self.frame_manager = SharedMemoryFrameManager()
self.frame_queue = mp.Queue()
self.detected_objects_queue = mp.Queue()
self.camera_state = CameraState(self.camera_name, config, self.frame_manager)
def load_frames(self):
fps = EventsPerSecond()
skipped_fps = EventsPerSecond()
current_frame = mp.Value('d', 0.0)
frame_size = self.camera_config.frame_shape_yuv[0] * self.camera_config.frame_shape_yuv[1]
ffmpeg_process = start_or_restart_ffmpeg(self.ffmpeg_cmd, logger, sp.DEVNULL, frame_size)
capture_frames(ffmpeg_process, self.camera_name, self.camera_config.frame_shape_yuv, self.frame_manager,
self.frame_queue, fps, skipped_fps, current_frame)
ffmpeg_process.wait()
ffmpeg_process.communicate()
def process_frames(self, objects_to_track=['person'], object_filters={}):
mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
mask[:] = 255
motion_detector = MotionDetector(self.frame_shape, mask, self.camera_config.motion)
object_detector = LocalObjectDetector(labels='/labelmap.txt')
object_tracker = ObjectTracker(self.camera_config.detect)
process_info = {
'process_fps': mp.Value('d', 0.0),
'detection_fps': mp.Value('d', 0.0),
'detection_frame': mp.Value('d', 0.0)
}
stop_event = mp.Event()
model_shape = (self.config.model.height, self.config.model.width)
process_frames(self.camera_name, self.frame_queue, self.frame_shape, model_shape,
self.frame_manager, motion_detector, object_detector, object_tracker,
self.detected_objects_queue, process_info,
objects_to_track, object_filters, mask, stop_event, exit_on_empty=True)
def top_object(self, debug_path=None):
obj_detected = False
top_computed_score = 0.0
def handle_event(name, obj, frame_time):
nonlocal obj_detected
nonlocal top_computed_score
if obj.computed_score > top_computed_score:
top_computed_score = obj.computed_score
if not obj.false_positive:
obj_detected = True
self.camera_state.on('new', handle_event)
self.camera_state.on('update', handle_event)
while(not self.detected_objects_queue.empty()):
camera_name, frame_time, current_tracked_objects, motion_boxes, regions = self.detected_objects_queue.get()
if not debug_path is None:
self.save_debug_frame(debug_path, frame_time, current_tracked_objects.values())
self.camera_state.update(frame_time, current_tracked_objects, motion_boxes, regions)
self.frame_manager.delete(self.camera_state.previous_frame_id)
return {
'object_detected': obj_detected,
'top_score': top_computed_score
}
def save_debug_frame(self, debug_path, frame_time, tracked_objects):
current_frame = cv2.cvtColor(self.frame_manager.get(f"{self.camera_name}{frame_time}", self.camera_config.frame_shape_yuv), cv2.COLOR_YUV2BGR_I420)
# draw the bounding boxes on the frame
for obj in tracked_objects:
thickness = 2
color = (0,0,175)
if obj['frame_time'] != frame_time:
thickness = 1
color = (255,0,0)
else:
color = (255,255,0)
# draw the bounding boxes on the frame
box = obj['box']
draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['id'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
# draw the regions on the frame
region = obj['region']
draw_box_with_label(current_frame, region[0], region[1], region[2], region[3], 'region', "", thickness=1, color=(0,255,0))
cv2.imwrite(f"{os.path.join(debug_path, os.path.basename(self.clip_path))}.{int(frame_time*1000000)}.jpg", current_frame)
@click.command()
@click.option("-p", "--path", required=True, help="Path to clip or directory to test.")
@click.option("-l", "--label", default='person', help="Label name to detect.")
@click.option("-t", "--threshold", default=0.85, help="Threshold value for objects.")
@click.option("-s", "--scores", default=None, help="File to save csv of top scores")
@click.option("--debug-path", default=None, help="Path to output frames for debugging.")
def process(path, label, threshold, scores, debug_path):
clips = []
if os.path.isdir(path):
files = os.listdir(path)
files.sort()
clips = [os.path.join(path, file) for file in files]
elif os.path.isfile(path):
clips.append(path)
json_config = {
'mqtt': {
'host': 'mqtt'
},
'cameras': {
'camera': {
'ffmpeg': {
'inputs': [
{ 'path': 'path.mp4', 'global_args': '', 'input_args': '', 'roles': ['detect'] }
]
},
'height': 1920,
'width': 1080
}
}
}
results = []
for c in clips:
logger.info(c)
frame_shape = get_frame_shape(c)
json_config['cameras']['camera']['height'] = frame_shape[0]
json_config['cameras']['camera']['width'] = frame_shape[1]
json_config['cameras']['camera']['ffmpeg']['inputs'][0]['path'] = c
config = FrigateConfig(config=FRIGATE_CONFIG_SCHEMA(json_config))
process_clip = ProcessClip(c, frame_shape, config)
process_clip.load_frames()
process_clip.process_frames(objects_to_track=[label])
results.append((c, process_clip.top_object(debug_path)))
if not scores is None:
with open(scores, 'w') as writer:
for result in results:
writer.write(f"{result[0]},{result[1]['top_score']}\n")
positive_count = sum(1 for result in results if result[1]['object_detected'])
print(f"Objects were detected in {positive_count}/{len(results)}({positive_count/len(results)*100:.2f}%) clip(s).")
if __name__ == '__main__':
process()

125
frigate/record.py Normal file
View File

@@ -0,0 +1,125 @@
import datetime
import json
import logging
import os
import queue
import subprocess as sp
import threading
import time
from collections import defaultdict
from pathlib import Path
import psutil
from frigate.config import FrigateConfig
from frigate.const import RECORD_DIR, CLIPS_DIR, CACHE_DIR
logger = logging.getLogger(__name__)
SECONDS_IN_DAY = 60 * 60 * 24
def remove_empty_directories(directory):
# list all directories recursively and sort them by path,
# longest first
paths = sorted(
[x[0] for x in os.walk(RECORD_DIR)],
key=lambda p: len(str(p)),
reverse=True,
)
for path in paths:
# don't delete the parent
if path == RECORD_DIR:
continue
if len(os.listdir(path)) == 0:
os.rmdir(path)
class RecordingMaintainer(threading.Thread):
def __init__(self, config: FrigateConfig, stop_event):
threading.Thread.__init__(self)
self.name = 'recording_maint'
self.config = config
self.stop_event = stop_event
def move_files(self):
recordings = [d for d in os.listdir(RECORD_DIR) if os.path.isfile(os.path.join(RECORD_DIR, d)) and d.endswith(".mp4")]
files_in_use = []
for process in psutil.process_iter():
try:
if process.name() != 'ffmpeg':
continue
flist = process.open_files()
if flist:
for nt in flist:
if nt.path.startswith(RECORD_DIR):
files_in_use.append(nt.path.split('/')[-1])
except:
continue
for f in recordings:
if f in files_in_use:
continue
camera = '-'.join(f.split('-')[:-1])
start_time = datetime.datetime.strptime(f.split('-')[-1].split('.')[0], '%Y%m%d%H%M%S')
ffprobe_cmd = " ".join([
'ffprobe',
'-v',
'error',
'-show_entries',
'format=duration',
'-of',
'default=noprint_wrappers=1:nokey=1',
f"{os.path.join(RECORD_DIR,f)}"
])
p = sp.Popen(ffprobe_cmd, stdout=sp.PIPE, shell=True)
(output, err) = p.communicate()
p_status = p.wait()
if p_status == 0:
duration = float(output.decode('utf-8').strip())
else:
logger.info(f"bad file: {f}")
os.remove(os.path.join(RECORD_DIR,f))
continue
directory = os.path.join(RECORD_DIR, start_time.strftime('%Y-%m/%d/%H'), camera)
if not os.path.exists(directory):
os.makedirs(directory)
file_name = f"{start_time.strftime('%M.%S.mp4')}"
os.rename(os.path.join(RECORD_DIR,f), os.path.join(directory,file_name))
def expire_files(self):
delete_before = {}
for name, camera in self.config.cameras.items():
delete_before[name] = datetime.datetime.now().timestamp() - SECONDS_IN_DAY*camera.record.retain_days
for p in Path('/media/frigate/recordings').rglob("*.mp4"):
if not p.parent.name in delete_before:
continue
if p.stat().st_mtime < delete_before[p.parent.name]:
p.unlink(missing_ok=True)
def run(self):
counter = 0
self.expire_files()
while(True):
if self.stop_event.is_set():
logger.info(f"Exiting recording maintenance...")
break
# only expire events every 10 minutes, but check for new files every 10 seconds
time.sleep(10)
counter = counter + 1
if counter > 60:
self.expire_files()
remove_empty_directories(RECORD_DIR)
counter = 0
self.move_files()

70
frigate/stats.py Normal file
View File

@@ -0,0 +1,70 @@
import json
import logging
import threading
import time
from frigate.config import FrigateConfig
from frigate.version import VERSION
logger = logging.getLogger(__name__)
def stats_init(camera_metrics, detectors):
stats_tracking = {
'camera_metrics': camera_metrics,
'detectors': detectors,
'started': int(time.time())
}
return stats_tracking
def stats_snapshot(stats_tracking):
camera_metrics = stats_tracking['camera_metrics']
stats = {}
total_detection_fps = 0
for name, camera_stats in camera_metrics.items():
total_detection_fps += camera_stats['detection_fps'].value
stats[name] = {
'camera_fps': round(camera_stats['camera_fps'].value, 2),
'process_fps': round(camera_stats['process_fps'].value, 2),
'skipped_fps': round(camera_stats['skipped_fps'].value, 2),
'detection_fps': round(camera_stats['detection_fps'].value, 2),
'pid': camera_stats['process'].pid,
'capture_pid': camera_stats['capture_process'].pid
}
stats['detectors'] = {}
for name, detector in stats_tracking["detectors"].items():
stats['detectors'][name] = {
'inference_speed': round(detector.avg_inference_speed.value * 1000, 2),
'detection_start': detector.detection_start.value,
'pid': detector.detect_process.pid
}
stats['detection_fps'] = round(total_detection_fps, 2)
stats['service'] = {
'uptime': (int(time.time()) - stats_tracking['started']),
'version': VERSION
}
return stats
class StatsEmitter(threading.Thread):
def __init__(self, config: FrigateConfig, stats_tracking, mqtt_client, topic_prefix, stop_event):
threading.Thread.__init__(self)
self.name = 'frigate_stats_emitter'
self.config = config
self.stats_tracking = stats_tracking
self.mqtt_client = mqtt_client
self.topic_prefix = topic_prefix
self.stop_event = stop_event
def run(self):
time.sleep(10)
while True:
if self.stop_event.is_set():
logger.info(f"Exiting watchdog...")
break
stats = stats_snapshot(self.stats_tracking)
self.mqtt_client.publish(f"{self.topic_prefix}/stats", json.dumps(stats), retain=False)
time.sleep(self.config.mqtt.stats_interval)

0
frigate/test/__init__.py Normal file
View File

342
frigate/test/test_config.py Normal file
View File

@@ -0,0 +1,342 @@
import json
from unittest import TestCase, main
import voluptuous as vol
from frigate.config import FRIGATE_CONFIG_SCHEMA, FrigateConfig
class TestConfig(TestCase):
def setUp(self):
self.minimal = {
'mqtt': {
'host': 'mqtt'
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920
}
}
}
def test_empty(self):
FRIGATE_CONFIG_SCHEMA({})
def test_minimal(self):
FRIGATE_CONFIG_SCHEMA(self.minimal)
def test_config_class(self):
FrigateConfig(config=self.minimal)
def test_inherit_tracked_objects(self):
config = {
'mqtt': {
'host': 'mqtt'
},
'objects': {
'track': ['person', 'dog']
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920
}
}
}
frigate_config = FrigateConfig(config=config)
assert('dog' in frigate_config.cameras['back'].objects.track)
def test_override_tracked_objects(self):
config = {
'mqtt': {
'host': 'mqtt'
},
'objects': {
'track': ['person', 'dog']
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920,
'objects': {
'track': ['cat']
}
}
}
}
frigate_config = FrigateConfig(config=config)
assert('cat' in frigate_config.cameras['back'].objects.track)
def test_default_object_filters(self):
config = {
'mqtt': {
'host': 'mqtt'
},
'objects': {
'track': ['person', 'dog']
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920
}
}
}
frigate_config = FrigateConfig(config=config)
assert('dog' in frigate_config.cameras['back'].objects.filters)
def test_inherit_object_filters(self):
config = {
'mqtt': {
'host': 'mqtt'
},
'objects': {
'track': ['person', 'dog'],
'filters': {
'dog': {
'threshold': 0.7
}
}
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920
}
}
}
frigate_config = FrigateConfig(config=config)
assert('dog' in frigate_config.cameras['back'].objects.filters)
assert(frigate_config.cameras['back'].objects.filters['dog'].threshold == 0.7)
def test_override_object_filters(self):
config = {
'mqtt': {
'host': 'mqtt'
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920,
'objects': {
'track': ['person', 'dog'],
'filters': {
'dog': {
'threshold': 0.7
}
}
}
}
}
}
frigate_config = FrigateConfig(config=config)
assert('dog' in frigate_config.cameras['back'].objects.filters)
assert(frigate_config.cameras['back'].objects.filters['dog'].threshold == 0.7)
def test_ffmpeg_params(self):
config = {
'ffmpeg': {
'input_args': ['-re']
},
'mqtt': {
'host': 'mqtt'
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920,
'objects': {
'track': ['person', 'dog'],
'filters': {
'dog': {
'threshold': 0.7
}
}
}
}
}
}
frigate_config = FrigateConfig(config=config)
assert('-re' in frigate_config.cameras['back'].ffmpeg_cmds[0]['cmd'])
def test_inherit_clips_retention(self):
config = {
'mqtt': {
'host': 'mqtt'
},
'clips': {
'retain': {
'default': 20,
'objects': {
'person': 30
}
}
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920
}
}
}
frigate_config = FrigateConfig(config=config)
assert(frigate_config.cameras['back'].clips.retain.objects['person'] == 30)
def test_roles_listed_twice_throws_error(self):
config = {
'mqtt': {
'host': 'mqtt'
},
'clips': {
'retain': {
'default': 20,
'objects': {
'person': 30
}
}
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] },
{ 'path': 'rtsp://10.0.0.1:554/video2', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920
}
}
}
self.assertRaises(vol.MultipleInvalid, lambda: FrigateConfig(config=config))
def test_zone_matching_camera_name_throws_error(self):
config = {
'mqtt': {
'host': 'mqtt'
},
'clips': {
'retain': {
'default': 20,
'objects': {
'person': 30
}
}
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920,
'zones': {
'back': {
'coordinates': '1,1,1,1,1,1'
}
}
}
}
}
self.assertRaises(vol.MultipleInvalid, lambda: FrigateConfig(config=config))
def test_clips_should_default_to_global_objects(self):
config = {
'mqtt': {
'host': 'mqtt'
},
'clips': {
'retain': {
'default': 20,
'objects': {
'person': 30
}
}
},
'objects': {
'track': ['person', 'dog']
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920,
'clips': {
'enabled': True
}
}
}
}
config = FrigateConfig(config=config)
assert(config.cameras['back'].clips.objects is None)
def test_role_assigned_but_not_enabled(self):
json_config = {
'mqtt': {
'host': 'mqtt'
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect', 'rtmp'] },
{ 'path': 'rtsp://10.0.0.1:554/record', 'roles': ['record'] }
]
},
'height': 1080,
'width': 1920
}
}
}
config = FrigateConfig(config=json_config)
ffmpeg_cmds = config.cameras['back'].ffmpeg_cmds
assert(len(ffmpeg_cmds) == 1)
assert(not 'clips' in ffmpeg_cmds[0]['roles'])
if __name__ == '__main__':
main(verbosity=2)

View File

@@ -0,0 +1,39 @@
import cv2
import numpy as np
from unittest import TestCase, main
from frigate.util import yuv_region_2_rgb
class TestYuvRegion2RGB(TestCase):
def setUp(self):
self.bgr_frame = np.zeros((100, 200, 3), np.uint8)
self.bgr_frame[:] = (0, 0, 255)
self.bgr_frame[5:55, 5:55] = (255,0,0)
# cv2.imwrite(f"bgr_frame.jpg", self.bgr_frame)
self.yuv_frame = cv2.cvtColor(self.bgr_frame, cv2.COLOR_BGR2YUV_I420)
def test_crop_yuv(self):
cropped = yuv_region_2_rgb(self.yuv_frame, (10,10,50,50))
# ensure the upper left pixel is blue
assert(np.all(cropped[0, 0] == [0, 0, 255]))
def test_crop_yuv_out_of_bounds(self):
cropped = yuv_region_2_rgb(self.yuv_frame, (0,0,200,200))
# cv2.imwrite(f"cropped.jpg", cv2.cvtColor(cropped, cv2.COLOR_RGB2BGR))
# ensure the upper left pixel is red
# the yuv conversion has some noise
assert(np.all(cropped[0, 0] == [255, 1, 0]))
# ensure the bottom right is black
assert(np.all(cropped[199, 199] == [0, 0, 0]))
def test_crop_yuv_portrait(self):
bgr_frame = np.zeros((1920, 1080, 3), np.uint8)
bgr_frame[:] = (0, 0, 255)
bgr_frame[5:55, 5:55] = (255,0,0)
# cv2.imwrite(f"bgr_frame.jpg", self.bgr_frame)
yuv_frame = cv2.cvtColor(bgr_frame, cv2.COLOR_BGR2YUV_I420)
cropped = yuv_region_2_rgb(yuv_frame, (0, 852, 648, 1500))
# cv2.imwrite(f"cropped.jpg", cv2.cvtColor(cropped, cv2.COLOR_RGB2BGR))
if __name__ == '__main__':
main(verbosity=2)

View File

@@ -1,17 +1,24 @@
from abc import ABC, abstractmethod
import datetime
import time
import signal
import traceback
import collections
import numpy as np
import cv2
import threading
import matplotlib.pyplot as plt
import datetime
import hashlib
import json
import logging
import signal
import subprocess as sp
import threading
import time
import traceback
from abc import ABC, abstractmethod
from multiprocessing import shared_memory
from typing import AnyStr
import cv2
import matplotlib.pyplot as plt
import numpy as np
logger = logging.getLogger(__name__)
def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thickness=2, color=None, position='ul'):
if color is None:
color = (0,0,255)
@@ -43,14 +50,11 @@ def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thicknes
cv2.putText(frame, display_text, (text_offset_x, text_offset_y + line_height - 3), font, fontScale=font_scale, color=(0, 0, 0), thickness=2)
def calculate_region(frame_shape, xmin, ymin, xmax, ymax, multiplier=2):
# size is larger than longest edge
size = int(max(xmax-xmin, ymax-ymin)*multiplier)
# size is the longest edge and divisible by 4
size = int(max(xmax-xmin, ymax-ymin)//4*4*multiplier)
# dont go any smaller than 300
if size < 300:
size = 300
# if the size is too big to fit in the frame
if size > min(frame_shape[0], frame_shape[1]):
size = min(frame_shape[0], frame_shape[1])
# x_offset is midpoint of bounding box minus half the size
x_offset = int((xmax-xmin)/2.0+xmin-size/2.0)
@@ -58,48 +62,156 @@ def calculate_region(frame_shape, xmin, ymin, xmax, ymax, multiplier=2):
if x_offset < 0:
x_offset = 0
elif x_offset > (frame_shape[1]-size):
x_offset = (frame_shape[1]-size)
x_offset = max(0, (frame_shape[1]-size))
# y_offset is midpoint of bounding box minus half the size
y_offset = int((ymax-ymin)/2.0+ymin-size/2.0)
# if outside the image
# # if outside the image
if y_offset < 0:
y_offset = 0
elif y_offset > (frame_shape[0]-size):
y_offset = (frame_shape[0]-size)
y_offset = max(0, (frame_shape[0]-size))
return (x_offset, y_offset, x_offset+size, y_offset+size)
def get_yuv_crop(frame_shape, crop):
# crop should be (x1,y1,x2,y2)
frame_height = frame_shape[0]//3*2
frame_width = frame_shape[1]
# compute the width/height of the uv channels
uv_width = frame_width//2 # width of the uv channels
uv_height = frame_height//4 # height of the uv channels
# compute the offset for upper left corner of the uv channels
uv_x_offset = crop[0]//2 # x offset of the uv channels
uv_y_offset = crop[1]//4 # y offset of the uv channels
# compute the width/height of the uv crops
uv_crop_width = (crop[2] - crop[0])//2 # width of the cropped uv channels
uv_crop_height = (crop[3] - crop[1])//4 # height of the cropped uv channels
# ensure crop dimensions are multiples of 2 and 4
y = (
crop[0],
crop[1],
crop[0] + uv_crop_width*2,
crop[1] + uv_crop_height*4
)
u1 = (
0 + uv_x_offset,
frame_height + uv_y_offset,
0 + uv_x_offset + uv_crop_width,
frame_height + uv_y_offset + uv_crop_height
)
u2 = (
uv_width + uv_x_offset,
frame_height + uv_y_offset,
uv_width + uv_x_offset + uv_crop_width,
frame_height + uv_y_offset + uv_crop_height
)
v1 = (
0 + uv_x_offset,
frame_height + uv_height + uv_y_offset,
0 + uv_x_offset + uv_crop_width,
frame_height + uv_height + uv_y_offset + uv_crop_height
)
v2 = (
uv_width + uv_x_offset,
frame_height + uv_height + uv_y_offset,
uv_width + uv_x_offset + uv_crop_width,
frame_height + uv_height + uv_y_offset + uv_crop_height
)
return y, u1, u2, v1, v2
def yuv_region_2_rgb(frame, region):
height = frame.shape[0]//3*2
width = frame.shape[1]
# make sure the size is a multiple of 4
size = (region[3] - region[1])//4*4
try:
height = frame.shape[0]//3*2
width = frame.shape[1]
x1 = region[0]
y1 = region[1]
# get the crop box if the region extends beyond the frame
crop_x1 = max(0, region[0])
crop_y1 = max(0, region[1])
# ensure these are a multiple of 4
crop_x2 = min(width, region[2])
crop_y2 = min(height, region[3])
crop_box = (crop_x1, crop_y1, crop_x2, crop_y2)
uv_x1 = x1//2
uv_y1 = y1//4
y, u1, u2, v1, v2 = get_yuv_crop(frame.shape, crop_box)
uv_width = size//2
uv_height = size//4
# if the region starts outside the frame, indent the start point in the cropped frame
y_channel_x_offset = abs(min(0, region[0]))
y_channel_y_offset = abs(min(0, region[1]))
u_y_start = height
v_y_start = height + height//4
two_x_offset = width//2
uv_channel_x_offset = y_channel_x_offset//2
uv_channel_y_offset = y_channel_y_offset//4
yuv_cropped_frame = np.zeros((size+size//2, size), np.uint8)
# y channel
yuv_cropped_frame[0:size, 0:size] = frame[y1:y1+size, x1:x1+size]
# u channel
yuv_cropped_frame[size:size+uv_height, 0:uv_width] = frame[uv_y1+u_y_start:uv_y1+u_y_start+uv_height, uv_x1:uv_x1+uv_width]
yuv_cropped_frame[size:size+uv_height, uv_width:size] = frame[uv_y1+u_y_start:uv_y1+u_y_start+uv_height, uv_x1+two_x_offset:uv_x1+two_x_offset+uv_width]
# v channel
yuv_cropped_frame[size+uv_height:size+uv_height*2, 0:uv_width] = frame[uv_y1+v_y_start:uv_y1+v_y_start+uv_height, uv_x1:uv_x1+uv_width]
yuv_cropped_frame[size+uv_height:size+uv_height*2, uv_width:size] = frame[uv_y1+v_y_start:uv_y1+v_y_start+uv_height, uv_x1+two_x_offset:uv_x1+two_x_offset+uv_width]
# create the yuv region frame
# make sure the size is a multiple of 4
size = (region[3] - region[1])//4*4
yuv_cropped_frame = np.zeros((size+size//2, size), np.uint8)
# fill in black
yuv_cropped_frame[:] = 128
yuv_cropped_frame[0:size,0:size] = 16
return cv2.cvtColor(yuv_cropped_frame, cv2.COLOR_YUV2RGB_I420)
# copy the y channel
yuv_cropped_frame[
y_channel_y_offset:y_channel_y_offset + y[3] - y[1],
y_channel_x_offset:y_channel_x_offset + y[2] - y[0]
] = frame[
y[1]:y[3],
y[0]:y[2]
]
uv_crop_width = u1[2] - u1[0]
uv_crop_height = u1[3] - u1[1]
# copy u1
yuv_cropped_frame[
size + uv_channel_y_offset:size + uv_channel_y_offset + uv_crop_height,
0 + uv_channel_x_offset:0 + uv_channel_x_offset + uv_crop_width
] = frame[
u1[1]:u1[3],
u1[0]:u1[2]
]
# copy u2
yuv_cropped_frame[
size + uv_channel_y_offset:size + uv_channel_y_offset + uv_crop_height,
size//2 + uv_channel_x_offset:size//2 + uv_channel_x_offset + uv_crop_width
] = frame[
u2[1]:u2[3],
u2[0]:u2[2]
]
# copy v1
yuv_cropped_frame[
size+size//4 + uv_channel_y_offset:size+size//4 + uv_channel_y_offset + uv_crop_height,
0 + uv_channel_x_offset:0 + uv_channel_x_offset + uv_crop_width
] = frame[
v1[1]:v1[3],
v1[0]:v1[2]
]
# copy v2
yuv_cropped_frame[
size+size//4 + uv_channel_y_offset:size+size//4 + uv_channel_y_offset + uv_crop_height,
size//2 + uv_channel_x_offset:size//2 + uv_channel_x_offset + uv_crop_width
] = frame[
v2[1]:v2[3],
v2[0]:v2[2]
]
return cv2.cvtColor(yuv_cropped_frame, cv2.COLOR_YUV2RGB_I420)
except:
print(f"frame.shape: {frame.shape}")
print(f"region: {region}")
raise
def intersection(box_a, box_b):
return (
@@ -179,6 +291,24 @@ def print_stack(sig, frame):
def listen():
signal.signal(signal.SIGUSR1, print_stack)
def create_mask(frame_shape, mask):
mask_img = np.zeros(frame_shape, np.uint8)
mask_img[:] = 255
if isinstance(mask, list):
for m in mask:
add_mask(m, mask_img)
elif isinstance(mask, str):
add_mask(mask, mask_img)
return mask_img
def add_mask(mask, mask_img):
points = mask.split(',')
contour = np.array([[int(points[i]), int(points[i+1])] for i in range(0, len(points), 2)])
cv2.fillPoly(mask_img, pts=[contour], color=(0))
class FrameManager(ABC):
@abstractmethod
def create(self, name, size) -> AnyStr:
@@ -241,4 +371,4 @@ class SharedMemoryFrameManager(FrameManager):
if name in self.shm_store:
self.shm_store[name].close()
self.shm_store[name].unlink()
del self.shm_store[name]
del self.shm_store[name]

View File

@@ -1,59 +1,37 @@
import os
import time
import datetime
import cv2
import queue
import threading
import ctypes
import multiprocessing as mp
import subprocess as sp
import numpy as np
import base64
import copy
import ctypes
import datetime
import itertools
import json
import base64
from typing import Dict, List
import logging
import multiprocessing as mp
import os
import queue
import subprocess as sp
import signal
import threading
import time
from collections import defaultdict
from frigate.util import draw_box_with_label, yuv_region_2_rgb, area, calculate_region, clipped, intersection_over_union, intersection, EventsPerSecond, listen, FrameManager, SharedMemoryFrameManager
from frigate.objects import ObjectTracker
from setproctitle import setproctitle
from typing import Dict, List
import cv2
import numpy as np
from frigate.config import CameraConfig
from frigate.edgetpu import RemoteObjectDetector
from frigate.log import LogPipe
from frigate.motion import MotionDetector
from frigate.objects import ObjectTracker
from frigate.util import (EventsPerSecond, FrameManager,
SharedMemoryFrameManager, area, calculate_region,
clipped, draw_box_with_label, intersection,
intersection_over_union, listen, yuv_region_2_rgb)
def get_frame_shape(source):
ffprobe_cmd = " ".join([
'ffprobe',
'-v',
'panic',
'-show_error',
'-show_streams',
'-of',
'json',
'"'+source+'"'
])
print(ffprobe_cmd)
p = sp.Popen(ffprobe_cmd, stdout=sp.PIPE, shell=True)
(output, err) = p.communicate()
p_status = p.wait()
info = json.loads(output)
print(info)
logger = logging.getLogger(__name__)
video_info = [s for s in info['streams'] if s['codec_type'] == 'video'][0]
if video_info['height'] != 0 and video_info['width'] != 0:
return (video_info['height'], video_info['width'], 3)
# fallback to using opencv if ffprobe didnt succeed
video = cv2.VideoCapture(source)
ret, frame = video.read()
frame_shape = frame.shape
video.release()
return frame_shape
def get_ffmpeg_input(ffmpeg_input):
frigate_vars = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')}
return ffmpeg_input.format(**frigate_vars)
def filtered(obj, objects_to_track, object_filters, mask=None):
def filtered(obj, objects_to_track, object_filters):
object_name = obj[0]
if not object_name in objects_to_track:
@@ -64,63 +42,66 @@ def filtered(obj, objects_to_track, object_filters, mask=None):
# if the min area is larger than the
# detected object, don't add it to detected objects
if obj_settings.get('min_area',-1) > obj[3]:
if obj_settings.min_area > obj[3]:
return True
# if the detected object is larger than the
# max area, don't add it to detected objects
if obj_settings.get('max_area', 24000000) < obj[3]:
if obj_settings.max_area < obj[3]:
return True
# if the score is lower than the min_score, skip
if obj_settings.get('min_score', 0) > obj[1]:
if obj_settings.min_score > obj[1]:
return True
# compute the coordinates of the object and make sure
# the location isnt outside the bounds of the image (can happen from rounding)
y_location = min(int(obj[2][3]), len(mask)-1)
x_location = min(int((obj[2][2]-obj[2][0])/2.0)+obj[2][0], len(mask[0])-1)
if not obj_settings.mask is None:
# compute the coordinates of the object and make sure
# the location isnt outside the bounds of the image (can happen from rounding)
y_location = min(int(obj[2][3]), len(obj_settings.mask)-1)
x_location = min(int((obj[2][2]-obj[2][0])/2.0)+obj[2][0], len(obj_settings.mask[0])-1)
# if the object is in a masked location, don't add it to detected objects
if (not mask is None) and (mask[y_location][x_location] == 0):
return True
# if the object is in a masked location, don't add it to detected objects
if obj_settings.mask[y_location][x_location] == 0:
return True
return False
def create_tensor_input(frame, region):
def create_tensor_input(frame, model_shape, region):
cropped_frame = yuv_region_2_rgb(frame, region)
# Resize to 300x300 if needed
if cropped_frame.shape != (300, 300, 3):
cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
if cropped_frame.shape != (model_shape[0], model_shape[1], 3):
cropped_frame = cv2.resize(cropped_frame, dsize=model_shape, interpolation=cv2.INTER_LINEAR)
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
# Expand dimensions since the model expects images to have shape: [1, height, width, 3]
return np.expand_dims(cropped_frame, axis=0)
def start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_process=None):
if not ffmpeg_process is None:
print("Terminating the existing ffmpeg process...")
ffmpeg_process.terminate()
try:
print("Waiting for ffmpeg to exit gracefully...")
ffmpeg_process.communicate(timeout=30)
except sp.TimeoutExpired:
print("FFmpeg didnt exit. Force killing...")
ffmpeg_process.kill()
ffmpeg_process.communicate()
ffmpeg_process = None
def stop_ffmpeg(ffmpeg_process, logger):
logger.info("Terminating the existing ffmpeg process...")
ffmpeg_process.terminate()
try:
logger.info("Waiting for ffmpeg to exit gracefully...")
ffmpeg_process.communicate(timeout=30)
except sp.TimeoutExpired:
logger.info("FFmpeg didnt exit. Force killing...")
ffmpeg_process.kill()
ffmpeg_process.communicate()
ffmpeg_process = None
print("Creating ffmpeg process...")
print(" ".join(ffmpeg_cmd))
process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, stdin = sp.DEVNULL, bufsize=frame_size*10, start_new_session=True)
def start_or_restart_ffmpeg(ffmpeg_cmd, logger, logpipe: LogPipe, frame_size=None, ffmpeg_process=None):
if not ffmpeg_process is None:
stop_ffmpeg(ffmpeg_process, logger)
if frame_size is None:
process = sp.Popen(ffmpeg_cmd, stdout = sp.DEVNULL, stderr=logpipe, stdin = sp.DEVNULL, start_new_session=True)
else:
process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, stderr=logpipe, stdin = sp.DEVNULL, bufsize=frame_size*10, start_new_session=True)
return process
def capture_frames(ffmpeg_process, camera_name, frame_shape, frame_manager: FrameManager,
frame_queue, take_frame: int, fps:mp.Value, skipped_fps: mp.Value,
stop_event: mp.Event, current_frame: mp.Value):
frame_queue, fps:mp.Value, skipped_fps: mp.Value, current_frame: mp.Value):
frame_num = 0
frame_size = frame_shape[0] * frame_shape[1] * 3 // 2
frame_size = frame_shape[0] * frame_shape[1]
frame_rate = EventsPerSecond()
frame_rate.start()
skipped_eps = EventsPerSecond()
@@ -128,33 +109,23 @@ def capture_frames(ffmpeg_process, camera_name, frame_shape, frame_manager: Fram
while True:
fps.value = frame_rate.eps()
skipped_fps = skipped_eps.eps()
if stop_event.is_set():
print(f"{camera_name}: stop event set. exiting capture thread...")
break
current_frame.value = datetime.datetime.now().timestamp()
frame_name = f"{camera_name}{current_frame.value}"
frame_buffer = frame_manager.create(frame_name, frame_size)
try:
frame_buffer[:] = ffmpeg_process.stdout.read(frame_size)
except:
print(f"{camera_name}: ffmpeg sent a broken frame. something is wrong.")
frame_buffer[:] = ffmpeg_process.stdout.read(frame_size)
except Exception as e:
logger.info(f"{camera_name}: ffmpeg sent a broken frame. {e}")
if ffmpeg_process.poll() != None:
print(f"{camera_name}: ffmpeg process is not running. exiting capture thread...")
frame_manager.delete(frame_name)
break
continue
if ffmpeg_process.poll() != None:
logger.info(f"{camera_name}: ffmpeg process is not running. exiting capture thread...")
frame_manager.delete(frame_name)
break
continue
frame_rate.update()
frame_num += 1
if (frame_num % take_frame) != 0:
skipped_eps.update()
frame_manager.delete(frame_name)
continue
# if the queue is full, skip this frame
if frame_queue.full():
skipped_eps.update()
@@ -168,123 +139,139 @@ def capture_frames(ffmpeg_process, camera_name, frame_shape, frame_manager: Fram
frame_queue.put(current_frame.value)
class CameraWatchdog(threading.Thread):
def __init__(self, name, config, frame_queue, camera_fps, ffmpeg_pid, stop_event):
def __init__(self, camera_name, config, frame_queue, camera_fps, ffmpeg_pid, stop_event):
threading.Thread.__init__(self)
self.name = name
self.logger = logging.getLogger(f"watchdog.{camera_name}")
self.camera_name = camera_name
self.config = config
self.capture_thread = None
self.ffmpeg_process = None
self.stop_event = stop_event
self.ffmpeg_detect_process = None
self.logpipe = LogPipe(f"ffmpeg.{self.camera_name}.detect", logging.ERROR)
self.ffmpeg_other_processes = []
self.camera_fps = camera_fps
self.ffmpeg_pid = ffmpeg_pid
self.frame_queue = frame_queue
self.frame_shape = self.config['frame_shape']
self.frame_size = self.frame_shape[0] * self.frame_shape[1] * 3 // 2
self.frame_shape = self.config.frame_shape_yuv
self.frame_size = self.frame_shape[0] * self.frame_shape[1]
self.stop_event = stop_event
def run(self):
self.start_ffmpeg()
self.start_ffmpeg_detect()
for c in self.config.ffmpeg_cmds:
if 'detect' in c['roles']:
continue
logpipe = LogPipe(f"ffmpeg.{self.camera_name}.{'_'.join(sorted(c['roles']))}", logging.ERROR)
self.ffmpeg_other_processes.append({
'cmd': c['cmd'],
'logpipe': logpipe,
'process': start_or_restart_ffmpeg(c['cmd'], self.logger, logpipe)
})
time.sleep(10)
while True:
if self.stop_event.is_set():
print(f"Exiting watchdog...")
stop_ffmpeg(self.ffmpeg_detect_process, self.logger)
for p in self.ffmpeg_other_processes:
stop_ffmpeg(p['process'], self.logger)
p['logpipe'].close()
self.logpipe.close()
break
now = datetime.datetime.now().timestamp()
if not self.capture_thread.is_alive():
self.start_ffmpeg()
elif now - self.capture_thread.current_frame.value > 5:
print(f"No frames received from {self.name} in 5 seconds. Exiting ffmpeg...")
self.ffmpeg_process.terminate()
self.start_ffmpeg_detect()
elif now - self.capture_thread.current_frame.value > 20:
self.logger.info(f"No frames received from {self.camera_name} in 20 seconds. Exiting ffmpeg...")
self.ffmpeg_detect_process.terminate()
try:
print("Waiting for ffmpeg to exit gracefully...")
self.ffmpeg_process.communicate(timeout=30)
self.logger.info("Waiting for ffmpeg to exit gracefully...")
self.ffmpeg_detect_process.communicate(timeout=30)
except sp.TimeoutExpired:
print("FFmpeg didnt exit. Force killing...")
self.ffmpeg_process.kill()
self.ffmpeg_process.communicate()
self.logger.info("FFmpeg didnt exit. Force killing...")
self.ffmpeg_detect_process.kill()
self.ffmpeg_detect_process.communicate()
for p in self.ffmpeg_other_processes:
poll = p['process'].poll()
if poll == None:
continue
p['process'] = start_or_restart_ffmpeg(p['cmd'], self.logger, p['logpipe'], ffmpeg_process=p['process'])
# wait a bit before checking again
time.sleep(10)
def start_ffmpeg(self):
self.ffmpeg_process = start_or_restart_ffmpeg(self.config['ffmpeg_cmd'], self.frame_size)
self.ffmpeg_pid.value = self.ffmpeg_process.pid
self.capture_thread = CameraCapture(self.name, self.ffmpeg_process, self.frame_shape, self.frame_queue,
self.config['take_frame'], self.camera_fps, self.stop_event)
self.capture_thread.start()
def start_ffmpeg_detect(self):
ffmpeg_cmd = [c['cmd'] for c in self.config.ffmpeg_cmds if 'detect' in c['roles']][0]
self.ffmpeg_detect_process = start_or_restart_ffmpeg(ffmpeg_cmd, self.logger, self.logpipe, self.frame_size)
self.ffmpeg_pid.value = self.ffmpeg_detect_process.pid
self.capture_thread = CameraCapture(self.camera_name, self.ffmpeg_detect_process, self.frame_shape, self.frame_queue,
self.camera_fps)
self.capture_thread.start()
class CameraCapture(threading.Thread):
def __init__(self, name, ffmpeg_process, frame_shape, frame_queue, take_frame, fps, stop_event):
def __init__(self, camera_name, ffmpeg_process, frame_shape, frame_queue, fps):
threading.Thread.__init__(self)
self.name = name
self.name = f"capture:{camera_name}"
self.camera_name = camera_name
self.frame_shape = frame_shape
self.frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2]
self.frame_queue = frame_queue
self.take_frame = take_frame
self.fps = fps
self.skipped_fps = EventsPerSecond()
self.frame_manager = SharedMemoryFrameManager()
self.ffmpeg_process = ffmpeg_process
self.current_frame = mp.Value('d', 0.0)
self.last_frame = 0
self.stop_event = stop_event
def run(self):
self.skipped_fps.start()
capture_frames(self.ffmpeg_process, self.name, self.frame_shape, self.frame_manager, self.frame_queue, self.take_frame,
self.fps, self.skipped_fps, self.stop_event, self.current_frame)
capture_frames(self.ffmpeg_process, self.camera_name, self.frame_shape, self.frame_manager, self.frame_queue,
self.fps, self.skipped_fps, self.current_frame)
def capture_camera(name, config: CameraConfig, process_info):
stop_event = mp.Event()
def receiveSignal(signalNumber, frame):
stop_event.set()
signal.signal(signal.SIGTERM, receiveSignal)
signal.signal(signal.SIGINT, receiveSignal)
def capture_camera(name, config, process_info, stop_event):
frame_queue = process_info['frame_queue']
camera_watchdog = CameraWatchdog(name, config, frame_queue, process_info['camera_fps'], process_info['ffmpeg_pid'], stop_event)
camera_watchdog.start()
camera_watchdog.join()
def track_camera(name, config, detection_queue, result_connection, detected_objects_queue, process_info, stop_event):
def track_camera(name, config: CameraConfig, model_shape, detection_queue, result_connection, detected_objects_queue, process_info):
stop_event = mp.Event()
def receiveSignal(signalNumber, frame):
stop_event.set()
signal.signal(signal.SIGTERM, receiveSignal)
signal.signal(signal.SIGINT, receiveSignal)
threading.current_thread().name = f"process:{name}"
setproctitle(f"frigate.process:{name}")
listen()
frame_queue = process_info['frame_queue']
detection_enabled = process_info['detection_enabled']
frame_shape = config['frame_shape']
frame_shape = config.frame_shape
objects_to_track = config.objects.track
object_filters = config.objects.filters
# Merge the tracked object config with the global config
camera_objects_config = config.get('objects', {})
objects_to_track = camera_objects_config.get('track', [])
object_filters = camera_objects_config.get('filters', {})
motion_detector = MotionDetector(frame_shape, config.motion)
object_detector = RemoteObjectDetector(name, '/labelmap.txt', detection_queue, result_connection, model_shape)
# load in the mask for object detection
if 'mask' in config:
if config['mask'].startswith('base64,'):
img = base64.b64decode(config['mask'][7:])
npimg = np.fromstring(img, dtype=np.uint8)
mask = cv2.imdecode(npimg, cv2.IMREAD_GRAYSCALE)
elif config['mask'].startswith('poly,'):
points = config['mask'].split(',')[1:]
contour = np.array([[int(points[i]), int(points[i+1])] for i in range(0, len(points), 2)])
mask = np.zeros((frame_shape[0], frame_shape[1]), np.uint8)
mask[:] = 255
cv2.fillPoly(mask, pts=[contour], color=(0))
else:
mask = cv2.imread("/config/{}".format(config['mask']), cv2.IMREAD_GRAYSCALE)
else:
mask = None
if mask is None or mask.size == 0:
mask = np.zeros((frame_shape[0], frame_shape[1]), np.uint8)
mask[:] = 255
motion_detector = MotionDetector(frame_shape, mask, resize_factor=6)
object_detector = RemoteObjectDetector(name, '/labelmap.txt', detection_queue, result_connection)
object_tracker = ObjectTracker(10)
object_tracker = ObjectTracker(config.detect)
frame_manager = SharedMemoryFrameManager()
process_frames(name, frame_queue, frame_shape, frame_manager, motion_detector, object_detector,
object_tracker, detected_objects_queue, process_info, objects_to_track, object_filters, mask, stop_event)
process_frames(name, frame_queue, frame_shape, model_shape, frame_manager, motion_detector, object_detector,
object_tracker, detected_objects_queue, process_info, objects_to_track, object_filters, detection_enabled, stop_event)
print(f"{name}: exiting subprocess")
logger.info(f"{name}: exiting subprocess")
def reduce_boxes(boxes):
if len(boxes) == 0:
@@ -292,8 +279,8 @@ def reduce_boxes(boxes):
reduced_boxes = cv2.groupRectangles([list(b) for b in itertools.chain(boxes, boxes)], 1, 0.2)[0]
return [tuple(b) for b in reduced_boxes]
def detect(object_detector, frame, region, objects_to_track, object_filters, mask):
tensor_input = create_tensor_input(frame, region)
def detect(object_detector, frame, model_shape, region, objects_to_track, object_filters):
tensor_input = create_tensor_input(frame, model_shape, region)
detections = []
region_detections = object_detector.detect(tensor_input)
@@ -310,16 +297,16 @@ def detect(object_detector, frame, region, objects_to_track, object_filters, mas
(x_max-x_min)*(y_max-y_min),
region)
# apply object filters
if filtered(det, objects_to_track, object_filters, mask):
if filtered(det, objects_to_track, object_filters):
continue
detections.append(det)
return detections
def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape,
def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape, model_shape,
frame_manager: FrameManager, motion_detector: MotionDetector,
object_detector: RemoteObjectDetector, object_tracker: ObjectTracker,
detected_objects_queue: mp.Queue, process_info: Dict,
objects_to_track: List[str], object_filters: Dict, mask, stop_event: mp.Event,
objects_to_track: List[str], object_filters, detection_enabled: mp.Value, stop_event,
exit_on_empty: bool = False):
fps = process_info['process_fps']
@@ -330,9 +317,12 @@ def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape,
fps_tracker.start()
while True:
if stop_event.is_set() or (exit_on_empty and frame_queue.empty()):
print(f"Exiting track_objects...")
break
if stop_event.is_set():
break
if exit_on_empty and frame_queue.empty():
logger.info(f"Exiting track_objects...")
break
try:
frame_time = frame_queue.get(True, 10)
@@ -344,7 +334,15 @@ def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape,
frame = frame_manager.get(f"{camera_name}{frame_time}", (frame_shape[0]*3//2, frame_shape[1]))
if frame is None:
print(f"{camera_name}: frame {frame_time} is not in memory store.")
logger.info(f"{camera_name}: frame {frame_time} is not in memory store.")
continue
if not detection_enabled.value:
fps.value = fps_tracker.eps()
object_tracker.match_and_update(frame_time, [])
detected_objects_queue.put((camera_name, frame_time, object_tracker.tracked_objects, [], []))
detection_fps.value = object_detector.fps.eps()
frame_manager.close(f"{camera_name}{frame_time}")
continue
# look for motion
@@ -369,7 +367,7 @@ def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape,
# resize regions and detect
detections = []
for region in regions:
detections.extend(detect(object_detector, frame, region, objects_to_track, object_filters, mask))
detections.extend(detect(object_detector, frame, model_shape, region, objects_to_track, object_filters))
#########
# merge objects, check for clipped objects and look again up to 4 times
@@ -401,8 +399,10 @@ def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape,
region = calculate_region(frame_shape,
box[0], box[1],
box[2], box[3])
regions.append(region)
selected_objects.extend(detect(object_detector, frame, region, objects_to_track, object_filters, mask))
selected_objects.extend(detect(object_detector, frame, model_shape, region, objects_to_track, object_filters))
refining = True
else:
@@ -419,11 +419,11 @@ def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape,
# add to the queue if not full
if(detected_objects_queue.full()):
frame_manager.delete(f"{camera_name}{frame_time}")
continue
frame_manager.delete(f"{camera_name}{frame_time}")
continue
else:
fps_tracker.update()
fps.value = fps_tracker.eps()
detected_objects_queue.put((camera_name, frame_time, object_tracker.tracked_objects))
detection_fps.value = object_detector.fps.eps()
frame_manager.close(f"{camera_name}{frame_time}")
fps_tracker.update()
fps.value = fps_tracker.eps()
detected_objects_queue.put((camera_name, frame_time, object_tracker.tracked_objects, motion_boxes, regions))
detection_fps.value = object_detector.fps.eps()
frame_manager.close(f"{camera_name}{frame_time}")

36
frigate/watchdog.py Normal file
View File

@@ -0,0 +1,36 @@
import datetime
import logging
import threading
import time
logger = logging.getLogger(__name__)
class FrigateWatchdog(threading.Thread):
def __init__(self, detectors, stop_event):
threading.Thread.__init__(self)
self.name = 'frigate_watchdog'
self.detectors = detectors
self.stop_event = stop_event
def run(self):
time.sleep(10)
while True:
# wait a bit before checking
time.sleep(10)
if self.stop_event.is_set():
logger.info(f"Exiting watchdog...")
break
now = datetime.datetime.now().timestamp()
# check the detection processes
for detector in self.detectors.values():
detection_start = detector.detection_start.value
if (detection_start > 0.0 and
now - detection_start > 10):
logger.info("Detection appears to be stuck. Restarting detection process")
detector.start_or_restart()
elif not detector.detect_process.is_alive():
logger.info("Detection appears to have stopped. Restarting detection process")
detector.start_or_restart()

58
frigate/zeroconf.py Normal file
View File

@@ -0,0 +1,58 @@
import logging
import socket
from zeroconf import (
ServiceInfo,
NonUniqueNameException,
InterfaceChoice,
IPVersion,
Zeroconf,
)
logger = logging.getLogger(__name__)
ZEROCONF_TYPE = "_frigate._tcp.local."
# Taken from: http://stackoverflow.com/a/11735897
def get_local_ip() -> str:
"""Try to determine the local IP address of the machine."""
try:
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
# Use Google Public DNS server to determine own IP
sock.connect(("8.8.8.8", 80))
return sock.getsockname()[0] # type: ignore
except OSError:
try:
return socket.gethostbyname(socket.gethostname())
except socket.gaierror:
return "127.0.0.1"
finally:
sock.close()
def broadcast_zeroconf(frigate_id):
zeroconf = Zeroconf(interfaces=InterfaceChoice.Default, ip_version=IPVersion.V4Only)
host_ip = get_local_ip()
try:
host_ip_pton = socket.inet_pton(socket.AF_INET, host_ip)
except OSError:
host_ip_pton = socket.inet_pton(socket.AF_INET6, host_ip)
info = ServiceInfo(
ZEROCONF_TYPE,
name=f"{frigate_id}.{ZEROCONF_TYPE}",
addresses=[host_ip_pton],
port=5000,
)
logger.info("Starting Zeroconf broadcast")
try:
zeroconf.register_service(info)
except NonUniqueNameException:
logger.error(
"Frigate instance with identical name present in the local network"
)
return zeroconf

View File

@@ -0,0 +1,41 @@
"""Peewee migrations -- 001_create_events_table.py.
Some examples (model - class or model name)::
> Model = migrator.orm['model_name'] # Return model in current state by name
> migrator.sql(sql) # Run custom SQL
> migrator.python(func, *args, **kwargs) # Run python code
> migrator.create_model(Model) # Create a model (could be used as decorator)
> migrator.remove_model(model, cascade=True) # Remove a model
> migrator.add_fields(model, **fields) # Add fields to a model
> migrator.change_fields(model, **fields) # Change fields
> migrator.remove_fields(model, *field_names, cascade=True)
> migrator.rename_field(model, old_field_name, new_field_name)
> migrator.rename_table(model, new_table_name)
> migrator.add_index(model, *col_names, unique=False)
> migrator.drop_index(model, *col_names)
> migrator.add_not_null(model, *field_names)
> migrator.drop_not_null(model, *field_names)
> migrator.add_default(model, field_name, default)
"""
import datetime as dt
import peewee as pw
from decimal import ROUND_HALF_EVEN
try:
import playhouse.postgres_ext as pw_pext
except ImportError:
pass
SQL = pw.SQL
def migrate(migrator, database, fake=False, **kwargs):
migrator.sql('CREATE TABLE IF NOT EXISTS "event" ("id" VARCHAR(30) NOT NULL PRIMARY KEY, "label" VARCHAR(20) NOT NULL, "camera" VARCHAR(20) NOT NULL, "start_time" DATETIME NOT NULL, "end_time" DATETIME NOT NULL, "top_score" REAL NOT NULL, "false_positive" INTEGER NOT NULL, "zones" JSON NOT NULL, "thumbnail" TEXT NOT NULL)')
migrator.sql('CREATE INDEX IF NOT EXISTS "event_label" ON "event" ("label")')
migrator.sql('CREATE INDEX IF NOT EXISTS "event_camera" ON "event" ("camera")')
def rollback(migrator, database, fake=False, **kwargs):
pass

View File

@@ -0,0 +1,41 @@
"""Peewee migrations -- 002_add_clip_snapshot.py.
Some examples (model - class or model name)::
> Model = migrator.orm['model_name'] # Return model in current state by name
> migrator.sql(sql) # Run custom SQL
> migrator.python(func, *args, **kwargs) # Run python code
> migrator.create_model(Model) # Create a model (could be used as decorator)
> migrator.remove_model(model, cascade=True) # Remove a model
> migrator.add_fields(model, **fields) # Add fields to a model
> migrator.change_fields(model, **fields) # Change fields
> migrator.remove_fields(model, *field_names, cascade=True)
> migrator.rename_field(model, old_field_name, new_field_name)
> migrator.rename_table(model, new_table_name)
> migrator.add_index(model, *col_names, unique=False)
> migrator.drop_index(model, *col_names)
> migrator.add_not_null(model, *field_names)
> migrator.drop_not_null(model, *field_names)
> migrator.add_default(model, field_name, default)
"""
import datetime as dt
import peewee as pw
from decimal import ROUND_HALF_EVEN
from frigate.models import Event
try:
import playhouse.postgres_ext as pw_pext
except ImportError:
pass
SQL = pw.SQL
def migrate(migrator, database, fake=False, **kwargs):
migrator.add_fields(Event, has_clip=pw.BooleanField(default=True), has_snapshot=pw.BooleanField(default=True))
def rollback(migrator, database, fake=False, **kwargs):
migrator.remove_fields(Event, ['has_clip', 'has_snapshot'])

134
nginx/nginx.conf Normal file
View File

@@ -0,0 +1,134 @@
worker_processes 1;
error_log /var/log/nginx/error.log warn;
pid /var/run/nginx.pid;
load_module "modules/ngx_rtmp_module.so";
events {
worker_connections 1024;
}
http {
include /etc/nginx/mime.types;
default_type application/octet-stream;
log_format main '$remote_addr - $remote_user [$time_local] "$request" '
'$status $body_bytes_sent "$http_referer" '
'"$http_user_agent" "$http_x_forwarded_for"';
access_log /var/log/nginx/access.log main;
sendfile on;
keepalive_timeout 65;
upstream frigate_api {
server localhost:5001;
keepalive 1024;
}
server {
listen 5000;
location /stream/ {
add_header 'Cache-Control' 'no-cache';
add_header 'Access-Control-Allow-Origin' "$http_origin" always;
add_header 'Access-Control-Allow-Credentials' 'true';
add_header 'Access-Control-Expose-Headers' 'Content-Length';
if ($request_method = 'OPTIONS') {
add_header 'Access-Control-Allow-Origin' "$http_origin";
add_header 'Access-Control-Max-Age' 1728000;
add_header 'Content-Type' 'text/plain charset=UTF-8';
add_header 'Content-Length' 0;
return 204;
}
types {
application/dash+xml mpd;
application/vnd.apple.mpegurl m3u8;
video/mp2t ts;
image/jpeg jpg;
}
root /tmp;
}
location /clips/ {
add_header 'Access-Control-Allow-Origin' "$http_origin" always;
add_header 'Access-Control-Allow-Credentials' 'true';
add_header 'Access-Control-Expose-Headers' 'Content-Length';
if ($request_method = 'OPTIONS') {
add_header 'Access-Control-Allow-Origin' "$http_origin";
add_header 'Access-Control-Max-Age' 1728000;
add_header 'Content-Type' 'text/plain charset=UTF-8';
add_header 'Content-Length' 0;
return 204;
}
types {
video/mp4 mp4;
image/jpeg jpg;
}
autoindex on;
root /media/frigate;
}
location /recordings/ {
add_header 'Access-Control-Allow-Origin' "$http_origin" always;
add_header 'Access-Control-Allow-Credentials' 'true';
add_header 'Access-Control-Expose-Headers' 'Content-Length';
if ($request_method = 'OPTIONS') {
add_header 'Access-Control-Allow-Origin' "$http_origin";
add_header 'Access-Control-Max-Age' 1728000;
add_header 'Content-Type' 'text/plain charset=UTF-8';
add_header 'Content-Length' 0;
return 204;
}
types {
video/mp4 mp4;
}
autoindex on;
autoindex_format json;
root /media/frigate;
}
location /api/ {
add_header 'Access-Control-Allow-Origin' '*';
proxy_pass http://frigate_api/;
proxy_pass_request_headers on;
proxy_set_header Host $host;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;
}
location / {
sub_filter 'href="/' 'href="$http_x_ingress_path/';
sub_filter 'url(/' 'url($http_x_ingress_path/';
sub_filter '"/js/' '"$http_x_ingress_path/js/';
sub_filter '<body>' '<body><script>window.baseUrl="$http_x_ingress_path";</script>';
sub_filter_types text/css application/javascript;
sub_filter_once off;
root /opt/frigate/web;
try_files $uri $uri/ /index.html;
}
}
}
rtmp {
server {
listen 1935;
chunk_size 4096;
allow publish 127.0.0.1;
deny publish all;
allow play all;
application live {
live on;
record off;
meta copy;
}
}
}

View File

@@ -1,152 +0,0 @@
import sys
import click
import os
import datetime
from unittest import TestCase, main
from frigate.video import process_frames, start_or_restart_ffmpeg, capture_frames, get_frame_shape
from frigate.util import DictFrameManager, SharedMemoryFrameManager, EventsPerSecond, draw_box_with_label
from frigate.motion import MotionDetector
from frigate.edgetpu import LocalObjectDetector
from frigate.objects import ObjectTracker
import multiprocessing as mp
import numpy as np
import cv2
from frigate.object_processing import COLOR_MAP, CameraState
class ProcessClip():
def __init__(self, clip_path, frame_shape, config):
self.clip_path = clip_path
self.frame_shape = frame_shape
self.camera_name = 'camera'
self.frame_manager = DictFrameManager()
# self.frame_manager = SharedMemoryFrameManager()
self.frame_queue = mp.Queue()
self.detected_objects_queue = mp.Queue()
self.camera_state = CameraState(self.camera_name, config, self.frame_manager)
def load_frames(self):
fps = EventsPerSecond()
skipped_fps = EventsPerSecond()
stop_event = mp.Event()
detection_frame = mp.Value('d', datetime.datetime.now().timestamp()+100000)
current_frame = mp.Value('d', 0.0)
ffmpeg_cmd = f"ffmpeg -hide_banner -loglevel panic -i {self.clip_path} -f rawvideo -pix_fmt rgb24 pipe:".split(" ")
ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, self.frame_shape[0]*self.frame_shape[1]*self.frame_shape[2])
capture_frames(ffmpeg_process, self.camera_name, self.frame_shape, self.frame_manager, self.frame_queue, 1, fps, skipped_fps, stop_event, detection_frame, current_frame)
ffmpeg_process.wait()
ffmpeg_process.communicate()
def process_frames(self, objects_to_track=['person'], object_filters={}):
mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
mask[:] = 255
motion_detector = MotionDetector(self.frame_shape, mask)
object_detector = LocalObjectDetector(labels='/labelmap.txt')
object_tracker = ObjectTracker(10)
process_fps = mp.Value('d', 0.0)
detection_fps = mp.Value('d', 0.0)
current_frame = mp.Value('d', 0.0)
stop_event = mp.Event()
process_frames(self.camera_name, self.frame_queue, self.frame_shape, self.frame_manager, motion_detector, object_detector, object_tracker, self.detected_objects_queue,
process_fps, detection_fps, current_frame, objects_to_track, object_filters, mask, stop_event, exit_on_empty=True)
def objects_found(self, debug_path=None):
obj_detected = False
top_computed_score = 0.0
def handle_event(name, obj):
nonlocal obj_detected
nonlocal top_computed_score
if obj['computed_score'] > top_computed_score:
top_computed_score = obj['computed_score']
if not obj['false_positive']:
obj_detected = True
self.camera_state.on('new', handle_event)
self.camera_state.on('update', handle_event)
while(not self.detected_objects_queue.empty()):
camera_name, frame_time, current_tracked_objects = self.detected_objects_queue.get()
if not debug_path is None:
self.save_debug_frame(debug_path, frame_time, current_tracked_objects.values())
self.camera_state.update(frame_time, current_tracked_objects)
for obj in self.camera_state.tracked_objects.values():
print(f"{frame_time}: {obj['id']} - {obj['computed_score']} - {obj['score_history']}")
self.frame_manager.delete(self.camera_state.previous_frame_id)
return {
'object_detected': obj_detected,
'top_score': top_computed_score
}
def save_debug_frame(self, debug_path, frame_time, tracked_objects):
current_frame = self.frame_manager.get(f"{self.camera_name}{frame_time}", self.frame_shape)
# draw the bounding boxes on the frame
for obj in tracked_objects:
thickness = 2
color = (0,0,175)
if obj['frame_time'] != frame_time:
thickness = 1
color = (255,0,0)
else:
color = (255,255,0)
# draw the bounding boxes on the frame
box = obj['box']
draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
# draw the regions on the frame
region = obj['region']
draw_box_with_label(current_frame, region[0], region[1], region[2], region[3], 'region', "", thickness=1, color=(0,255,0))
cv2.imwrite(f"{os.path.join(debug_path, os.path.basename(self.clip_path))}.{int(frame_time*1000000)}.jpg", cv2.cvtColor(current_frame, cv2.COLOR_RGB2BGR))
@click.command()
@click.option("-p", "--path", required=True, help="Path to clip or directory to test.")
@click.option("-l", "--label", default='person', help="Label name to detect.")
@click.option("-t", "--threshold", default=0.85, help="Threshold value for objects.")
@click.option("--debug-path", default=None, help="Path to output frames for debugging.")
def process(path, label, threshold, debug_path):
clips = []
if os.path.isdir(path):
files = os.listdir(path)
files.sort()
clips = [os.path.join(path, file) for file in files]
elif os.path.isfile(path):
clips.append(path)
config = {
'snapshots': {
'show_timestamp': False,
'draw_zones': False
},
'zones': {},
'objects': {
'track': [label],
'filters': {
'person': {
'threshold': threshold
}
}
}
}
results = []
for c in clips:
frame_shape = get_frame_shape(c)
config['frame_shape'] = frame_shape
process_clip = ProcessClip(c, frame_shape, config)
process_clip.load_frames()
process_clip.process_frames(objects_to_track=config['objects']['track'])
results.append((c, process_clip.objects_found(debug_path)))
for result in results:
print(f"{result[0]}: {result[1]}")
positive_count = sum(1 for result in results if result[1]['object_detected'])
print(f"Objects were detected in {positive_count}/{len(results)}({positive_count/len(results)*100:.2f}%) clip(s).")
if __name__ == '__main__':
process()

4
run.sh Normal file
View File

@@ -0,0 +1,4 @@
#!/usr/bin/env bash
service nginx start
exec python3 -u -m frigate

1
web/.dockerignore Normal file
View File

@@ -0,0 +1 @@
node_modules

8
web/README.md Normal file
View File

@@ -0,0 +1,8 @@
# Frigate Web UI
## Development
1. Build the docker images in the root of the repository `make amd64_all` (or appropriate for your system)
2. Create a config file in `config/`
3. Run the container: `docker run --rm --name frigate --privileged -v $PWD/config:/config:ro -v /etc/localtime:/etc/localtime:ro -p 5000:5000 frigate`
4. Run the dev ui: `cd web && npm run start`

8497
web/package-lock.json generated Normal file

File diff suppressed because it is too large Load Diff

24
web/package.json Normal file
View File

@@ -0,0 +1,24 @@
{
"name": "frigate",
"private": true,
"scripts": {
"start": "cross-env SNOWPACK_PUBLIC_API_HOST=http://localhost:5000 snowpack dev",
"prebuild": "rimraf build",
"build": "snowpack build"
},
"dependencies": {
"@prefresh/snowpack": "^3.0.1",
"@snowpack/plugin-optimize": "^0.2.13",
"@snowpack/plugin-postcss": "^1.1.0",
"@snowpack/plugin-webpack": "^2.3.0",
"autoprefixer": "^10.2.1",
"cross-env": "^7.0.3",
"postcss": "^8.2.2",
"postcss-cli": "^8.3.1",
"preact": "^10.5.9",
"preact-router": "^3.2.1",
"rimraf": "^3.0.2",
"snowpack": "^3.0.0",
"tailwindcss": "^2.0.2"
}
}

8
web/postcss.config.js Normal file
View File

@@ -0,0 +1,8 @@
'use strict';
module.exports = {
plugins: [
require('tailwindcss'),
require('autoprefixer'),
],
};

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.3 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 558 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 800 B

BIN
web/public/favicon.ico Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

BIN
web/public/favicon.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 12 KiB

21
web/public/index.html Normal file
View File

@@ -0,0 +1,21 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link rel="icon" href="/favicon.ico" />
<title>Frigate</title>
<link rel="apple-touch-icon" sizes="180x180" href="/apple-touch-icon.png" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png" />
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png" />
<link rel="manifest" href="/site.webmanifest" />
<link rel="mask-icon" href="/safari-pinned-tab.svg" color="#3b82f7" />
<meta name="msapplication-TileColor" content="#3b82f7" />
<meta name="theme-color" content="#ff0000" />
</head>
<body>
<div id="root"></div>
<noscript>You need to enable JavaScript to run this app.</noscript>
<script type="module" src="/dist/index.js"></script>
</body>
</html>

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.6 KiB

View File

@@ -0,0 +1,46 @@
<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20010904//EN"
"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">
<svg version="1.0" xmlns="http://www.w3.org/2000/svg"
width="888.000000pt" height="888.000000pt" viewBox="0 0 888.000000 888.000000"
preserveAspectRatio="xMidYMid meet">
<metadata>
Created by potrace 1.11, written by Peter Selinger 2001-2013
</metadata>
<g transform="translate(0.000000,888.000000) scale(0.100000,-0.100000)"
fill="#000000" stroke="none">
<path d="M8228 8865 c-2 -2 -25 -6 -53 -9 -38 -5 -278 -56 -425 -91 -33 -7
-381 -98 -465 -121 -49 -14 -124 -34 -165 -45 -67 -18 -485 -138 -615 -176
-50 -14 -106 -30 -135 -37 -8 -2 -35 -11 -60 -19 -25 -8 -85 -27 -135 -42 -49
-14 -101 -31 -115 -36 -14 -5 -34 -11 -45 -13 -11 -3 -65 -19 -120 -36 -55
-18 -127 -40 -160 -50 -175 -53 -247 -77 -550 -178 -364 -121 -578 -200 -820
-299 -88 -36 -214 -88 -280 -115 -66 -27 -129 -53 -140 -58 -11 -5 -67 -29
-125 -54 -342 -144 -535 -259 -579 -343 -34 -66 7 -145 156 -299 229 -238 293
-316 340 -413 38 -80 41 -152 10 -281 -57 -234 -175 -543 -281 -732 -98 -174
-172 -239 -341 -297 -116 -40 -147 -52 -210 -80 -107 -49 -179 -107 -290 -236
-51 -59 -179 -105 -365 -131 -19 -2 -48 -7 -65 -9 -16 -3 -50 -8 -75 -11 -69
-9 -130 -39 -130 -63 0 -24 31 -46 78 -56 18 -4 139 -8 270 -10 250 -4 302
-11 335 -44 19 -18 19 -23 7 -46 -19 -36 -198 -121 -490 -233 -850 -328 -914
-354 -1159 -473 -185 -90 -337 -186 -395 -249 -60 -65 -67 -107 -62 -350 3
-113 7 -216 10 -230 3 -14 7 -52 10 -85 7 -70 14 -128 21 -170 2 -16 7 -48 10
-70 3 -22 11 -64 16 -94 6 -30 12 -64 14 -75 1 -12 5 -34 9 -51 3 -16 8 -39
10 -50 12 -57 58 -258 71 -310 9 -33 18 -69 20 -79 25 -110 138 -416 216 -582
21 -47 39 -87 39 -90 0 -7 217 -438 261 -521 109 -201 293 -501 347 -564 11
-13 37 -44 56 -68 69 -82 126 -109 160 -75 26 25 14 65 -48 164 -138 218 -142
245 -138 800 2 206 4 488 5 625 1 138 -1 293 -6 345 -28 345 -28 594 -1 760
12 69 54 187 86 235 33 52 188 212 293 302 98 84 108 93 144 121 19 15 52 42
75 61 78 64 302 229 426 313 248 169 483 297 600 326 53 14 205 6 365 -17 33
-5 155 -8 270 -6 179 3 226 7 316 28 58 13 140 25 182 26 82 2 120 6 217 22
73 12 97 16 122 18 12 1 23 21 38 70 l20 68 74 -17 c81 -20 155 -30 331 -45
69 -6 132 -8 715 -20 484 -11 620 -8 729 16 85 19 131 63 98 96 -25 26 -104
34 -302 32 -373 -2 -408 -1 -471 26 -90 37 2 102 171 120 33 3 76 8 95 10 19
2 71 7 115 10 243 17 267 20 338 37 145 36 47 102 -203 137 -136 19 -262 25
-490 22 -124 -2 -362 -4 -530 -4 l-305 -1 -56 26 c-65 31 -171 109 -238 176
-52 51 -141 173 -141 191 0 6 -6 22 -14 34 -18 27 -54 165 -64 244 -12 98 -6
322 12 414 9 47 29 127 45 176 26 80 58 218 66 278 1 11 6 47 10 80 3 33 8 70
10 83 2 13 7 53 11 90 3 37 8 74 9 83 22 118 22 279 -1 464 -20 172 -20 172
70 238 108 79 426 248 666 355 25 11 77 34 115 52 92 42 443 191 570 242 55
22 109 44 120 48 24 11 130 52 390 150 199 75 449 173 500 195 17 7 118 50
225 95 237 100 333 143 490 220 229 113 348 191 337 223 -3 10 -70 20 -79 12z"/>
</g>
</svg>

After

Width:  |  Height:  |  Size: 2.9 KiB

View File

@@ -0,0 +1,19 @@
{
"name": "",
"short_name": "",
"icons": [
{
"src": "/android-chrome-192x192.png",
"sizes": "192x192",
"type": "image/png"
},
{
"src": "/android-chrome-512x512.png",
"sizes": "512x512",
"type": "image/png"
}
],
"theme_color": "#ff0000",
"background_color": "#ff0000",
"display": "standalone"
}

31
web/snowpack.config.js Normal file
View File

@@ -0,0 +1,31 @@
'use strict';
module.exports = {
mount: {
public: { url: '/', static: true },
src: { url: '/dist' },
},
plugins: [
'@snowpack/plugin-postcss',
'@prefresh/snowpack',
[
'@snowpack/plugin-optimize',
{
preloadModules: true,
},
],
[
'@snowpack/plugin-webpack',
{
sourceMap: true,
},
],
],
routes: [{ match: 'routes', src: '.*', dest: '/index.html' }],
packageOptions: {
sourcemap: false,
},
buildOptions: {
sourcemap: true,
},
};

43
web/src/App.jsx Normal file
View File

@@ -0,0 +1,43 @@
import { h } from 'preact';
import Camera from './Camera';
import CameraMap from './CameraMap';
import Cameras from './Cameras';
import Debug from './Debug';
import Event from './Event';
import Events from './Events';
import { Router } from 'preact-router';
import Sidebar from './Sidebar';
import { ApiHost, Config } from './context';
import { useContext, useEffect, useState } from 'preact/hooks';
export default function App() {
const apiHost = useContext(ApiHost);
const [config, setConfig] = useState(null);
useEffect(async () => {
const response = await fetch(`${apiHost}/api/config`);
const data = response.ok ? await response.json() : {};
setConfig(data);
}, []);
return !config ? (
<div />
) : (
<Config.Provider value={config}>
<div className="md:flex flex-col md:flex-row md:min-h-screen w-full bg-gray-100 dark:bg-gray-800 text-gray-900 dark:text-white">
<Sidebar />
<div className="p-4 min-w-0">
<Router>
<CameraMap path="/cameras/:camera/editor" />
<Camera path="/cameras/:camera" />
<Event path="/events/:eventId" />
<Events path="/events" />
<Debug path="/debug" />
<Cameras default path="/" />
</Router>
</div>
</div>
</Config.Provider>
);
return;
}

68
web/src/Camera.jsx Normal file
View File

@@ -0,0 +1,68 @@
import { h } from 'preact';
import AutoUpdatingCameraImage from './components/AutoUpdatingCameraImage';
import Box from './components/Box';
import Heading from './components/Heading';
import Link from './components/Link';
import Switch from './components/Switch';
import { route } from 'preact-router';
import { useCallback, useContext } from 'preact/hooks';
import { ApiHost, Config } from './context';
export default function Camera({ camera, url }) {
const config = useContext(Config);
const apiHost = useContext(ApiHost);
if (!(camera in config.cameras)) {
return <div>{`No camera named ${camera}`}</div>;
}
const cameraConfig = config.cameras[camera];
const { pathname, searchParams } = new URL(`${window.location.protocol}//${window.location.host}${url}`);
const searchParamsString = searchParams.toString();
const handleSetOption = useCallback(
(id, value) => {
searchParams.set(id, value ? 1 : 0);
route(`${pathname}?${searchParams.toString()}`, true);
},
[searchParams]
);
function getBoolean(id) {
return Boolean(parseInt(searchParams.get(id), 10));
}
return (
<div className="space-y-4">
<Heading size="2xl">{camera}</Heading>
<Box>
<AutoUpdatingCameraImage camera={camera} searchParams={searchParamsString} />
</Box>
<Box className="grid grid-cols-2 md:grid-cols-3 lg:grid-cols-4 gap-4 p-4">
<Switch checked={getBoolean('bbox')} id="bbox" label="Bounding box" onChange={handleSetOption} />
<Switch checked={getBoolean('timestamp')} id="timestamp" label="Timestamp" onChange={handleSetOption} />
<Switch checked={getBoolean('zones')} id="zones" label="Zones" onChange={handleSetOption} />
<Switch checked={getBoolean('mask')} id="mask" label="Masks" onChange={handleSetOption} />
<Switch checked={getBoolean('motion')} id="motion" label="Motion boxes" onChange={handleSetOption} />
<Switch checked={getBoolean('regions')} id="regions" label="Regions" onChange={handleSetOption} />
<Link href={`/cameras/${camera}/editor`}>Mask & Zone creator</Link>
</Box>
<div className="space-y-4">
<Heading size="sm">Tracked objects</Heading>
<div className="grid grid-cols-3 md:grid-cols-4 gap-4">
{cameraConfig.objects.track.map((objectType) => {
return (
<Box key={objectType} hover href={`/events?camera=${camera}&label=${objectType}`}>
<Heading size="sm">{objectType}</Heading>
<img src={`${apiHost}/api/${camera}/${objectType}/best.jpg?crop=1&h=150`} />
</Box>
);
})}
</div>
</div>
</div>
);
}

598
web/src/CameraMap.jsx Normal file
View File

@@ -0,0 +1,598 @@
import { h } from 'preact';
import Box from './components/Box';
import Button from './components/Button';
import Heading from './components/Heading';
import Switch from './components/Switch';
import { route } from 'preact-router';
import { useCallback, useContext, useEffect, useMemo, useRef, useState } from 'preact/hooks';
import { ApiHost, Config } from './context';
export default function CameraMasks({ camera, url }) {
const config = useContext(Config);
const apiHost = useContext(ApiHost);
const imageRef = useRef(null);
const [imageScale, setImageScale] = useState(1);
const [snap, setSnap] = useState(true);
if (!(camera in config.cameras)) {
return <div>{`No camera named ${camera}`}</div>;
}
const cameraConfig = config.cameras[camera];
const {
width,
height,
motion: { mask: motionMask },
objects: { filters: objectFilters },
zones,
} = cameraConfig;
useEffect(() => {
if (!imageRef.current) {
return;
}
const scaledWidth = imageRef.current.width;
const scale = scaledWidth / width;
setImageScale(scale);
}, [imageRef.current, setImageScale]);
const [motionMaskPoints, setMotionMaskPoints] = useState(
Array.isArray(motionMask)
? motionMask.map((mask) => getPolylinePoints(mask))
: motionMask
? [getPolylinePoints(motionMask)]
: []
);
const [zonePoints, setZonePoints] = useState(
Object.keys(zones).reduce((memo, zone) => ({ ...memo, [zone]: getPolylinePoints(zones[zone].coordinates) }), {})
);
const [objectMaskPoints, setObjectMaskPoints] = useState(
Object.keys(objectFilters).reduce(
(memo, name) => ({
...memo,
[name]: Array.isArray(objectFilters[name].mask)
? objectFilters[name].mask.map((mask) => getPolylinePoints(mask))
: objectFilters[name].mask
? [getPolylinePoints(objectFilters[name].mask)]
: [],
}),
{}
)
);
const [editing, setEditing] = useState({ set: motionMaskPoints, key: 0, fn: setMotionMaskPoints });
const handleUpdateEditable = useCallback(
(newPoints) => {
let newSet;
if (Array.isArray(editing.set)) {
newSet = [...editing.set];
newSet[editing.key] = newPoints;
} else if (editing.subkey !== undefined) {
newSet = { ...editing.set };
newSet[editing.key][editing.subkey] = newPoints;
} else {
newSet = { ...editing.set, [editing.key]: newPoints };
}
editing.set = newSet;
editing.fn(newSet);
},
[editing]
);
const handleSelectEditable = useCallback(
(name) => {
setEditing(name);
},
[setEditing]
);
const handleRemoveEditable = useCallback(
(name) => {
const filteredZonePoints = Object.keys(zonePoints)
.filter((zoneName) => zoneName !== name)
.reduce((memo, name) => {
memo[name] = zonePoints[name];
return memo;
}, {});
setZonePoints(filteredZonePoints);
},
[zonePoints, setZonePoints]
);
// Motion mask methods
const handleAddMask = useCallback(() => {
const newMotionMaskPoints = [...motionMaskPoints, []];
setMotionMaskPoints(newMotionMaskPoints);
setEditing({ set: newMotionMaskPoints, key: newMotionMaskPoints.length - 1, fn: setMotionMaskPoints });
}, [motionMaskPoints, setMotionMaskPoints]);
const handleEditMask = useCallback(
(key) => {
setEditing({ set: motionMaskPoints, key, fn: setMotionMaskPoints });
},
[setEditing, motionMaskPoints, setMotionMaskPoints]
);
const handleRemoveMask = useCallback(
(key) => {
const newMotionMaskPoints = [...motionMaskPoints];
newMotionMaskPoints.splice(key, 1);
setMotionMaskPoints(newMotionMaskPoints);
},
[motionMaskPoints, setMotionMaskPoints]
);
const handleCopyMotionMasks = useCallback(async () => {
await window.navigator.clipboard.writeText(` motion:
mask:
${motionMaskPoints.map((mask, i) => ` - ${polylinePointsToPolyline(mask)}`).join('\n')}`);
}, [motionMaskPoints]);
// Zone methods
const handleEditZone = useCallback(
(key) => {
setEditing({ set: zonePoints, key, fn: setZonePoints });
},
[setEditing, zonePoints, setZonePoints]
);
const handleAddZone = useCallback(() => {
const n = Object.keys(zonePoints).filter((name) => name.startsWith('zone_')).length;
const zoneName = `zone_${n}`;
const newZonePoints = { ...zonePoints, [zoneName]: [] };
setZonePoints(newZonePoints);
setEditing({ set: newZonePoints, key: zoneName, fn: setZonePoints });
}, [zonePoints, setZonePoints]);
const handleRemoveZone = useCallback(
(key) => {
const newZonePoints = { ...zonePoints };
delete newZonePoints[key];
setZonePoints(newZonePoints);
},
[zonePoints, setZonePoints]
);
const handleCopyZones = useCallback(async () => {
await window.navigator.clipboard.writeText(` zones:
${Object.keys(zonePoints)
.map(
(zoneName) => ` ${zoneName}:
coordinates: ${polylinePointsToPolyline(zonePoints[zoneName])}`
)
.join('\n')}`);
}, [zonePoints]);
// Object methods
const handleEditObjectMask = useCallback(
(key, subkey) => {
setEditing({ set: objectMaskPoints, key, subkey, fn: setObjectMaskPoints });
},
[setEditing, objectMaskPoints, setObjectMaskPoints]
);
const handleAddObjectMask = useCallback(() => {
const n = Object.keys(objectMaskPoints).filter((name) => name.startsWith('object_')).length;
const newObjectName = `object_${n}`;
const newObjectMaskPoints = { ...objectMaskPoints, [newObjectName]: [] };
setObjectMaskPoints(newObjectMaskPoints);
setEditing({ set: newObjectMaskPoints, key: newObjectName, subkey: 0, fn: setObjectMaskPoints });
}, [objectMaskPoints, setObjectMaskPoints, setEditing]);
const handleRemoveObjectMask = useCallback(
(key, subkey) => {
const newObjectMaskPoints = { ...objectMaskPoints };
delete newObjectMaskPoints[key];
setObjectMaskPoints(newObjectMaskPoints);
},
[objectMaskPoints, setObjectMaskPoints]
);
const handleCopyObjectMasks = useCallback(async () => {
await window.navigator.clipboard.writeText(` objects:
filters:
${Object.keys(objectMaskPoints)
.map((objectName) =>
objectMaskPoints[objectName].length
? ` ${objectName}:
mask: ${polylinePointsToPolyline(objectMaskPoints[objectName])}`
: ''
)
.filter(Boolean)
.join('\n')}`);
}, [objectMaskPoints]);
const handleChangeSnap = useCallback(
(id, value) => {
setSnap(value);
},
[setSnap]
);
return (
<div class="flex-col space-y-4">
<Heading size="2xl">{camera} mask & zone creator</Heading>
<Box>
<p>
This tool can help you create masks & zones for your {camera} camera. When done, copy each mask configuration
into your <code className="font-mono">config.yml</code> file restart your Frigate instance to save your
changes.
</p>
</Box>
<Box className="space-y-4">
<div className="relative">
<img ref={imageRef} className="w-full" src={`${apiHost}/api/${camera}/latest.jpg`} />
<EditableMask
onChange={handleUpdateEditable}
points={editing.subkey ? editing.set[editing.key][editing.subkey] : editing.set[editing.key]}
scale={imageScale}
snap={snap}
width={width}
height={height}
/>
</div>
<Switch checked={snap} label="Snap to edges" onChange={handleChangeSnap} />
</Box>
<div class="flex-col space-y-4">
<MaskValues
editing={editing}
title="Motion masks"
onCopy={handleCopyMotionMasks}
onCreate={handleAddMask}
onEdit={handleEditMask}
onRemove={handleRemoveMask}
points={motionMaskPoints}
yamlPrefix={'motion:\n mask:'}
yamlKeyPrefix={maskYamlKeyPrefix}
/>
<MaskValues
editing={editing}
title="Zones"
onCopy={handleCopyZones}
onCreate={handleAddZone}
onEdit={handleEditZone}
onRemove={handleRemoveZone}
points={zonePoints}
yamlPrefix="zones:"
yamlKeyPrefix={zoneYamlKeyPrefix}
/>
<MaskValues
isMulti
editing={editing}
title="Object masks"
onCopy={handleCopyObjectMasks}
onCreate={handleAddObjectMask}
onEdit={handleEditObjectMask}
onRemove={handleRemoveObjectMask}
points={objectMaskPoints}
yamlPrefix={'objects:\n filters:'}
yamlKeyPrefix={objectYamlKeyPrefix}
/>
</div>
</div>
);
}
function maskYamlKeyPrefix(points) {
return ` - `;
}
function zoneYamlKeyPrefix(points, key) {
return ` ${key}:
coordinates: `;
}
function objectYamlKeyPrefix(points, key, subkey) {
return ` - `;
}
const MaskInset = 20;
function EditableMask({ onChange, points, scale, snap, width, height }) {
if (!points) {
return null;
}
const boundingRef = useRef(null);
function boundedSize(value, maxValue) {
const newValue = Math.min(Math.max(0, Math.round(value)), maxValue);
if (snap) {
if (newValue <= MaskInset) {
return 0;
} else if (maxValue - newValue <= MaskInset) {
return maxValue;
}
}
return newValue;
}
const handleMovePoint = useCallback(
(index, newX, newY) => {
if (newX < 0 && newY < 0) {
return;
}
let x = boundedSize(newX / scale, width, snap);
let y = boundedSize(newY / scale, height, snap);
const newPoints = [...points];
newPoints[index] = [x, y];
onChange(newPoints);
},
[scale, points, snap]
);
// Add a new point between the closest two other points
const handleAddPoint = useCallback(
(event) => {
const { offsetX, offsetY } = event;
const scaledX = boundedSize((offsetX - MaskInset) / scale, width, snap);
const scaledY = boundedSize((offsetY - MaskInset) / scale, height, snap);
const newPoint = [scaledX, scaledY];
let closest;
const { index } = points.reduce(
(result, point, i) => {
const nextPoint = points.length === i + 1 ? points[0] : points[i + 1];
const distance0 = Math.sqrt(Math.pow(point[0] - newPoint[0], 2) + Math.pow(point[1] - newPoint[1], 2));
const distance1 = Math.sqrt(Math.pow(point[0] - nextPoint[0], 2) + Math.pow(point[1] - nextPoint[1], 2));
const distance = distance0 + distance1;
return distance < result.distance ? { distance, index: i } : result;
},
{ distance: Infinity, index: -1 }
);
const newPoints = [...points];
newPoints.splice(index, 0, newPoint);
onChange(newPoints);
},
[scale, points, onChange, snap]
);
const handleRemovePoint = useCallback(
(index) => {
const newPoints = [...points];
newPoints.splice(index, 1);
onChange(newPoints);
},
[points, onChange]
);
const scaledPoints = useMemo(() => scalePolylinePoints(points, scale), [points, scale]);
return (
<div className="absolute" style={`inset: -${MaskInset}px`}>
{!scaledPoints
? null
: scaledPoints.map(([x, y], i) => (
<PolyPoint
boundingRef={boundingRef}
index={i}
onMove={handleMovePoint}
onRemove={handleRemovePoint}
x={x + MaskInset}
y={y + MaskInset}
/>
))}
<div className="absolute inset-0 right-0 bottom-0" onclick={handleAddPoint} ref={boundingRef} />
<svg width="100%" height="100%" className="absolute pointer-events-none" style={`inset: ${MaskInset}px`}>
{!scaledPoints ? null : (
<g>
<polyline points={polylinePointsToPolyline(scaledPoints)} fill="rgba(244,0,0,0.5)" />
</g>
)}
</svg>
</div>
);
}
function MaskValues({
isMulti = false,
editing,
title,
onCopy,
onCreate,
onEdit,
onRemove,
points,
yamlPrefix,
yamlKeyPrefix,
}) {
const [showButtons, setShowButtons] = useState(false);
const handleMousein = useCallback(() => {
setShowButtons(true);
}, [setShowButtons]);
const handleMouseout = useCallback(
(event) => {
const el = event.toElement || event.relatedTarget;
if (!el || el.parentNode === event.target) {
return;
}
setShowButtons(false);
},
[setShowButtons]
);
const handleEdit = useCallback(
(event) => {
const { key, subkey } = event.target.dataset;
onEdit(key, subkey);
},
[onEdit]
);
const handleRemove = useCallback(
(event) => {
const { key, subkey } = event.target.dataset;
onRemove(key, subkey);
},
[onRemove]
);
return (
<Box className="overflow-hidden" onmouseover={handleMousein} onmouseout={handleMouseout}>
<div class="flex space-x-4">
<Heading className="flex-grow self-center" size="base">
{title}
</Heading>
<Button onClick={onCopy}>Copy</Button>
<Button onClick={onCreate}>Add</Button>
</div>
<pre class="relative overflow-auto font-mono text-gray-900 dark:text-gray-100 rounded bg-gray-100 dark:bg-gray-800 p-2">
{yamlPrefix}
{Object.keys(points).map((mainkey) => {
if (isMulti) {
return (
<div>
{` ${mainkey}:\n mask:\n`}
{points[mainkey].map((item, subkey) => (
<Item
mainkey={mainkey}
subkey={subkey}
editing={editing}
handleEdit={handleEdit}
points={item}
showButtons={showButtons}
handleRemove={handleRemove}
yamlKeyPrefix={yamlKeyPrefix}
/>
))}
</div>
);
} else {
return (
<Item
mainkey={mainkey}
editing={editing}
handleEdit={handleEdit}
points={points[mainkey]}
showButtons={showButtons}
handleRemove={handleRemove}
yamlKeyPrefix={yamlKeyPrefix}
/>
);
}
})}
</pre>
</Box>
);
}
function Item({ mainkey, subkey, editing, handleEdit, points, showButtons, handleRemove, yamlKeyPrefix }) {
return (
<span
data-key={mainkey}
data-subkey={subkey}
className={`block hover:text-blue-400 cursor-pointer relative ${
editing.key === mainkey && editing.subkey === subkey ? 'text-blue-800 dark:text-blue-600' : ''
}`}
onClick={handleEdit}
title="Click to edit"
>
{`${yamlKeyPrefix(points, mainkey, subkey)}${polylinePointsToPolyline(points)}`}
{showButtons ? (
<Button
className="absolute top-0 right-0"
color="red"
data-key={mainkey}
data-subkey={subkey}
onClick={handleRemove}
>
Remove
</Button>
) : null}
</span>
);
}
function getPolylinePoints(polyline) {
if (!polyline) {
return;
}
return polyline.split(',').reduce((memo, point, i) => {
if (i % 2) {
memo[memo.length - 1].push(parseInt(point, 10));
} else {
memo.push([parseInt(point, 10)]);
}
return memo;
}, []);
}
function scalePolylinePoints(polylinePoints, scale) {
if (!polylinePoints) {
return;
}
return polylinePoints.map(([x, y]) => [Math.round(x * scale), Math.round(y * scale)]);
}
function polylinePointsToPolyline(polylinePoints) {
if (!polylinePoints) {
return;
}
return polylinePoints.reduce((memo, [x, y]) => `${memo}${x},${y},`, '').replace(/,$/, '');
}
const PolyPointRadius = 10;
function PolyPoint({ boundingRef, index, x, y, onMove, onRemove }) {
const [hidden, setHidden] = useState(false);
const handleDragOver = useCallback(
(event) => {
if (
!boundingRef.current ||
(event.target !== boundingRef.current && !boundingRef.current.contains(event.target))
) {
return;
}
onMove(index, event.layerX - PolyPointRadius * 2, event.layerY - PolyPointRadius * 2);
},
[onMove, index, boundingRef.current]
);
const handleDragStart = useCallback(() => {
boundingRef.current && boundingRef.current.addEventListener('dragover', handleDragOver, false);
setHidden(true);
}, [setHidden, boundingRef.current, handleDragOver]);
const handleDragEnd = useCallback(() => {
boundingRef.current && boundingRef.current.removeEventListener('dragover', handleDragOver);
setHidden(false);
}, [setHidden, boundingRef.current, handleDragOver]);
const handleRightClick = useCallback(
(event) => {
event.preventDefault();
onRemove(index);
},
[onRemove, index]
);
const handleClick = useCallback((event) => {
event.stopPropagation();
event.preventDefault();
}, []);
return (
<div
className={`${hidden ? 'opacity-0' : ''} bg-gray-900 rounded-full absolute z-20`}
style={`top: ${y - PolyPointRadius}px; left: ${x - PolyPointRadius}px; width: 20px; height: 20px;`}
draggable
onclick={handleClick}
oncontextmenu={handleRightClick}
ondragstart={handleDragStart}
ondragend={handleDragEnd}
/>
);
}

38
web/src/Cameras.jsx Normal file
View File

@@ -0,0 +1,38 @@
import { h } from 'preact';
import Box from './components/Box';
import Events from './Events';
import Heading from './components/Heading';
import { route } from 'preact-router';
import { useContext } from 'preact/hooks';
import { ApiHost, Config } from './context';
export default function Cameras() {
const config = useContext(Config);
if (!config.cameras) {
return <p>loading</p>;
}
return (
<div className="grid lg:grid-cols-2 md:grid-cols-1 gap-4">
{Object.keys(config.cameras).map((camera) => (
<Camera name={camera} />
))}
</div>
);
}
function Camera({ name }) {
const apiHost = useContext(ApiHost);
const href = `/cameras/${name}`;
return (
<Box
className="bg-white dark:bg-gray-700 shadow-lg rounded-lg p-4 hover:bg-gray-300 hover:dark:bg-gray-500 dark:hover:text-gray-900 dark:hover:text-gray-900"
href={href}
>
<Heading size="base">{name}</Heading>
<img className="w-full" src={`${apiHost}/api/${name}/latest.jpg`} />
</Box>
);
}

97
web/src/Debug.jsx Normal file
View File

@@ -0,0 +1,97 @@
import { h } from 'preact';
import Heading from './components/Heading';
import Link from './components/Link';
import { ApiHost, Config } from './context';
import { Table, Tbody, Thead, Tr, Th, Td } from './components/Table';
import { useCallback, useContext, useEffect, useState } from 'preact/hooks';
export default function Debug() {
const apiHost = useContext(ApiHost);
const config = useContext(Config);
const [stats, setStats] = useState({});
const [timeoutId, setTimeoutId] = useState(null);
const fetchStats = useCallback(async () => {
const statsResponse = await fetch(`${apiHost}/api/stats`);
const stats = statsResponse.ok ? await statsResponse.json() : {};
setStats(stats);
setTimeoutId(setTimeout(fetchStats, 1000));
}, [setStats]);
useEffect(() => {
fetchStats();
}, []);
useEffect(() => {
return () => {
clearTimeout(timeoutId);
};
}, [timeoutId]);
const { detectors, detection_fps, service, ...cameras } = stats;
if (!service) {
return 'loading…';
}
const detectorNames = Object.keys(detectors);
const detectorDataKeys = Object.keys(detectors[detectorNames[0]]);
const cameraNames = Object.keys(cameras);
const cameraDataKeys = Object.keys(cameras[cameraNames[0]]);
return (
<div>
<Heading>
Debug <span className="text-sm">{service.version}</span>
</Heading>
<Table className="w-full">
<Thead>
<Tr>
<Th>detector</Th>
{detectorDataKeys.map((name) => (
<Th>{name.replace('_', ' ')}</Th>
))}
</Tr>
</Thead>
<Tbody>
{detectorNames.map((detector, i) => (
<Tr index={i}>
<Td>{detector}</Td>
{detectorDataKeys.map((name) => (
<Td key={`${name}-${detector}`}>{detectors[detector][name]}</Td>
))}
</Tr>
))}
</Tbody>
</Table>
<Table className="w-full">
<Thead>
<Tr>
<Th>camera</Th>
{cameraDataKeys.map((name) => (
<Th>{name.replace('_', ' ')}</Th>
))}
</Tr>
</Thead>
<Tbody>
{cameraNames.map((camera, i) => (
<Tr index={i}>
<Td>
<Link href={`/cameras/${camera}`}>{camera}</Link>
</Td>
{cameraDataKeys.map((name) => (
<Td key={`${name}-${camera}`}>{cameras[camera][name]}</Td>
))}
</Tr>
))}
</Tbody>
</Table>
<Heading size="sm">Config</Heading>
<pre className="font-mono overflow-y-scroll overflow-x-scroll max-h-96 rounded bg-white dark:bg-gray-900">
{JSON.stringify(config, null, 2)}
</pre>
</div>
);
}

90
web/src/Event.jsx Normal file
View File

@@ -0,0 +1,90 @@
import { h, Fragment } from 'preact';
import { ApiHost } from './context';
import Box from './components/Box';
import Heading from './components/Heading';
import Link from './components/Link';
import { Table, Thead, Tbody, Tfoot, Th, Tr, Td } from './components/Table';
import { useContext, useEffect, useState } from 'preact/hooks';
export default function Event({ eventId }) {
const apiHost = useContext(ApiHost);
const [data, setData] = useState(null);
useEffect(async () => {
const response = await fetch(`${apiHost}/api/events/${eventId}`);
const data = response.ok ? await response.json() : null;
setData(data);
}, [apiHost, eventId]);
if (!data) {
return (
<div>
<Heading>{eventId}</Heading>
<p>loading</p>
</div>
);
}
const startime = new Date(data.start_time * 1000);
const endtime = new Date(data.end_time * 1000);
return (
<div className="space-y-4">
<Heading>
{data.camera} {data.label} <span className="text-sm">{startime.toLocaleString()}</span>
</Heading>
<Box>
{data.has_clip ? (
<Fragment>
<Heading size="sm">Clip</Heading>
<video className="w-100" src={`${apiHost}/clips/${data.camera}-${eventId}.mp4`} controls />
</Fragment>
) : (
<p>No clip available</p>
)}
</Box>
<Box>
<Heading size="sm">{data.has_snapshot ? 'Best image' : 'Thumbnail'}</Heading>
<img
src={
data.has_snapshot
? `${apiHost}/clips/${data.camera}-${eventId}.jpg`
: `data:image/jpeg;base64,${data.thumbnail}`
}
alt={`${data.label} at ${(data.top_score * 100).toFixed(1)}% confidence`}
/>
</Box>
<Table>
<Thead>
<Th>Key</Th>
<Th>Value</Th>
</Thead>
<Tbody>
<Tr>
<Td>Camera</Td>
<Td>
<Link href={`/cameras/${data.camera}`}>{data.camera}</Link>
</Td>
</Tr>
<Tr index={1}>
<Td>Timeframe</Td>
<Td>
{startime.toLocaleString()} {endtime.toLocaleString()}
</Td>
</Tr>
<Tr>
<Td>Score</Td>
<Td>{(data.top_score * 100).toFixed(2)}%</Td>
</Tr>
<Tr index={1}>
<Td>Zones</Td>
<Td>{data.zones.join(', ')}</Td>
</Tr>
</Tbody>
</Table>
</div>
);
}

120
web/src/Events.jsx Normal file
View File

@@ -0,0 +1,120 @@
import { h } from 'preact';
import { ApiHost } from './context';
import Box from './components/Box';
import Heading from './components/Heading';
import Link from './components/Link';
import { route } from 'preact-router';
import { Table, Thead, Tbody, Tfoot, Th, Tr, Td } from './components/Table';
import { useCallback, useContext, useEffect, useState } from 'preact/hooks';
export default function Events({ url } = {}) {
const apiHost = useContext(ApiHost);
const [events, setEvents] = useState([]);
const searchParams = new URL(`${window.location.protocol}//${window.location.host}${url || '/events'}`).searchParams;
const searchParamsString = searchParams.toString();
useEffect(async () => {
const response = await fetch(`${apiHost}/api/events?${searchParamsString}`);
const data = response.ok ? await response.json() : {};
setEvents(data);
}, [searchParamsString]);
const searchKeys = Array.from(searchParams.keys());
return (
<div className="space-y-4">
<Heading>Events</Heading>
{searchKeys.length ? (
<Box>
<Heading size="sm">Filters</Heading>
<div className="flex flex-wrap space-x-2">
{searchKeys.map((filterKey) => (
<UnFilterable
paramName={filterKey}
searchParams={searchParamsString}
name={`${filterKey}: ${searchParams.get(filterKey)}`}
/>
))}
</div>
</Box>
) : null}
<Box className="min-w-0 overflow-auto">
<Table>
<Thead>
<Tr>
<Th></Th>
<Th>Camera</Th>
<Th>Label</Th>
<Th>Score</Th>
<Th>Zones</Th>
<Th>Date</Th>
<Th>Start</Th>
<Th>End</Th>
</Tr>
</Thead>
<Tbody>
{events.map(
(
{ camera, id, label, start_time: startTime, end_time: endTime, thumbnail, top_score: score, zones },
i
) => {
const start = new Date(parseInt(startTime * 1000, 10));
const end = new Date(parseInt(endTime * 1000, 10));
return (
<Tr key={id} index={i}>
<Td>
<a href={`/events/${id}`}>
<img className="w-32 max-w-none" src={`data:image/jpeg;base64,${thumbnail}`} />
</a>
</Td>
<Td>
<Filterable searchParams={searchParamsString} paramName="camera" name={camera} />
</Td>
<Td>
<Filterable searchParams={searchParamsString} paramName="label" name={label} />
</Td>
<Td>{(score * 100).toFixed(2)}%</Td>
<Td>
<ul>
{zones.map((zone) => (
<li>
<Filterable searchParams={searchParamsString} paramName="zone" name={zone} />
</li>
))}
</ul>
</Td>
<Td>{start.toLocaleDateString()}</Td>
<Td>{start.toLocaleTimeString()}</Td>
<Td>{end.toLocaleTimeString()}</Td>
</Tr>
);
}
)}
</Tbody>
</Table>
</Box>
</div>
);
}
function Filterable({ searchParams, paramName, name }) {
const params = new URLSearchParams(searchParams);
params.set(paramName, name);
return <Link href={`?${params.toString()}`}>{name}</Link>;
}
function UnFilterable({ searchParams, paramName, name }) {
const params = new URLSearchParams(searchParams);
params.delete(paramName);
return (
<a
className="bg-gray-700 text-white px-3 py-1 rounded-md hover:bg-gray-300 hover:text-gray-900 dark:bg-gray-300 dark:text-gray-900 dark:hover:bg-gray-700 dark:hover:text-white"
href={`?${params.toString()}`}
>
{name}
</a>
);
}

87
web/src/Sidebar.jsx Normal file
View File

@@ -0,0 +1,87 @@
import { h } from 'preact';
import Link from './components/Link';
import { Link as RouterLink } from 'preact-router/match';
import { useCallback, useState } from 'preact/hooks';
function HamburgerIcon() {
return (
<svg fill="currentColor" viewBox="0 0 20 20" className="w-6 h-6">
<path
fill-rule="evenodd"
d="M3 5a1 1 0 011-1h12a1 1 0 110 2H4a1 1 0 01-1-1zM3 10a1 1 0 011-1h12a1 1 0 110 2H4a1 1 0 01-1-1zM9 15a1 1 0 011-1h6a1 1 0 110 2h-6a1 1 0 01-1-1z"
clip-rule="evenodd"
></path>
</svg>
);
}
function CloseIcon() {
return (
<svg fill="currentColor" viewBox="0 0 20 20" className="w-6 h-6">
<path
fill-rule="evenodd"
d="M4.293 4.293a1 1 0 011.414 0L10 8.586l4.293-4.293a1 1 0 111.414 1.414L11.414 10l4.293 4.293a1 1 0 01-1.414 1.414L10 11.414l-4.293 4.293a1 1 0 01-1.414-1.414L8.586 10 4.293 5.707a1 1 0 010-1.414z"
clip-rule="evenodd"
></path>
</svg>
);
}
function NavLink({ className = '', href, text }) {
const external = href.startsWith('http');
const El = external ? Link : RouterLink;
const props = external ? { rel: 'noopener nofollow', target: '_blank' } : {};
return (
<El
activeClassName="bg-gray-200 dark:bg-gray-700 dark:hover:bg-gray-600 dark:focus:bg-gray-600 dark:focus:text-white dark:hover:text-white dark:text-gray-200"
className={`block px-4 py-2 mt-2 text-sm font-semibold text-gray-900 bg-transparent rounded-lg dark:bg-transparent dark:hover:bg-gray-600 dark:focus:bg-gray-600 dark:focus:text-white dark:hover:text-white dark:text-gray-200 hover:text-gray-900 focus:text-gray-900 hover:bg-gray-200 focus:bg-gray-200 focus:outline-none focus:shadow-outline self-end ${className}`}
href={href}
{...props}
>
{text}
</El>
);
}
export default function Sidebar() {
const [open, setOpen] = useState(false);
const handleToggle = useCallback(() => {
setOpen(!open);
}, [open, setOpen]);
return (
<div className="flex flex-col w-full md:w-64 text-gray-700 bg-white dark:text-gray-200 dark:bg-gray-700 flex-shrink-0">
<div className="flex-shrink-0 px-8 py-4 flex flex-row items-center justify-between">
<a
href="#"
className="text-lg font-semibold tracking-widest text-gray-900 uppercase rounded-lg dark:text-white focus:outline-none focus:shadow-outline"
>
Frigate
</a>
<button
className="rounded-lg md:hidden rounded-lg focus:outline-none focus:shadow-outline"
onClick={handleToggle}
>
{open ? <CloseIcon /> : <HamburgerIcon />}
</button>
</div>
<nav
className={`flex-col flex-grow md:block overflow-hidden px-4 pb-4 md:pb-0 md:overflow-y-auto ${
!open ? 'md:h-0 hidden' : ''
}`}
>
<NavLink href="/" text="Cameras" />
<NavLink href="/events" text="Events" />
<NavLink href="/debug" text="Debug" />
<hr className="border-solid border-gray-500 mt-2" />
<NavLink
className="self-end"
href="https://github.com/blakeblackshear/frigate/blob/master/README.md"
text="Documentation"
/>
<NavLink className="self-end" href="https://github.com/blakeblackshear/frigate" text="GitHub" />
</nav>
</div>
);
}

View File

@@ -0,0 +1,27 @@
import { h } from 'preact';
import { ApiHost, Config } from '../context';
import { useCallback, useEffect, useContext, useState } from 'preact/hooks';
export default function AutoUpdatingCameraImage({ camera, searchParams }) {
const config = useContext(Config);
const apiHost = useContext(ApiHost);
const cameraConfig = config.cameras[camera];
const [key, setKey] = useState(Date.now());
useEffect(() => {
const timeoutId = setTimeout(() => {
setKey(Date.now());
}, 500);
return () => {
clearTimeout(timeoutId);
};
}, [key, searchParams]);
return (
<img
className="w-full"
src={`${apiHost}/api/${camera}/latest.jpg?cache=${key}&${searchParams}`}
alt={`Auto-updating ${camera} image`}
/>
);
}

View File

@@ -0,0 +1,16 @@
import { h } from 'preact';
export default function Box({ children, className = '', hover = false, href, ...props }) {
const Element = href ? 'a' : 'div';
return (
<Element
className={`bg-white dark:bg-gray-700 shadow-lg rounded-lg p-4 ${
hover ? 'hover:bg-gray-300 hover:dark:bg-gray-500 dark:hover:text-gray-900 dark:hover:text-gray-900' : ''
} ${className}`}
href={href}
{...props}
>
{children}
</Element>
);
}

View File

@@ -0,0 +1,23 @@
import { h } from 'preact';
const noop = () => {};
const BUTTON_COLORS = {
blue: { normal: 'bg-blue-500', hover: 'hover:bg-blue-400' },
red: { normal: 'bg-red-500', hover: 'hover:bg-red-400' },
green: { normal: 'bg-green-500', hover: 'hover:bg-green-400' },
};
export default function Button({ children, className, color = 'blue', onClick, size, ...attrs }) {
return (
<div
role="button"
tabindex="0"
className={`rounded ${BUTTON_COLORS[color].normal} text-white pl-4 pr-4 pt-2 pb-2 font-bold shadow ${BUTTON_COLORS[color].hover} hover:shadow-lg cursor-pointer ${className}`}
onClick={onClick || noop}
{...attrs}
>
{children}
</div>
);
}

View File

@@ -0,0 +1,5 @@
import { h } from 'preact';
export default function Heading({ children, className = '', size = '2xl' }) {
return <h1 className={`font-semibold tracking-widest uppercase text-${size} ${className}`}>{children}</h1>;
}

View File

@@ -0,0 +1,9 @@
import { h } from 'preact';
export default function Link({ className, children, href, ...props }) {
return (
<a className={`text-blue-500 dark:text-blue-400 hover:underline ${className}`} href={href} {...props}>
{children}
</a>
);
}

View File

@@ -0,0 +1,30 @@
import { h } from 'preact';
import { useCallback, useState } from 'preact/hooks';
export default function Switch({ checked, label, id, onChange }) {
const handleChange = useCallback(
(event) => {
console.log(event.target.checked, !checked);
onChange(id, !checked);
},
[id, onChange, checked]
);
return (
<label for={id} className="flex items-center cursor-pointer">
<div className="relative">
<input id={id} type="checkbox" className="hidden" onChange={handleChange} checked={checked} />
<div
className={`transition-colors toggle__line w-12 h-6 ${
!checked ? 'bg-gray-400' : 'bg-blue-400'
} rounded-full shadow-inner`}
/>
<div
className="transition-transform absolute w-6 h-6 bg-white rounded-full shadow-md inset-y-0 left-0"
style={checked ? 'transform: translateX(100%);' : 'transform: translateX(0%);'}
/>
</div>
<div className="ml-3 text-gray-700 font-medium dark:text-gray-200">{label}</div>
</label>
);
}

View File

@@ -0,0 +1,31 @@
import { h } from 'preact';
export function Table({ children, className = '' }) {
return (
<table className={`table-auto border-collapse text-gray-900 dark:text-gray-200 ${className}`}>{children}</table>
);
}
export function Thead({ children, className = '' }) {
return <thead className={`${className}`}>{children}</thead>;
}
export function Tbody({ children, className = '' }) {
return <tbody className={`${className}`}>{children}</tbody>;
}
export function Tfoot({ children, className = '' }) {
return <tfoot className={`${className}`}>{children}</tfoot>;
}
export function Tr({ children, className = '', index }) {
return <tr className={`${index % 2 ? 'bg-gray-200 dark:bg-gray-700' : ''} ${className}`}>{children}</tr>;
}
export function Th({ children, className = '' }) {
return <th className={`border-b-2 border-gray-400 p-4 text-left ${className}`}>{children}</th>;
}
export function Td({ children, className = '' }) {
return <td className={`p-4 ${className}`}>{children}</td>;
}

5
web/src/context/index.js Normal file
View File

@@ -0,0 +1,5 @@
import { createContext } from 'preact';
export const Config = createContext({});
export const ApiHost = createContext(import.meta.env.SNOWPACK_PUBLIC_API_HOST || window.baseUrl || '');

3
web/src/index.css Normal file
View File

@@ -0,0 +1,3 @@
@tailwind base;
@tailwind components;
@tailwind utilities;

9
web/src/index.jsx Normal file
View File

@@ -0,0 +1,9 @@
import App from './App';
import { h, render } from 'preact';
import 'preact/devtools';
import './index.css';
render(
<App />,
document.getElementById('root')
);

13
web/tailwind.config.js Normal file
View File

@@ -0,0 +1,13 @@
'use strict';
module.exports = {
purge: ['./public/**/*.html', './src/**/*.jsx'],
darkMode: 'media',
theme: {
extend: {},
},
variants: {
extend: {},
},
plugins: [],
};