mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00
[Model] Refactor insightface models (#919)
* 重构insightface代码 * 重写insightface example代码 * 重写insightface example代码 * 删除多余代码 * 修改预处理代码 * 修改文档 * 修改文档 * 恢复误删除的文件 * 修改cpp example * 修改cpp example * 测试python代码 * 测试python代码 * 测试python代码 * 测试python代码 * 测试python代码 * 测试python代码 * 测试python代码 * 跑通python代码 * 修复重复初始化的bug * 更新adaface的python代码 * 修复c++重复初始化的问题 * 修复c++重复初始化的问题 * 修复Python重复初始化的问题 * 新增preprocess的几个参数的获取方式 * 修复注释的错误 * 按照要求修改 * 修改文档中的图片为图片压缩包 * 修改编译完成后程序的提示 * 更新错误include * 删除无用文件 * 更新文档
This commit is contained in:
@@ -10,10 +10,10 @@ download_and_decompress(${RKNPU2_URL} ${CMAKE_CURRENT_BINARY_DIR}/${RKNPU2_FILE}
|
|||||||
# set path
|
# set path
|
||||||
set(RKNPU_RUNTIME_PATH ${THIRD_PARTY_PATH}/install/rknpu2_runtime)
|
set(RKNPU_RUNTIME_PATH ${THIRD_PARTY_PATH}/install/rknpu2_runtime)
|
||||||
|
|
||||||
if (${CMAKE_SYSTEM_NAME} STREQUAL "Linux")
|
#if (${CMAKE_SYSTEM_NAME} STREQUAL "Linux")
|
||||||
else ()
|
#else ()
|
||||||
message(FATAL_ERROR "[rknpu2.cmake] Only support build rknpu2 in Linux")
|
# message(FATAL_ERROR "[rknpu2.cmake] Only support build rknpu2 in Linux")
|
||||||
endif ()
|
#endif ()
|
||||||
|
|
||||||
|
|
||||||
if (EXISTS ${RKNPU_RUNTIME_PATH})
|
if (EXISTS ${RKNPU_RUNTIME_PATH})
|
||||||
|
@@ -1,6 +1,8 @@
|
|||||||
# 人脸识别模型
|
# 人脸识别模型
|
||||||
|
|
||||||
|
|
||||||
|
## 模型支持列表
|
||||||
|
|
||||||
FastDeploy目前支持如下人脸识别模型部署
|
FastDeploy目前支持如下人脸识别模型部署
|
||||||
|
|
||||||
| 模型 | 说明 | 模型格式 | 版本 |
|
| 模型 | 说明 | 模型格式 | 版本 |
|
||||||
@@ -10,3 +12,7 @@ FastDeploy目前支持如下人脸识别模型部署
|
|||||||
| [deepinsight/PartialFC](./insightface) | PartialFC 系列模型 | ONNX | [CommitID:babb9a5](https://github.com/deepinsight/insightface/commit/babb9a5) |
|
| [deepinsight/PartialFC](./insightface) | PartialFC 系列模型 | ONNX | [CommitID:babb9a5](https://github.com/deepinsight/insightface/commit/babb9a5) |
|
||||||
| [deepinsight/VPL](./insightface) | VPL 系列模型 | ONNX | [CommitID:babb9a5](https://github.com/deepinsight/insightface/commit/babb9a5) |
|
| [deepinsight/VPL](./insightface) | VPL 系列模型 | ONNX | [CommitID:babb9a5](https://github.com/deepinsight/insightface/commit/babb9a5) |
|
||||||
| [paddleclas/AdaFace](./adaface) | AdaFace 系列模型 | PADDLE | [CommitID:babb9a5](https://github.com/PaddlePaddle/PaddleClas/tree/v2.4.0) |
|
| [paddleclas/AdaFace](./adaface) | AdaFace 系列模型 | PADDLE | [CommitID:babb9a5](https://github.com/PaddlePaddle/PaddleClas/tree/v2.4.0) |
|
||||||
|
|
||||||
|
## 模型demo简介
|
||||||
|
|
||||||
|
ArcFace,CosFace,PartialFC,VPL同属于deepinsight系列,因此demo使用ONNX作为推理框架。AdaFace则采用PaddleInference作为推理框架。
|
||||||
|
@@ -1,4 +1,4 @@
|
|||||||
PROJECT(infer_demo C CXX)
|
PROJECT(infer_adaface_demo C CXX)
|
||||||
CMAKE_MINIMUM_REQUIRED (VERSION 3.12)
|
CMAKE_MINIMUM_REQUIRED (VERSION 3.12)
|
||||||
|
|
||||||
# 指定下载解压后的fastdeploy库路径
|
# 指定下载解压后的fastdeploy库路径
|
||||||
@@ -9,5 +9,5 @@ include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
|
|||||||
# 添加FastDeploy依赖头文件
|
# 添加FastDeploy依赖头文件
|
||||||
include_directories(${FASTDEPLOY_INCS})
|
include_directories(${FASTDEPLOY_INCS})
|
||||||
|
|
||||||
add_executable(infer_demo ${PROJECT_SOURCE_DIR}/infer.cc)
|
add_executable(infer_adaface_demo ${PROJECT_SOURCE_DIR}/infer.cc)
|
||||||
target_link_libraries(infer_demo ${FASTDEPLOY_LIBS})
|
target_link_libraries(infer_adaface_demo ${FASTDEPLOY_LIBS})
|
||||||
|
@@ -8,56 +8,43 @@
|
|||||||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||||
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||||
|
|
||||||
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)
|
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
|
# “如果预编译库不包含本模型,请从最新代码编译SDK”
|
||||||
mkdir build
|
mkdir build
|
||||||
cd build
|
cd build
|
||||||
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
|
|
||||||
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
|
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
|
||||||
tar xvf fastdeploy-linux-x64-x.x.x.tgz
|
tar xvf fastdeploy-linux-x64-x.x.x.tgz
|
||||||
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
|
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
|
||||||
make -j
|
make -j
|
||||||
|
|
||||||
#下载测试图片
|
#下载测试图片
|
||||||
wget https://bj.bcebos.com/paddlehub/test_samples/test_lite_focal_arcface_0.JPG
|
wget https://bj.bcebos.com/paddlehub/fastdeploy/rknpu2/face_demo.zip
|
||||||
wget https://bj.bcebos.com/paddlehub/test_samples/test_lite_focal_arcface_1.JPG
|
unzip face_demo.zip
|
||||||
wget https://bj.bcebos.com/paddlehub/test_samples/test_lite_focal_arcface_2.JPG
|
|
||||||
|
|
||||||
# 如果为Paddle模型,运行以下代码
|
# 如果为Paddle模型,运行以下代码
|
||||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/mobilefacenet_adaface.tgz
|
wget https://bj.bcebos.com/paddlehub/fastdeploy/mobilefacenet_adaface.tgz
|
||||||
tar zxvf mobilefacenet_adaface.tgz -C ./
|
tar zxvf mobilefacenet_adaface.tgz -C ./
|
||||||
# CPU推理
|
# CPU推理
|
||||||
./infer_demo mobilefacenet_adaface/mobilefacenet_adaface.pdmodel \
|
./infer_adaface_demo mobilefacenet_adaface/mobilefacenet_adaface.pdmodel \
|
||||||
mobilefacenet_adaface/mobilefacenet_adaface.pdiparams \
|
mobilefacenet_adaface/mobilefacenet_adaface.pdiparams \
|
||||||
test_lite_focal_arcface_0.JPG \
|
face_0.jpg face_1.jpg face_2.jpg 0
|
||||||
test_lite_focal_arcface_1.JPG \
|
|
||||||
test_lite_focal_arcface_2.JPG \
|
|
||||||
0
|
|
||||||
|
|
||||||
# GPU推理
|
# GPU推理
|
||||||
./infer_demo mobilefacenet_adaface/mobilefacenet_adaface.pdmodel \
|
./infer_adaface_demo mobilefacenet_adaface/mobilefacenet_adaface.pdmodel \
|
||||||
mobilefacenet_adaface/mobilefacenet_adaface.pdiparams \
|
mobilefacenet_adaface/mobilefacenet_adaface.pdiparams \
|
||||||
test_lite_focal_arcface_0.JPG \
|
face_0.jpg face_1.jpg face_2.jpg 1
|
||||||
test_lite_focal_arcface_1.JPG \
|
|
||||||
test_lite_focal_arcface_2.JPG \
|
|
||||||
1
|
|
||||||
|
|
||||||
# GPU上TensorRT推理
|
# GPU上TensorRT推理
|
||||||
./infer_demo mobilefacenet_adaface/mobilefacenet_adaface.pdmodel \
|
./infer_adaface_demo mobilefacenet_adaface/mobilefacenet_adaface.pdmodel \
|
||||||
mobilefacenet_adaface/mobilefacenet_adaface.pdiparams \
|
mobilefacenet_adaface/mobilefacenet_adaface.pdiparams \
|
||||||
test_lite_focal_arcface_0.JPG \
|
face_0.jpg face_1.jpg face_2.jpg 2
|
||||||
test_lite_focal_arcface_1.JPG \
|
|
||||||
test_lite_focal_arcface_2.JPG \
|
|
||||||
2
|
|
||||||
|
|
||||||
# XPU推理
|
# XPU推理
|
||||||
./infer_demo mobilefacenet_adaface/mobilefacenet_adaface.pdmodel \
|
./infer_demo mobilefacenet_adaface/mobilefacenet_adaface.pdmodel \
|
||||||
mobilefacenet_adaface/mobilefacenet_adaface.pdiparams \
|
mobilefacenet_adaface/mobilefacenet_adaface.pdiparams \
|
||||||
test_lite_focal_arcface_0.JPG \
|
face_0.jpg face_1.jpg face_2.jpg 3
|
||||||
test_lite_focal_arcface_1.JPG \
|
|
||||||
test_lite_focal_arcface_2.JPG \
|
|
||||||
3
|
|
||||||
```
|
```
|
||||||
|
|
||||||
运行完成可视化结果如下图所示
|
运行完成可视化结果如下图所示
|
||||||
@@ -101,16 +88,22 @@ AdaFace模型加载和初始化,如果使用PaddleInference推理,model_file
|
|||||||
> > * **im**: 输入图像,注意需为HWC,BGR格式
|
> > * **im**: 输入图像,注意需为HWC,BGR格式
|
||||||
> > * **result**: 检测结果,包括检测框,各个框的置信度, FaceRecognitionResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
|
> > * **result**: 检测结果,包括检测框,各个框的置信度, FaceRecognitionResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||||||
|
|
||||||
### 类成员变量
|
### 修改预处理以及后处理的参数
|
||||||
#### 预处理参数
|
预处理和后处理的参数的需要通过修改AdaFacePostprocessor,AdaFacePreprocessor的成员变量来进行修改。
|
||||||
用户可按照自己的实际需求,修改下列预处理参数,从而影响最终的推理和部署效果
|
|
||||||
|
|
||||||
|
#### AdaFacePreprocessor成员变量(预处理参数)
|
||||||
|
> > * **size**(vector<int>): 通过此参数修改预处理过程中resize的大小,包含两个整型元素,表示[width, height], 默认值为[112, 112],
|
||||||
|
通过AdaFacePreprocessor::SetSize(std::vector<int>& size)来进行修改
|
||||||
|
> > * **alpha**(vector<float>): 预处理归一化的alpha值,计算公式为`x'=x*alpha+beta`,alpha默认为[1. / 127.5, 1.f / 127.5, 1. / 127.5],
|
||||||
|
通过AdaFacePreprocessor::SetAlpha(std::vector<float>& alpha)来进行修改
|
||||||
|
> > * **beta**(vector<float>): 预处理归一化的beta值,计算公式为`x'=x*alpha+beta`,beta默认为[-1.f, -1.f, -1.f],
|
||||||
|
通过AdaFacePreprocessor::SetBeta(std::vector<float>& beta)来进行修改
|
||||||
|
> > * **permute**(bool): 预处理是否将BGR转换成RGB,默认true,
|
||||||
|
通过AdaFacePreprocessor::SetPermute(bool permute)来进行修改
|
||||||
|
|
||||||
> > * **size**(vector<int>): 通过此参数修改预处理过程中resize的大小,包含两个整型元素,表示[width, height], 默认值为[112, 112]
|
#### AdaFacePostprocessor成员变量(后处理参数)
|
||||||
> > * **alpha**(vector<float>): 预处理归一化的alpha值,计算公式为`x'=x*alpha+beta`,alpha默认为[1. / 127.5, 1.f / 127.5, 1. / 127.5]
|
> > * **l2_normalize**(bool): 输出人脸向量之前是否执行l2归一化,默认false,
|
||||||
> > * **beta**(vector<float>): 预处理归一化的beta值,计算公式为`x'=x*alpha+beta`,beta默认为[-1.f, -1.f, -1.f]
|
AdaFacePostprocessor::SetL2Normalize(bool& l2_normalize)来进行修改
|
||||||
> > * **swap_rb**(bool): 预处理是否将BGR转换成RGB,默认true
|
|
||||||
> > * **l2_normalize**(bool): 输出人脸向量之前是否执行l2归一化,默认false
|
|
||||||
|
|
||||||
- [模型介绍](../../)
|
- [模型介绍](../../)
|
||||||
- [Python部署](../python)
|
- [Python部署](../python)
|
||||||
|
@@ -1,14 +1,17 @@
|
|||||||
/***************************************************************************
|
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||||
*
|
//
|
||||||
* Copyright (c) 2021 Baidu.com, Inc. All Rights Reserved
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
*
|
// you may not use this file except in compliance with the License.
|
||||||
**************************************************************************/
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
/**
|
|
||||||
* @author Baidu
|
|
||||||
* @brief demo_image_inference
|
|
||||||
*
|
|
||||||
**/
|
|
||||||
#include "fastdeploy/vision.h"
|
#include "fastdeploy/vision.h"
|
||||||
|
|
||||||
void CpuInfer(const std::string &model_file, const std::string ¶ms_file,
|
void CpuInfer(const std::string &model_file, const std::string ¶ms_file,
|
||||||
@@ -28,8 +31,8 @@ void CpuInfer(const std::string &model_file, const std::string ¶ms_file,
|
|||||||
fastdeploy::vision::FaceRecognitionResult res1;
|
fastdeploy::vision::FaceRecognitionResult res1;
|
||||||
fastdeploy::vision::FaceRecognitionResult res2;
|
fastdeploy::vision::FaceRecognitionResult res2;
|
||||||
|
|
||||||
if ((!model.Predict(&face0, &res0)) || (!model.Predict(&face1, &res1)) ||
|
if ((!model.Predict(face0, &res0)) || (!model.Predict(face1, &res1)) ||
|
||||||
(!model.Predict(&face2, &res2))) {
|
(!model.Predict(face2, &res2))) {
|
||||||
std::cerr << "Prediction Failed." << std::endl;
|
std::cerr << "Prediction Failed." << std::endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -40,9 +43,11 @@ void CpuInfer(const std::string &model_file, const std::string ¶ms_file,
|
|||||||
std::cout << "--- [Face 2]:" << res2.Str();
|
std::cout << "--- [Face 2]:" << res2.Str();
|
||||||
|
|
||||||
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
|
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
|
||||||
res0.embedding, res1.embedding, model.l2_normalize);
|
res0.embedding, res1.embedding,
|
||||||
|
model.GetPostprocessor().GetL2Normalize());
|
||||||
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
|
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
|
||||||
res0.embedding, res2.embedding, model.l2_normalize);
|
res0.embedding, res2.embedding,
|
||||||
|
model.GetPostprocessor().GetL2Normalize());
|
||||||
std::cout << "Detect Done! Cosine 01: " << cosine01
|
std::cout << "Detect Done! Cosine 01: " << cosine01
|
||||||
<< ", Cosine 02:" << cosine02 << std::endl;
|
<< ", Cosine 02:" << cosine02 << std::endl;
|
||||||
}
|
}
|
||||||
@@ -65,8 +70,8 @@ void XpuInfer(const std::string &model_file, const std::string ¶ms_file,
|
|||||||
fastdeploy::vision::FaceRecognitionResult res1;
|
fastdeploy::vision::FaceRecognitionResult res1;
|
||||||
fastdeploy::vision::FaceRecognitionResult res2;
|
fastdeploy::vision::FaceRecognitionResult res2;
|
||||||
|
|
||||||
if ((!model.Predict(&face0, &res0)) || (!model.Predict(&face1, &res1)) ||
|
if ((!model.Predict(face0, &res0)) || (!model.Predict(face1, &res1)) ||
|
||||||
(!model.Predict(&face2, &res2))) {
|
(!model.Predict(face2, &res2))) {
|
||||||
std::cerr << "Prediction Failed." << std::endl;
|
std::cerr << "Prediction Failed." << std::endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -77,9 +82,11 @@ void XpuInfer(const std::string &model_file, const std::string ¶ms_file,
|
|||||||
std::cout << "--- [Face 2]:" << res2.Str();
|
std::cout << "--- [Face 2]:" << res2.Str();
|
||||||
|
|
||||||
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
|
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
|
||||||
res0.embedding, res1.embedding, model.l2_normalize);
|
res0.embedding, res1.embedding,
|
||||||
|
model.GetPostprocessor().GetL2Normalize());
|
||||||
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
|
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
|
||||||
res0.embedding, res2.embedding, model.l2_normalize);
|
res0.embedding, res2.embedding,
|
||||||
|
model.GetPostprocessor().GetL2Normalize());
|
||||||
std::cout << "Detect Done! Cosine 01: " << cosine01
|
std::cout << "Detect Done! Cosine 01: " << cosine01
|
||||||
<< ", Cosine 02:" << cosine02 << std::endl;
|
<< ", Cosine 02:" << cosine02 << std::endl;
|
||||||
}
|
}
|
||||||
@@ -103,8 +110,8 @@ void GpuInfer(const std::string &model_file, const std::string ¶ms_file,
|
|||||||
fastdeploy::vision::FaceRecognitionResult res1;
|
fastdeploy::vision::FaceRecognitionResult res1;
|
||||||
fastdeploy::vision::FaceRecognitionResult res2;
|
fastdeploy::vision::FaceRecognitionResult res2;
|
||||||
|
|
||||||
if ((!model.Predict(&face0, &res0)) || (!model.Predict(&face1, &res1)) ||
|
if ((!model.Predict(face0, &res0)) || (!model.Predict(face1, &res1)) ||
|
||||||
(!model.Predict(&face2, &res2))) {
|
(!model.Predict(face2, &res2))) {
|
||||||
std::cerr << "Prediction Failed." << std::endl;
|
std::cerr << "Prediction Failed." << std::endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -115,9 +122,11 @@ void GpuInfer(const std::string &model_file, const std::string ¶ms_file,
|
|||||||
std::cout << "--- [Face 2]:" << res2.Str();
|
std::cout << "--- [Face 2]:" << res2.Str();
|
||||||
|
|
||||||
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
|
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
|
||||||
res0.embedding, res1.embedding, model.l2_normalize);
|
res0.embedding, res1.embedding,
|
||||||
|
model.GetPostprocessor().GetL2Normalize());
|
||||||
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
|
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
|
||||||
res0.embedding, res2.embedding, model.l2_normalize);
|
res0.embedding, res2.embedding,
|
||||||
|
model.GetPostprocessor().GetL2Normalize());
|
||||||
std::cout << "Detect Done! Cosine 01: " << cosine01
|
std::cout << "Detect Done! Cosine 01: " << cosine01
|
||||||
<< ", Cosine 02:" << cosine02 << std::endl;
|
<< ", Cosine 02:" << cosine02 << std::endl;
|
||||||
}
|
}
|
||||||
@@ -143,8 +152,8 @@ void TrtInfer(const std::string &model_file, const std::string ¶ms_file,
|
|||||||
fastdeploy::vision::FaceRecognitionResult res1;
|
fastdeploy::vision::FaceRecognitionResult res1;
|
||||||
fastdeploy::vision::FaceRecognitionResult res2;
|
fastdeploy::vision::FaceRecognitionResult res2;
|
||||||
|
|
||||||
if ((!model.Predict(&face0, &res0)) || (!model.Predict(&face1, &res1)) ||
|
if ((!model.Predict(face0, &res0)) || (!model.Predict(face1, &res1)) ||
|
||||||
(!model.Predict(&face2, &res2))) {
|
(!model.Predict(face2, &res2))) {
|
||||||
std::cerr << "Prediction Failed." << std::endl;
|
std::cerr << "Prediction Failed." << std::endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -155,9 +164,11 @@ void TrtInfer(const std::string &model_file, const std::string ¶ms_file,
|
|||||||
std::cout << "--- [Face 2]:" << res2.Str();
|
std::cout << "--- [Face 2]:" << res2.Str();
|
||||||
|
|
||||||
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
|
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
|
||||||
res0.embedding, res1.embedding, model.l2_normalize);
|
res0.embedding, res1.embedding,
|
||||||
|
model.GetPostprocessor().GetL2Normalize());
|
||||||
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
|
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
|
||||||
res0.embedding, res2.embedding, model.l2_normalize);
|
res0.embedding, res2.embedding,
|
||||||
|
model.GetPostprocessor().GetL2Normalize());
|
||||||
std::cout << "Detect Done! Cosine 01: " << cosine01
|
std::cout << "Detect Done! Cosine 01: " << cosine01
|
||||||
<< ", Cosine 02:" << cosine02 << std::endl;
|
<< ", Cosine 02:" << cosine02 << std::endl;
|
||||||
}
|
}
|
||||||
|
@@ -15,9 +15,8 @@ cd examples/vision/faceid/adaface/python/
|
|||||||
|
|
||||||
#下载AdaFace模型文件和测试图片
|
#下载AdaFace模型文件和测试图片
|
||||||
#下载测试图片
|
#下载测试图片
|
||||||
wget https://bj.bcebos.com/paddlehub/test_samples/test_lite_focal_arcface_0.JPG
|
wget https://bj.bcebos.com/paddlehub/fastdeploy/rknpu2/face_demo.zip
|
||||||
wget https://bj.bcebos.com/paddlehub/test_samples/test_lite_focal_arcface_1.JPG
|
unzip face_demo.zip
|
||||||
wget https://bj.bcebos.com/paddlehub/test_samples/test_lite_focal_arcface_2.JPG
|
|
||||||
|
|
||||||
# 如果为Paddle模型,运行以下代码
|
# 如果为Paddle模型,运行以下代码
|
||||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/mobilefacenet_adaface.tgz
|
wget https://bj.bcebos.com/paddlehub/fastdeploy/mobilefacenet_adaface.tgz
|
||||||
@@ -26,25 +25,25 @@ tar zxvf mobilefacenet_adaface.tgz -C ./
|
|||||||
# CPU推理
|
# CPU推理
|
||||||
python infer.py --model mobilefacenet_adaface/mobilefacenet_adaface.pdmodel \
|
python infer.py --model mobilefacenet_adaface/mobilefacenet_adaface.pdmodel \
|
||||||
--params_file mobilefacenet_adaface/mobilefacenet_adaface.pdiparams \
|
--params_file mobilefacenet_adaface/mobilefacenet_adaface.pdiparams \
|
||||||
--face test_lite_focal_arcface_0.JPG \
|
--face face_0.jpg \
|
||||||
--face_positive test_lite_focal_arcface_1.JPG \
|
--face_positive face_1.jpg \
|
||||||
--face_negative test_lite_focal_arcface_2.JPG \
|
--face_negative face_2.jpg \
|
||||||
--device cpu
|
--device cpu
|
||||||
# GPU推理
|
# GPU推理
|
||||||
python infer.py --model mobilefacenet_adaface/mobilefacenet_adaface.pdmodel \
|
python infer.py --model mobilefacenet_adaface/mobilefacenet_adaface.pdmodel \
|
||||||
--params_file mobilefacenet_adaface/mobilefacenet_adaface.pdiparams \
|
--params_file mobilefacenet_adaface/mobilefacenet_adaface.pdiparams \
|
||||||
--face test_lite_focal_arcface_0.JPG \
|
--face face_0.jpg \
|
||||||
--face_positive test_lite_focal_arcface_1.JPG \
|
--face_positive face_1.jpg \
|
||||||
--face_negative test_lite_focal_arcface_2.JPG \
|
--face_negative face_2.jpg \
|
||||||
--device gpu
|
--device gpu
|
||||||
# GPU上使用TensorRT推理
|
# GPU上使用TensorRT推理
|
||||||
python infer.py --model mobilefacenet_adaface/mobilefacenet_adaface.pdmodel \
|
python infer.py --model mobilefacenet_adaface/mobilefacenet_adaface.pdmodel \
|
||||||
--params_file mobilefacenet_adaface/mobilefacenet_adaface.pdiparams \
|
--params_file mobilefacenet_adaface/mobilefacenet_adaface.pdiparams \
|
||||||
--face test_lite_focal_arcface_0.JPG \
|
--face face_0.jpg \
|
||||||
--face_positive test_lite_focal_arcface_1.JPG \
|
--face_positive face_1.jpg \
|
||||||
--face_negative test_lite_focal_arcface_2.JPG \
|
--face_negative face_2.jpg \
|
||||||
--device gpu \
|
--device gpu \
|
||||||
--use_trt True
|
--use_trt True
|
||||||
|
|
||||||
# XPU推理
|
# XPU推理
|
||||||
python infer.py --model mobilefacenet_adaface/mobilefacenet_adaface.pdmodel \
|
python infer.py --model mobilefacenet_adaface/mobilefacenet_adaface.pdmodel \
|
||||||
@@ -106,11 +105,15 @@ AdaFace模型加载和初始化,其中model_file为导出的ONNX模型格式
|
|||||||
#### 预处理参数
|
#### 预处理参数
|
||||||
用户可按照自己的实际需求,修改下列预处理参数,从而影响最终的推理和部署效果
|
用户可按照自己的实际需求,修改下列预处理参数,从而影响最终的推理和部署效果
|
||||||
|
|
||||||
|
#### AdaFacePreprocessor的成员变量
|
||||||
|
以下变量为AdaFacePreprocessor的成员变量
|
||||||
> > * **size**(list[int]): 通过此参数修改预处理过程中resize的大小,包含两个整型元素,表示[width, height], 默认值为[112, 112]
|
> > * **size**(list[int]): 通过此参数修改预处理过程中resize的大小,包含两个整型元素,表示[width, height], 默认值为[112, 112]
|
||||||
> > * **alpha**(list[float]): 预处理归一化的alpha值,计算公式为`x'=x*alpha+beta`,alpha默认为[1. / 127.5, 1.f / 127.5, 1. / 127.5]
|
> > * **alpha**(list[float]): 预处理归一化的alpha值,计算公式为`x'=x*alpha+beta`,alpha默认为[1. / 127.5, 1.f / 127.5, 1. / 127.5]
|
||||||
> > * **beta**(list[float]): 预处理归一化的beta值,计算公式为`x'=x*alpha+beta`,beta默认为[-1.f, -1.f, -1.f]
|
> > * **beta**(list[float]): 预处理归一化的beta值,计算公式为`x'=x*alpha+beta`,beta默认为[-1.f, -1.f, -1.f]
|
||||||
> > * **swap_rb**(bool): 预处理是否将BGR转换成RGB,默认True
|
> > * **swap_rb**(bool): 预处理是否将BGR转换成RGB,默认True
|
||||||
|
|
||||||
|
#### AdaFacePostprocessor的成员变量
|
||||||
|
以下变量为AdaFacePostprocessor的成员变量
|
||||||
> > * **l2_normalize**(bool): 输出人脸向量之前是否执行l2归一化,默认False
|
> > * **l2_normalize**(bool): 输出人脸向量之前是否执行l2归一化,默认False
|
||||||
|
|
||||||
|
|
||||||
|
@@ -7,12 +7,11 @@
|
|||||||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||||
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||||
|
|
||||||
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)
|
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
mkdir build
|
mkdir build
|
||||||
cd build
|
cd build
|
||||||
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
|
|
||||||
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
|
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
|
||||||
tar xvf fastdeploy-linux-x64-x.x.x.tgz
|
tar xvf fastdeploy-linux-x64-x.x.x.tgz
|
||||||
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
|
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
|
||||||
@@ -20,17 +19,15 @@ make -j
|
|||||||
|
|
||||||
#下载官方转换好的ArcFace模型文件和测试图片
|
#下载官方转换好的ArcFace模型文件和测试图片
|
||||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/ms1mv3_arcface_r100.onnx
|
wget https://bj.bcebos.com/paddlehub/fastdeploy/ms1mv3_arcface_r100.onnx
|
||||||
wget https://bj.bcebos.com/paddlehub/test_samples/test_lite_focal_arcface_0.JPG
|
wget https://bj.bcebos.com/paddlehub/fastdeploy/rknpu2/face_demo.zip
|
||||||
wget https://bj.bcebos.com/paddlehub/test_samples/test_lite_focal_arcface_1.JPG
|
unzip face_demo.zip
|
||||||
wget https://bj.bcebos.com/paddlehub/test_samples/test_lite_focal_arcface_2.JPG
|
|
||||||
|
|
||||||
|
|
||||||
# CPU推理
|
# CPU推理
|
||||||
./infer_arcface_demo ms1mv3_arcface_r100.onnx test_lite_focal_arcface_0.JPG test_lite_focal_arcface_1.JPG test_lite_focal_arcface_2.JPG 0
|
./infer_arcface_demo ms1mv3_arcface_r100.onnx face_0.jpg face_1.jpg face_2.jpg 0
|
||||||
# GPU推理
|
# GPU推理
|
||||||
./infer_arcface_demo ms1mv3_arcface_r100.onnx test_lite_focal_arcface_0.JPG test_lite_focal_arcface_1.JPG test_lite_focal_arcface_2.JPG 1
|
./infer_arcface_demo ms1mv3_arcface_r100.onnx face_0.jpg face_1.jpg face_2.jpg 1
|
||||||
# GPU上TensorRT推理
|
# GPU上TensorRT推理
|
||||||
./infer_arcface_demo ms1mv3_arcface_r100.onnx test_lite_focal_arcface_0.JPG test_lite_focal_arcface_1.JPG test_lite_focal_arcface_2.JPG 2
|
./infer_arcface_demo ms1mv3_arcface_r100.onnx face_0.jpg face_1.jpg face_2.jpg 2
|
||||||
```
|
```
|
||||||
|
|
||||||
运行完成可视化结果如下图所示
|
运行完成可视化结果如下图所示
|
||||||
@@ -113,16 +110,22 @@ VPL模型加载和初始化,其中model_file为导出的ONNX模型格式。
|
|||||||
> > * **im**: 输入图像,注意需为HWC,BGR格式
|
> > * **im**: 输入图像,注意需为HWC,BGR格式
|
||||||
> > * **result**: 检测结果,包括检测框,各个框的置信度, FaceRecognitionResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
|
> > * **result**: 检测结果,包括检测框,各个框的置信度, FaceRecognitionResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||||||
|
|
||||||
### 类成员变量
|
### 修改预处理以及后处理的参数
|
||||||
#### 预处理参数
|
预处理和后处理的参数的需要通过修改InsightFaceRecognitionPostprocessor,InsightFaceRecognitionPreprocessor的成员变量来进行修改。
|
||||||
用户可按照自己的实际需求,修改下列预处理参数,从而影响最终的推理和部署效果
|
|
||||||
|
|
||||||
|
#### InsightFaceRecognitionPreprocessor成员变量(预处理参数)
|
||||||
|
> > * **size**(vector<int>): 通过此参数修改预处理过程中resize的大小,包含两个整型元素,表示[width, height], 默认值为[112, 112],
|
||||||
|
通过InsightFaceRecognitionPreprocessor::SetSize(std::vector<int>& size)来进行修改
|
||||||
|
> > * **alpha**(vector<float>): 预处理归一化的alpha值,计算公式为`x'=x*alpha+beta`,alpha默认为[1. / 127.5, 1.f / 127.5, 1. / 127.5],
|
||||||
|
通过InsightFaceRecognitionPreprocessor::SetAlpha(std::vector<float>& alpha)来进行修改
|
||||||
|
> > * **beta**(vector<float>): 预处理归一化的beta值,计算公式为`x'=x*alpha+beta`,beta默认为[-1.f, -1.f, -1.f],
|
||||||
|
通过InsightFaceRecognitionPreprocessor::SetBeta(std::vector<float>& beta)来进行修改
|
||||||
|
> > * **permute**(bool): 预处理是否将BGR转换成RGB,默认true,
|
||||||
|
通过InsightFaceRecognitionPreprocessor::SetPermute(bool permute)来进行修改
|
||||||
|
|
||||||
> > * **size**(vector<int>): 通过此参数修改预处理过程中resize的大小,包含两个整型元素,表示[width, height], 默认值为[112, 112]
|
#### InsightFaceRecognitionPostprocessor成员变量(后处理参数)
|
||||||
> > * **alpha**(vector<float>): 预处理归一化的alpha值,计算公式为`x'=x*alpha+beta`,alpha默认为[1. / 127.5, 1.f / 127.5, 1. / 127.5]
|
> > * **l2_normalize**(bool): 输出人脸向量之前是否执行l2归一化,默认false,
|
||||||
> > * **beta**(vector<float>): 预处理归一化的beta值,计算公式为`x'=x*alpha+beta`,beta默认为[-1.f, -1.f, -1.f]
|
InsightFaceRecognitionPostprocessor::SetL2Normalize(bool& l2_normalize)来进行修改
|
||||||
> > * **swap_rb**(bool): 预处理是否将BGR转换成RGB,默认true
|
|
||||||
> > * **l2_normalize**(bool): 输出人脸向量之前是否执行l2归一化,默认false
|
|
||||||
|
|
||||||
- [模型介绍](../../)
|
- [模型介绍](../../)
|
||||||
- [Python部署](../python)
|
- [Python部署](../python)
|
||||||
|
@@ -16,11 +16,7 @@
|
|||||||
|
|
||||||
void CpuInfer(const std::string& model_file,
|
void CpuInfer(const std::string& model_file,
|
||||||
const std::vector<std::string>& image_file) {
|
const std::vector<std::string>& image_file) {
|
||||||
auto model = fastdeploy::vision::faceid::ArcFace(model_file);
|
auto model = fastdeploy::vision::faceid::ArcFace(model_file, "");
|
||||||
if (!model.Initialized()) {
|
|
||||||
std::cerr << "Failed to initialize." << std::endl;
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
cv::Mat face0 = cv::imread(image_file[0]);
|
cv::Mat face0 = cv::imread(image_file[0]);
|
||||||
cv::Mat face1 = cv::imread(image_file[1]);
|
cv::Mat face1 = cv::imread(image_file[1]);
|
||||||
@@ -30,8 +26,8 @@ void CpuInfer(const std::string& model_file,
|
|||||||
fastdeploy::vision::FaceRecognitionResult res1;
|
fastdeploy::vision::FaceRecognitionResult res1;
|
||||||
fastdeploy::vision::FaceRecognitionResult res2;
|
fastdeploy::vision::FaceRecognitionResult res2;
|
||||||
|
|
||||||
if ((!model.Predict(&face0, &res0)) || (!model.Predict(&face1, &res1)) ||
|
if ((!model.Predict(face0, &res0)) || (!model.Predict(face1, &res1)) ||
|
||||||
(!model.Predict(&face2, &res2))) {
|
(!model.Predict(face2, &res2))) {
|
||||||
std::cerr << "Prediction Failed." << std::endl;
|
std::cerr << "Prediction Failed." << std::endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -42,9 +38,11 @@ void CpuInfer(const std::string& model_file,
|
|||||||
std::cout << "--- [Face 2]:" << res2.Str();
|
std::cout << "--- [Face 2]:" << res2.Str();
|
||||||
|
|
||||||
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
|
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
|
||||||
res0.embedding, res1.embedding, model.l2_normalize);
|
res0.embedding, res1.embedding,
|
||||||
|
model.GetPostprocessor().GetL2Normalize());
|
||||||
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
|
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
|
||||||
res0.embedding, res2.embedding, model.l2_normalize);
|
res0.embedding, res2.embedding,
|
||||||
|
model.GetPostprocessor().GetL2Normalize());
|
||||||
std::cout << "Detect Done! Cosine 01: " << cosine01
|
std::cout << "Detect Done! Cosine 01: " << cosine01
|
||||||
<< ", Cosine 02:" << cosine02 << std::endl;
|
<< ", Cosine 02:" << cosine02 << std::endl;
|
||||||
}
|
}
|
||||||
@@ -67,8 +65,8 @@ void GpuInfer(const std::string& model_file,
|
|||||||
fastdeploy::vision::FaceRecognitionResult res1;
|
fastdeploy::vision::FaceRecognitionResult res1;
|
||||||
fastdeploy::vision::FaceRecognitionResult res2;
|
fastdeploy::vision::FaceRecognitionResult res2;
|
||||||
|
|
||||||
if ((!model.Predict(&face0, &res0)) || (!model.Predict(&face1, &res1)) ||
|
if ((!model.Predict(face0, &res0)) || (!model.Predict(face1, &res1)) ||
|
||||||
(!model.Predict(&face2, &res2))) {
|
(!model.Predict(face2, &res2))) {
|
||||||
std::cerr << "Prediction Failed." << std::endl;
|
std::cerr << "Prediction Failed." << std::endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -79,9 +77,11 @@ void GpuInfer(const std::string& model_file,
|
|||||||
std::cout << "--- [Face 2]:" << res2.Str();
|
std::cout << "--- [Face 2]:" << res2.Str();
|
||||||
|
|
||||||
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
|
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
|
||||||
res0.embedding, res1.embedding, model.l2_normalize);
|
res0.embedding, res1.embedding,
|
||||||
|
model.GetPostprocessor().GetL2Normalize());
|
||||||
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
|
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
|
||||||
res0.embedding, res2.embedding, model.l2_normalize);
|
res0.embedding, res2.embedding,
|
||||||
|
model.GetPostprocessor().GetL2Normalize());
|
||||||
std::cout << "Detect Done! Cosine 01: " << cosine01
|
std::cout << "Detect Done! Cosine 01: " << cosine01
|
||||||
<< ", Cosine 02:" << cosine02 << std::endl;
|
<< ", Cosine 02:" << cosine02 << std::endl;
|
||||||
}
|
}
|
||||||
@@ -106,8 +106,8 @@ void TrtInfer(const std::string& model_file,
|
|||||||
fastdeploy::vision::FaceRecognitionResult res1;
|
fastdeploy::vision::FaceRecognitionResult res1;
|
||||||
fastdeploy::vision::FaceRecognitionResult res2;
|
fastdeploy::vision::FaceRecognitionResult res2;
|
||||||
|
|
||||||
if ((!model.Predict(&face0, &res0)) || (!model.Predict(&face1, &res1)) ||
|
if ((!model.Predict(face0, &res0)) || (!model.Predict(face1, &res1)) ||
|
||||||
(!model.Predict(&face2, &res2))) {
|
(!model.Predict(face2, &res2))) {
|
||||||
std::cerr << "Prediction Failed." << std::endl;
|
std::cerr << "Prediction Failed." << std::endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -118,9 +118,11 @@ void TrtInfer(const std::string& model_file,
|
|||||||
std::cout << "--- [Face 2]:" << res2.Str();
|
std::cout << "--- [Face 2]:" << res2.Str();
|
||||||
|
|
||||||
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
|
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
|
||||||
res0.embedding, res1.embedding, model.l2_normalize);
|
res0.embedding, res1.embedding,
|
||||||
|
model.GetPostprocessor().GetL2Normalize());
|
||||||
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
|
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
|
||||||
res0.embedding, res2.embedding, model.l2_normalize);
|
res0.embedding, res2.embedding,
|
||||||
|
model.GetPostprocessor().GetL2Normalize());
|
||||||
std::cout << "Detect Done! Cosine 01: " << cosine01
|
std::cout << "Detect Done! Cosine 01: " << cosine01
|
||||||
<< ", Cosine 02:" << cosine02 << std::endl;
|
<< ", Cosine 02:" << cosine02 << std::endl;
|
||||||
}
|
}
|
||||||
@@ -129,8 +131,7 @@ int main(int argc, char* argv[]) {
|
|||||||
if (argc < 6) {
|
if (argc < 6) {
|
||||||
std::cout << "Usage: infer_demo path/to/model path/to/image run_option, "
|
std::cout << "Usage: infer_demo path/to/model path/to/image run_option, "
|
||||||
"e.g ./infer_arcface_demo ms1mv3_arcface_r100.onnx "
|
"e.g ./infer_arcface_demo ms1mv3_arcface_r100.onnx "
|
||||||
"test_lite_focal_arcface_0.JPG test_lite_focal_arcface_1.JPG "
|
"face_0.jpg face_1.jpg face_2.jpg 0"
|
||||||
"test_lite_focal_arcface_2.JPG 0"
|
|
||||||
<< std::endl;
|
<< std::endl;
|
||||||
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
|
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
|
||||||
"with gpu; 2: run with gpu and use tensorrt backend."
|
"with gpu; 2: run with gpu and use tensorrt backend."
|
||||||
|
@@ -16,11 +16,7 @@
|
|||||||
|
|
||||||
void CpuInfer(const std::string& model_file,
|
void CpuInfer(const std::string& model_file,
|
||||||
const std::vector<std::string>& image_file) {
|
const std::vector<std::string>& image_file) {
|
||||||
auto model = fastdeploy::vision::faceid::CosFace(model_file);
|
auto model = fastdeploy::vision::faceid::CosFace(model_file, "");
|
||||||
if (!model.Initialized()) {
|
|
||||||
std::cerr << "Failed to initialize." << std::endl;
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
cv::Mat face0 = cv::imread(image_file[0]);
|
cv::Mat face0 = cv::imread(image_file[0]);
|
||||||
cv::Mat face1 = cv::imread(image_file[1]);
|
cv::Mat face1 = cv::imread(image_file[1]);
|
||||||
@@ -30,8 +26,8 @@ void CpuInfer(const std::string& model_file,
|
|||||||
fastdeploy::vision::FaceRecognitionResult res1;
|
fastdeploy::vision::FaceRecognitionResult res1;
|
||||||
fastdeploy::vision::FaceRecognitionResult res2;
|
fastdeploy::vision::FaceRecognitionResult res2;
|
||||||
|
|
||||||
if ((!model.Predict(&face0, &res0)) || (!model.Predict(&face1, &res1)) ||
|
if ((!model.Predict(face0, &res0)) || (!model.Predict(face1, &res1)) ||
|
||||||
(!model.Predict(&face2, &res2))) {
|
(!model.Predict(face2, &res2))) {
|
||||||
std::cerr << "Prediction Failed." << std::endl;
|
std::cerr << "Prediction Failed." << std::endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -42,9 +38,11 @@ void CpuInfer(const std::string& model_file,
|
|||||||
std::cout << "--- [Face 2]:" << res2.Str();
|
std::cout << "--- [Face 2]:" << res2.Str();
|
||||||
|
|
||||||
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
|
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
|
||||||
res0.embedding, res1.embedding, model.l2_normalize);
|
res0.embedding, res1.embedding,
|
||||||
|
model.GetPostprocessor().GetL2Normalize());
|
||||||
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
|
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
|
||||||
res0.embedding, res2.embedding, model.l2_normalize);
|
res0.embedding, res2.embedding,
|
||||||
|
model.GetPostprocessor().GetL2Normalize());
|
||||||
std::cout << "Detect Done! Cosine 01: " << cosine01
|
std::cout << "Detect Done! Cosine 01: " << cosine01
|
||||||
<< ", Cosine 02:" << cosine02 << std::endl;
|
<< ", Cosine 02:" << cosine02 << std::endl;
|
||||||
}
|
}
|
||||||
@@ -67,8 +65,8 @@ void GpuInfer(const std::string& model_file,
|
|||||||
fastdeploy::vision::FaceRecognitionResult res1;
|
fastdeploy::vision::FaceRecognitionResult res1;
|
||||||
fastdeploy::vision::FaceRecognitionResult res2;
|
fastdeploy::vision::FaceRecognitionResult res2;
|
||||||
|
|
||||||
if ((!model.Predict(&face0, &res0)) || (!model.Predict(&face1, &res1)) ||
|
if ((!model.Predict(face0, &res0)) || (!model.Predict(face1, &res1)) ||
|
||||||
(!model.Predict(&face2, &res2))) {
|
(!model.Predict(face2, &res2))) {
|
||||||
std::cerr << "Prediction Failed." << std::endl;
|
std::cerr << "Prediction Failed." << std::endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -79,9 +77,11 @@ void GpuInfer(const std::string& model_file,
|
|||||||
std::cout << "--- [Face 2]:" << res2.Str();
|
std::cout << "--- [Face 2]:" << res2.Str();
|
||||||
|
|
||||||
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
|
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
|
||||||
res0.embedding, res1.embedding, model.l2_normalize);
|
res0.embedding, res1.embedding,
|
||||||
|
model.GetPostprocessor().GetL2Normalize());
|
||||||
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
|
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
|
||||||
res0.embedding, res2.embedding, model.l2_normalize);
|
res0.embedding, res2.embedding,
|
||||||
|
model.GetPostprocessor().GetL2Normalize());
|
||||||
std::cout << "Detect Done! Cosine 01: " << cosine01
|
std::cout << "Detect Done! Cosine 01: " << cosine01
|
||||||
<< ", Cosine 02:" << cosine02 << std::endl;
|
<< ", Cosine 02:" << cosine02 << std::endl;
|
||||||
}
|
}
|
||||||
@@ -106,8 +106,8 @@ void TrtInfer(const std::string& model_file,
|
|||||||
fastdeploy::vision::FaceRecognitionResult res1;
|
fastdeploy::vision::FaceRecognitionResult res1;
|
||||||
fastdeploy::vision::FaceRecognitionResult res2;
|
fastdeploy::vision::FaceRecognitionResult res2;
|
||||||
|
|
||||||
if ((!model.Predict(&face0, &res0)) || (!model.Predict(&face1, &res1)) ||
|
if ((!model.Predict(face0, &res0)) || (!model.Predict(face1, &res1)) ||
|
||||||
(!model.Predict(&face2, &res2))) {
|
(!model.Predict(face2, &res2))) {
|
||||||
std::cerr << "Prediction Failed." << std::endl;
|
std::cerr << "Prediction Failed." << std::endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -118,9 +118,11 @@ void TrtInfer(const std::string& model_file,
|
|||||||
std::cout << "--- [Face 2]:" << res2.Str();
|
std::cout << "--- [Face 2]:" << res2.Str();
|
||||||
|
|
||||||
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
|
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
|
||||||
res0.embedding, res1.embedding, model.l2_normalize);
|
res0.embedding, res1.embedding,
|
||||||
|
model.GetPostprocessor().GetL2Normalize());
|
||||||
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
|
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
|
||||||
res0.embedding, res2.embedding, model.l2_normalize);
|
res0.embedding, res2.embedding,
|
||||||
|
model.GetPostprocessor().GetL2Normalize());
|
||||||
std::cout << "Detect Done! Cosine 01: " << cosine01
|
std::cout << "Detect Done! Cosine 01: " << cosine01
|
||||||
<< ", Cosine 02:" << cosine02 << std::endl;
|
<< ", Cosine 02:" << cosine02 << std::endl;
|
||||||
}
|
}
|
||||||
@@ -128,9 +130,8 @@ void TrtInfer(const std::string& model_file,
|
|||||||
int main(int argc, char* argv[]) {
|
int main(int argc, char* argv[]) {
|
||||||
if (argc < 6) {
|
if (argc < 6) {
|
||||||
std::cout << "Usage: infer_demo path/to/model path/to/image run_option, "
|
std::cout << "Usage: infer_demo path/to/model path/to/image run_option, "
|
||||||
"e.g ./infer_arcface_demo ms1mv3_arcface_r100.onnx "
|
"e.g ./infer_cosface_demo ms1mv3_cosface_r100.onnx "
|
||||||
"test_lite_focal_arcface_0.JPG test_lite_focal_arcface_1.JPG "
|
"face_0.jpg face_1.jpg face_2.jpg 0"
|
||||||
"test_lite_focal_arcface_2.JPG 0"
|
|
||||||
<< std::endl;
|
<< std::endl;
|
||||||
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
|
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
|
||||||
"with gpu; 2: run with gpu and use tensorrt backend."
|
"with gpu; 2: run with gpu and use tensorrt backend."
|
||||||
|
@@ -16,11 +16,7 @@
|
|||||||
|
|
||||||
void CpuInfer(const std::string& model_file,
|
void CpuInfer(const std::string& model_file,
|
||||||
const std::vector<std::string>& image_file) {
|
const std::vector<std::string>& image_file) {
|
||||||
auto model = fastdeploy::vision::faceid::PartialFC(model_file);
|
auto model = fastdeploy::vision::faceid::PartialFC(model_file, "");
|
||||||
if (!model.Initialized()) {
|
|
||||||
std::cerr << "Failed to initialize." << std::endl;
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
cv::Mat face0 = cv::imread(image_file[0]);
|
cv::Mat face0 = cv::imread(image_file[0]);
|
||||||
cv::Mat face1 = cv::imread(image_file[1]);
|
cv::Mat face1 = cv::imread(image_file[1]);
|
||||||
@@ -30,8 +26,8 @@ void CpuInfer(const std::string& model_file,
|
|||||||
fastdeploy::vision::FaceRecognitionResult res1;
|
fastdeploy::vision::FaceRecognitionResult res1;
|
||||||
fastdeploy::vision::FaceRecognitionResult res2;
|
fastdeploy::vision::FaceRecognitionResult res2;
|
||||||
|
|
||||||
if ((!model.Predict(&face0, &res0)) || (!model.Predict(&face1, &res1)) ||
|
if ((!model.Predict(face0, &res0)) || (!model.Predict(face1, &res1)) ||
|
||||||
(!model.Predict(&face2, &res2))) {
|
(!model.Predict(face2, &res2))) {
|
||||||
std::cerr << "Prediction Failed." << std::endl;
|
std::cerr << "Prediction Failed." << std::endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -42,9 +38,11 @@ void CpuInfer(const std::string& model_file,
|
|||||||
std::cout << "--- [Face 2]:" << res2.Str();
|
std::cout << "--- [Face 2]:" << res2.Str();
|
||||||
|
|
||||||
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
|
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
|
||||||
res0.embedding, res1.embedding, model.l2_normalize);
|
res0.embedding, res1.embedding,
|
||||||
|
model.GetPostprocessor().GetL2Normalize());
|
||||||
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
|
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
|
||||||
res0.embedding, res2.embedding, model.l2_normalize);
|
res0.embedding, res2.embedding,
|
||||||
|
model.GetPostprocessor().GetL2Normalize());
|
||||||
std::cout << "Detect Done! Cosine 01: " << cosine01
|
std::cout << "Detect Done! Cosine 01: " << cosine01
|
||||||
<< ", Cosine 02:" << cosine02 << std::endl;
|
<< ", Cosine 02:" << cosine02 << std::endl;
|
||||||
}
|
}
|
||||||
@@ -67,8 +65,8 @@ void GpuInfer(const std::string& model_file,
|
|||||||
fastdeploy::vision::FaceRecognitionResult res1;
|
fastdeploy::vision::FaceRecognitionResult res1;
|
||||||
fastdeploy::vision::FaceRecognitionResult res2;
|
fastdeploy::vision::FaceRecognitionResult res2;
|
||||||
|
|
||||||
if ((!model.Predict(&face0, &res0)) || (!model.Predict(&face1, &res1)) ||
|
if ((!model.Predict(face0, &res0)) || (!model.Predict(face1, &res1)) ||
|
||||||
(!model.Predict(&face2, &res2))) {
|
(!model.Predict(face2, &res2))) {
|
||||||
std::cerr << "Prediction Failed." << std::endl;
|
std::cerr << "Prediction Failed." << std::endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -79,9 +77,11 @@ void GpuInfer(const std::string& model_file,
|
|||||||
std::cout << "--- [Face 2]:" << res2.Str();
|
std::cout << "--- [Face 2]:" << res2.Str();
|
||||||
|
|
||||||
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
|
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
|
||||||
res0.embedding, res1.embedding, model.l2_normalize);
|
res0.embedding, res1.embedding,
|
||||||
|
model.GetPostprocessor().GetL2Normalize());
|
||||||
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
|
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
|
||||||
res0.embedding, res2.embedding, model.l2_normalize);
|
res0.embedding, res2.embedding,
|
||||||
|
model.GetPostprocessor().GetL2Normalize());
|
||||||
std::cout << "Detect Done! Cosine 01: " << cosine01
|
std::cout << "Detect Done! Cosine 01: " << cosine01
|
||||||
<< ", Cosine 02:" << cosine02 << std::endl;
|
<< ", Cosine 02:" << cosine02 << std::endl;
|
||||||
}
|
}
|
||||||
@@ -106,8 +106,8 @@ void TrtInfer(const std::string& model_file,
|
|||||||
fastdeploy::vision::FaceRecognitionResult res1;
|
fastdeploy::vision::FaceRecognitionResult res1;
|
||||||
fastdeploy::vision::FaceRecognitionResult res2;
|
fastdeploy::vision::FaceRecognitionResult res2;
|
||||||
|
|
||||||
if ((!model.Predict(&face0, &res0)) || (!model.Predict(&face1, &res1)) ||
|
if ((!model.Predict(face0, &res0)) || (!model.Predict(face1, &res1)) ||
|
||||||
(!model.Predict(&face2, &res2))) {
|
(!model.Predict(face2, &res2))) {
|
||||||
std::cerr << "Prediction Failed." << std::endl;
|
std::cerr << "Prediction Failed." << std::endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -118,9 +118,11 @@ void TrtInfer(const std::string& model_file,
|
|||||||
std::cout << "--- [Face 2]:" << res2.Str();
|
std::cout << "--- [Face 2]:" << res2.Str();
|
||||||
|
|
||||||
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
|
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
|
||||||
res0.embedding, res1.embedding, model.l2_normalize);
|
res0.embedding, res1.embedding,
|
||||||
|
model.GetPostprocessor().GetL2Normalize());
|
||||||
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
|
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
|
||||||
res0.embedding, res2.embedding, model.l2_normalize);
|
res0.embedding, res2.embedding,
|
||||||
|
model.GetPostprocessor().GetL2Normalize());
|
||||||
std::cout << "Detect Done! Cosine 01: " << cosine01
|
std::cout << "Detect Done! Cosine 01: " << cosine01
|
||||||
<< ", Cosine 02:" << cosine02 << std::endl;
|
<< ", Cosine 02:" << cosine02 << std::endl;
|
||||||
}
|
}
|
||||||
@@ -128,9 +130,8 @@ void TrtInfer(const std::string& model_file,
|
|||||||
int main(int argc, char* argv[]) {
|
int main(int argc, char* argv[]) {
|
||||||
if (argc < 6) {
|
if (argc < 6) {
|
||||||
std::cout << "Usage: infer_demo path/to/model path/to/image run_option, "
|
std::cout << "Usage: infer_demo path/to/model path/to/image run_option, "
|
||||||
"e.g ./infer_arcface_demo ms1mv3_arcface_r100.onnx "
|
"e.g ./infer_arcface_demo ms1mv3_partial_fc_r100.onnx "
|
||||||
"test_lite_focal_arcface_0.JPG test_lite_focal_arcface_1.JPG "
|
"face_0.jpg face_1.jpg face_2.jpg 0"
|
||||||
"test_lite_focal_arcface_2.JPG 0"
|
|
||||||
<< std::endl;
|
<< std::endl;
|
||||||
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
|
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
|
||||||
"with gpu; 2: run with gpu and use tensorrt backend."
|
"with gpu; 2: run with gpu and use tensorrt backend."
|
||||||
|
@@ -16,11 +16,7 @@
|
|||||||
|
|
||||||
void CpuInfer(const std::string& model_file,
|
void CpuInfer(const std::string& model_file,
|
||||||
const std::vector<std::string>& image_file) {
|
const std::vector<std::string>& image_file) {
|
||||||
auto model = fastdeploy::vision::faceid::VPL(model_file);
|
auto model = fastdeploy::vision::faceid::VPL(model_file, "");
|
||||||
if (!model.Initialized()) {
|
|
||||||
std::cerr << "Failed to initialize." << std::endl;
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
cv::Mat face0 = cv::imread(image_file[0]);
|
cv::Mat face0 = cv::imread(image_file[0]);
|
||||||
cv::Mat face1 = cv::imread(image_file[1]);
|
cv::Mat face1 = cv::imread(image_file[1]);
|
||||||
@@ -30,8 +26,8 @@ void CpuInfer(const std::string& model_file,
|
|||||||
fastdeploy::vision::FaceRecognitionResult res1;
|
fastdeploy::vision::FaceRecognitionResult res1;
|
||||||
fastdeploy::vision::FaceRecognitionResult res2;
|
fastdeploy::vision::FaceRecognitionResult res2;
|
||||||
|
|
||||||
if ((!model.Predict(&face0, &res0)) || (!model.Predict(&face1, &res1)) ||
|
if ((!model.Predict(face0, &res0)) || (!model.Predict(face1, &res1)) ||
|
||||||
(!model.Predict(&face2, &res2))) {
|
(!model.Predict(face2, &res2))) {
|
||||||
std::cerr << "Prediction Failed." << std::endl;
|
std::cerr << "Prediction Failed." << std::endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -42,9 +38,11 @@ void CpuInfer(const std::string& model_file,
|
|||||||
std::cout << "--- [Face 2]:" << res2.Str();
|
std::cout << "--- [Face 2]:" << res2.Str();
|
||||||
|
|
||||||
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
|
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
|
||||||
res0.embedding, res1.embedding, model.l2_normalize);
|
res0.embedding, res1.embedding,
|
||||||
|
model.GetPostprocessor().GetL2Normalize());
|
||||||
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
|
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
|
||||||
res0.embedding, res2.embedding, model.l2_normalize);
|
res0.embedding, res2.embedding,
|
||||||
|
model.GetPostprocessor().GetL2Normalize());
|
||||||
std::cout << "Detect Done! Cosine 01: " << cosine01
|
std::cout << "Detect Done! Cosine 01: " << cosine01
|
||||||
<< ", Cosine 02:" << cosine02 << std::endl;
|
<< ", Cosine 02:" << cosine02 << std::endl;
|
||||||
}
|
}
|
||||||
@@ -67,8 +65,8 @@ void GpuInfer(const std::string& model_file,
|
|||||||
fastdeploy::vision::FaceRecognitionResult res1;
|
fastdeploy::vision::FaceRecognitionResult res1;
|
||||||
fastdeploy::vision::FaceRecognitionResult res2;
|
fastdeploy::vision::FaceRecognitionResult res2;
|
||||||
|
|
||||||
if ((!model.Predict(&face0, &res0)) || (!model.Predict(&face1, &res1)) ||
|
if ((!model.Predict(face0, &res0)) || (!model.Predict(face1, &res1)) ||
|
||||||
(!model.Predict(&face2, &res2))) {
|
(!model.Predict(face2, &res2))) {
|
||||||
std::cerr << "Prediction Failed." << std::endl;
|
std::cerr << "Prediction Failed." << std::endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -79,9 +77,11 @@ void GpuInfer(const std::string& model_file,
|
|||||||
std::cout << "--- [Face 2]:" << res2.Str();
|
std::cout << "--- [Face 2]:" << res2.Str();
|
||||||
|
|
||||||
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
|
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
|
||||||
res0.embedding, res1.embedding, model.l2_normalize);
|
res0.embedding, res1.embedding,
|
||||||
|
model.GetPostprocessor().GetL2Normalize());
|
||||||
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
|
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
|
||||||
res0.embedding, res2.embedding, model.l2_normalize);
|
res0.embedding, res2.embedding,
|
||||||
|
model.GetPostprocessor().GetL2Normalize());
|
||||||
std::cout << "Detect Done! Cosine 01: " << cosine01
|
std::cout << "Detect Done! Cosine 01: " << cosine01
|
||||||
<< ", Cosine 02:" << cosine02 << std::endl;
|
<< ", Cosine 02:" << cosine02 << std::endl;
|
||||||
}
|
}
|
||||||
@@ -106,8 +106,8 @@ void TrtInfer(const std::string& model_file,
|
|||||||
fastdeploy::vision::FaceRecognitionResult res1;
|
fastdeploy::vision::FaceRecognitionResult res1;
|
||||||
fastdeploy::vision::FaceRecognitionResult res2;
|
fastdeploy::vision::FaceRecognitionResult res2;
|
||||||
|
|
||||||
if ((!model.Predict(&face0, &res0)) || (!model.Predict(&face1, &res1)) ||
|
if ((!model.Predict(face0, &res0)) || (!model.Predict(face1, &res1)) ||
|
||||||
(!model.Predict(&face2, &res2))) {
|
(!model.Predict(face2, &res2))) {
|
||||||
std::cerr << "Prediction Failed." << std::endl;
|
std::cerr << "Prediction Failed." << std::endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -118,9 +118,11 @@ void TrtInfer(const std::string& model_file,
|
|||||||
std::cout << "--- [Face 2]:" << res2.Str();
|
std::cout << "--- [Face 2]:" << res2.Str();
|
||||||
|
|
||||||
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
|
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
|
||||||
res0.embedding, res1.embedding, model.l2_normalize);
|
res0.embedding, res1.embedding,
|
||||||
|
model.GetPostprocessor().GetL2Normalize());
|
||||||
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
|
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
|
||||||
res0.embedding, res2.embedding, model.l2_normalize);
|
res0.embedding, res2.embedding,
|
||||||
|
model.GetPostprocessor().GetL2Normalize());
|
||||||
std::cout << "Detect Done! Cosine 01: " << cosine01
|
std::cout << "Detect Done! Cosine 01: " << cosine01
|
||||||
<< ", Cosine 02:" << cosine02 << std::endl;
|
<< ", Cosine 02:" << cosine02 << std::endl;
|
||||||
}
|
}
|
||||||
@@ -128,9 +130,8 @@ void TrtInfer(const std::string& model_file,
|
|||||||
int main(int argc, char* argv[]) {
|
int main(int argc, char* argv[]) {
|
||||||
if (argc < 6) {
|
if (argc < 6) {
|
||||||
std::cout << "Usage: infer_demo path/to/model path/to/image run_option, "
|
std::cout << "Usage: infer_demo path/to/model path/to/image run_option, "
|
||||||
"e.g ./infer_arcface_demo ms1mv3_arcface_r100.onnx "
|
"e.g ./infer_arcface_demo ms1mv3_vpl_r100.onnx "
|
||||||
"test_lite_focal_arcface_0.JPG test_lite_focal_arcface_1.JPG "
|
"face_0.jpg face_1.jpg face_2.jpg 0"
|
||||||
"test_lite_focal_arcface_2.JPG 0"
|
|
||||||
<< std::endl;
|
<< std::endl;
|
||||||
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
|
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
|
||||||
"with gpu; 2: run with gpu and use tensorrt backend."
|
"with gpu; 2: run with gpu and use tensorrt backend."
|
||||||
|
@@ -15,16 +15,28 @@ cd examples/vision/faceid/insightface/python/
|
|||||||
|
|
||||||
#下载ArcFace模型文件和测试图片
|
#下载ArcFace模型文件和测试图片
|
||||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/ms1mv3_arcface_r100.onnx
|
wget https://bj.bcebos.com/paddlehub/fastdeploy/ms1mv3_arcface_r100.onnx
|
||||||
wget https://bj.bcebos.com/paddlehub/test_samples/test_lite_focal_arcface_0.JPG
|
wget https://bj.bcebos.com/paddlehub/fastdeploy/rknpu2/face_demo.zip
|
||||||
wget https://bj.bcebos.com/paddlehub/test_samples/test_lite_focal_arcface_1.JPG
|
unzip face_demo.zip
|
||||||
wget https://bj.bcebos.com/paddlehub/test_samples/test_lite_focal_arcface_2.JPG
|
|
||||||
|
|
||||||
# CPU推理
|
# CPU推理
|
||||||
python infer_arcface.py --model ms1mv3_arcface_r100.onnx --face test_lite_focal_arcface_0.JPG --face_positive test_lite_focal_arcface_1.JPG --face_negative test_lite_focal_arcface_2.JPG --device cpu
|
python infer_arcface.py --model ms1mv3_arcface_r100.onnx \
|
||||||
|
--face face_0.jpg \
|
||||||
|
--face_positive face_1.jpg \
|
||||||
|
--face_negative face_2.jpg \
|
||||||
|
--device cpu
|
||||||
# GPU推理
|
# GPU推理
|
||||||
python infer_arcface.py --model ms1mv3_arcface_r100.onnx --face test_lite_focal_arcface_0.JPG --face_positive test_lite_focal_arcface_1.JPG --face_negative test_lite_focal_arcface_2.JPG --device gpu
|
python infer_arcface.py --model ms1mv3_arcface_r100.onnx \
|
||||||
|
--face face_0.jpg \
|
||||||
|
--face_positive face_1.jpg \
|
||||||
|
--face_negative face_2.jpg \
|
||||||
|
--device gpu
|
||||||
# GPU上使用TensorRT推理
|
# GPU上使用TensorRT推理
|
||||||
python infer_arcface.py --model ms1mv3_arcface_r100.onnx --face test_lite_focal_arcface_0.JPG --face_positive test_lite_focal_arcface_1.JPG --face_negative test_lite_focal_arcface_2.JPG --device gpu --use_trt True
|
python infer_arcface.py --model ms1mv3_arcface_r100.onnx \
|
||||||
|
--face face_0.jpg \
|
||||||
|
--face_positive face_1.jpg \
|
||||||
|
--face_negative face_2.jpg \
|
||||||
|
--device gpu \
|
||||||
|
--use_trt True
|
||||||
```
|
```
|
||||||
|
|
||||||
运行完成可视化结果如下图所示
|
运行完成可视化结果如下图所示
|
||||||
@@ -82,11 +94,15 @@ ArcFace模型加载和初始化,其中model_file为导出的ONNX模型格式
|
|||||||
#### 预处理参数
|
#### 预处理参数
|
||||||
用户可按照自己的实际需求,修改下列预处理参数,从而影响最终的推理和部署效果
|
用户可按照自己的实际需求,修改下列预处理参数,从而影响最终的推理和部署效果
|
||||||
|
|
||||||
|
#### AdaFacePreprocessor的成员变量
|
||||||
|
以下变量为AdaFacePreprocessor的成员变量
|
||||||
> > * **size**(list[int]): 通过此参数修改预处理过程中resize的大小,包含两个整型元素,表示[width, height], 默认值为[112, 112]
|
> > * **size**(list[int]): 通过此参数修改预处理过程中resize的大小,包含两个整型元素,表示[width, height], 默认值为[112, 112]
|
||||||
> > * **alpha**(list[float]): 预处理归一化的alpha值,计算公式为`x'=x*alpha+beta`,alpha默认为[1. / 127.5, 1.f / 127.5, 1. / 127.5]
|
> > * **alpha**(list[float]): 预处理归一化的alpha值,计算公式为`x'=x*alpha+beta`,alpha默认为[1. / 127.5, 1.f / 127.5, 1. / 127.5]
|
||||||
> > * **beta**(list[float]): 预处理归一化的beta值,计算公式为`x'=x*alpha+beta`,beta默认为[-1.f, -1.f, -1.f]
|
> > * **beta**(list[float]): 预处理归一化的beta值,计算公式为`x'=x*alpha+beta`,beta默认为[-1.f, -1.f, -1.f]
|
||||||
> > * **swap_rb**(bool): 预处理是否将BGR转换成RGB,默认True
|
> > * **swap_rb**(bool): 预处理是否将BGR转换成RGB,默认True
|
||||||
|
|
||||||
|
#### AdaFacePostprocessor的成员变量
|
||||||
|
以下变量为AdaFacePostprocessor的成员变量
|
||||||
> > * **l2_normalize**(bool): 输出人脸向量之前是否执行l2归一化,默认False
|
> > * **l2_normalize**(bool): 输出人脸向量之前是否执行l2归一化,默认False
|
||||||
|
|
||||||
|
|
||||||
|
@@ -66,7 +66,7 @@ face1 = cv2.imread(args.face_positive)
|
|||||||
face2 = cv2.imread(args.face_negative) # 0,2 不同的人
|
face2 = cv2.imread(args.face_negative) # 0,2 不同的人
|
||||||
|
|
||||||
# 设置 l2 normalize
|
# 设置 l2 normalize
|
||||||
model.l2_normalize = True
|
model.postprocessor.l2_normalize = True
|
||||||
|
|
||||||
# 预测图片检测结果
|
# 预测图片检测结果
|
||||||
result0 = model.predict(face0)
|
result0 = model.predict(face0)
|
||||||
|
@@ -66,7 +66,7 @@ face1 = cv2.imread(args.face_positive)
|
|||||||
face2 = cv2.imread(args.face_negative) # 0,2 不同的人
|
face2 = cv2.imread(args.face_negative) # 0,2 不同的人
|
||||||
|
|
||||||
# 设置 l2 normalize
|
# 设置 l2 normalize
|
||||||
model.l2_normalize = True
|
model.postprocessor.l2_normalize = True
|
||||||
|
|
||||||
# 预测图片检测结果
|
# 预测图片检测结果
|
||||||
result0 = model.predict(face0)
|
result0 = model.predict(face0)
|
||||||
|
@@ -66,7 +66,7 @@ face1 = cv2.imread(args.face_positive)
|
|||||||
face2 = cv2.imread(args.face_negative) # 0,2 不同的人
|
face2 = cv2.imread(args.face_negative) # 0,2 不同的人
|
||||||
|
|
||||||
# 设置 l2 normalize
|
# 设置 l2 normalize
|
||||||
model.l2_normalize = True
|
model.postprocessor.l2_normalize = True
|
||||||
|
|
||||||
# 预测图片检测结果
|
# 预测图片检测结果
|
||||||
result0 = model.predict(face0)
|
result0 = model.predict(face0)
|
||||||
|
@@ -66,7 +66,7 @@ face1 = cv2.imread(args.face_positive)
|
|||||||
face2 = cv2.imread(args.face_negative) # 0,2 不同的人
|
face2 = cv2.imread(args.face_negative) # 0,2 不同的人
|
||||||
|
|
||||||
# 设置 l2 normalize
|
# 设置 l2 normalize
|
||||||
model.l2_normalize = True
|
model.postprocessor.l2_normalize = True
|
||||||
|
|
||||||
# 预测图片检测结果
|
# 预测图片检测结果
|
||||||
result0 = model.predict(face0)
|
result0 = model.predict(face0)
|
||||||
|
@@ -38,12 +38,8 @@
|
|||||||
#include "fastdeploy/vision/facedet/contrib/ultraface.h"
|
#include "fastdeploy/vision/facedet/contrib/ultraface.h"
|
||||||
#include "fastdeploy/vision/facedet/contrib/yolov5face.h"
|
#include "fastdeploy/vision/facedet/contrib/yolov5face.h"
|
||||||
#include "fastdeploy/vision/facedet/contrib/yolov7face/yolov7face.h"
|
#include "fastdeploy/vision/facedet/contrib/yolov7face/yolov7face.h"
|
||||||
#include "fastdeploy/vision/faceid/contrib/adaface.h"
|
#include "fastdeploy/vision/faceid/contrib/insightface/model.h"
|
||||||
#include "fastdeploy/vision/faceid/contrib/arcface.h"
|
#include "fastdeploy/vision/faceid/contrib/adaface/adaface.h"
|
||||||
#include "fastdeploy/vision/faceid/contrib/cosface.h"
|
|
||||||
#include "fastdeploy/vision/faceid/contrib/insightface_rec.h"
|
|
||||||
#include "fastdeploy/vision/faceid/contrib/partial_fc.h"
|
|
||||||
#include "fastdeploy/vision/faceid/contrib/vpl.h"
|
|
||||||
#include "fastdeploy/vision/headpose/contrib/fsanet.h"
|
#include "fastdeploy/vision/headpose/contrib/fsanet.h"
|
||||||
#include "fastdeploy/vision/keypointdet/pptinypose/pptinypose.h"
|
#include "fastdeploy/vision/keypointdet/pptinypose/pptinypose.h"
|
||||||
#include "fastdeploy/vision/matting/contrib/modnet.h"
|
#include "fastdeploy/vision/matting/contrib/modnet.h"
|
||||||
|
@@ -1,74 +0,0 @@
|
|||||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
||||||
//
|
|
||||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
// you may not use this file except in compliance with the License.
|
|
||||||
// You may obtain a copy of the License at
|
|
||||||
//
|
|
||||||
// http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
//
|
|
||||||
// Unless required by applicable law or agreed to in writing, software
|
|
||||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
// See the License for the specific language governing permissions and
|
|
||||||
// limitations under the License.
|
|
||||||
|
|
||||||
#include "fastdeploy/vision/faceid/contrib/adaface.h"
|
|
||||||
|
|
||||||
#include "fastdeploy/utils/perf.h"
|
|
||||||
#include "fastdeploy/vision/utils/utils.h"
|
|
||||||
|
|
||||||
namespace fastdeploy {
|
|
||||||
|
|
||||||
namespace vision {
|
|
||||||
|
|
||||||
namespace faceid {
|
|
||||||
|
|
||||||
AdaFace::AdaFace(const std::string& model_file, const std::string& params_file,
|
|
||||||
const RuntimeOption& custom_option,
|
|
||||||
const ModelFormat& model_format)
|
|
||||||
: InsightFaceRecognitionModel(model_file, params_file, custom_option,
|
|
||||||
model_format) {
|
|
||||||
initialized = Initialize();
|
|
||||||
}
|
|
||||||
|
|
||||||
bool AdaFace::Initialize() {
|
|
||||||
// (1) if parent class initialed backend
|
|
||||||
if (initialized) {
|
|
||||||
// (1.1) re-init parameters for specific sub-classes
|
|
||||||
size = {112, 112};
|
|
||||||
alpha = {1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f};
|
|
||||||
beta = {-1.f, -1.f, -1.f}; // RGB
|
|
||||||
swap_rb = true;
|
|
||||||
l2_normalize = false;
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
// (2) if parent class not initialed backend
|
|
||||||
if (!InsightFaceRecognitionModel::Initialize()) {
|
|
||||||
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
// (2.1) re-init parameters for specific sub-classes
|
|
||||||
size = {112, 112};
|
|
||||||
alpha = {1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f};
|
|
||||||
beta = {-1.f, -1.f, -1.f}; // RGB
|
|
||||||
swap_rb = true;
|
|
||||||
l2_normalize = false;
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
bool AdaFace::Preprocess(Mat* mat, FDTensor* output) {
|
|
||||||
return InsightFaceRecognitionModel::Preprocess(mat, output);
|
|
||||||
}
|
|
||||||
|
|
||||||
bool AdaFace::Postprocess(std::vector<FDTensor>& infer_result,
|
|
||||||
FaceRecognitionResult* result) {
|
|
||||||
return InsightFaceRecognitionModel::Postprocess(infer_result, result);
|
|
||||||
}
|
|
||||||
|
|
||||||
bool AdaFace::Predict(cv::Mat* im, FaceRecognitionResult* result) {
|
|
||||||
return InsightFaceRecognitionModel::Predict(im, result);
|
|
||||||
}
|
|
||||||
|
|
||||||
} // namespace faceid
|
|
||||||
} // namespace vision
|
|
||||||
} // namespace fastdeploy
|
|
@@ -1,65 +0,0 @@
|
|||||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
||||||
//
|
|
||||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
// you may not use this file except in compliance with the License.
|
|
||||||
// You may obtain a copy of the License at
|
|
||||||
//
|
|
||||||
// http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
//
|
|
||||||
// Unless required by applicable law or agreed to in writing, software
|
|
||||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
// See the License for the specific language governing permissions and
|
|
||||||
// limitations under the License.
|
|
||||||
|
|
||||||
#pragma once
|
|
||||||
#include "fastdeploy/fastdeploy_model.h"
|
|
||||||
#include "fastdeploy/vision/common/processors/transform.h"
|
|
||||||
#include "fastdeploy/vision/common/result.h"
|
|
||||||
#include "fastdeploy/vision/faceid/contrib/insightface_rec.h"
|
|
||||||
|
|
||||||
namespace fastdeploy {
|
|
||||||
|
|
||||||
namespace vision {
|
|
||||||
/** \brief All object face recognition model APIs are defined inside this namespace
|
|
||||||
*
|
|
||||||
*/
|
|
||||||
namespace faceid {
|
|
||||||
/*! @brief AdaFace model object used when to load a AdaFace model exported by AdaFacePaddleCLas.
|
|
||||||
*/
|
|
||||||
class FASTDEPLOY_DECL AdaFace : public InsightFaceRecognitionModel {
|
|
||||||
public:
|
|
||||||
/** \brief Set path of model file and the configuration of runtime.
|
|
||||||
*
|
|
||||||
* \param[in] model_file Path of model file, e.g ./adaface.onnx
|
|
||||||
* \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, if the model format is ONNX, this parameter will be ignored
|
|
||||||
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in "valid_cpu_backends"
|
|
||||||
* \param[in] model_format Model format of the loaded model, default is PADDLE format
|
|
||||||
*/
|
|
||||||
AdaFace(const std::string& model_file, const std::string& params_file = "",
|
|
||||||
const RuntimeOption& custom_option = RuntimeOption(),
|
|
||||||
const ModelFormat& model_format = ModelFormat::PADDLE);
|
|
||||||
|
|
||||||
std::string ModelName() const override {
|
|
||||||
return "Zheng-Bicheng/AdaFacePaddleCLas";
|
|
||||||
}
|
|
||||||
/** \brief Predict the face recognition result for an input image
|
|
||||||
*
|
|
||||||
* \param[in] im The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
|
|
||||||
* \param[in] result The output face recognition result will be writen to this structure
|
|
||||||
* \return true if the prediction successed, otherwise false
|
|
||||||
*/
|
|
||||||
bool Predict(cv::Mat* im, FaceRecognitionResult* result) override;
|
|
||||||
|
|
||||||
private:
|
|
||||||
bool Initialize() override;
|
|
||||||
|
|
||||||
bool Preprocess(Mat* mat, FDTensor* output) override;
|
|
||||||
|
|
||||||
bool Postprocess(std::vector<FDTensor>& infer_result,
|
|
||||||
FaceRecognitionResult* result) override;
|
|
||||||
};
|
|
||||||
|
|
||||||
} // namespace faceid
|
|
||||||
} // namespace vision
|
|
||||||
} // namespace fastdeploy
|
|
84
fastdeploy/vision/faceid/contrib/adaface/adaface.cc
Executable file
84
fastdeploy/vision/faceid/contrib/adaface/adaface.cc
Executable file
@@ -0,0 +1,84 @@
|
|||||||
|
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#include "fastdeploy/vision/faceid/contrib/adaface/adaface.h"
|
||||||
|
|
||||||
|
namespace fastdeploy {
|
||||||
|
namespace vision {
|
||||||
|
namespace faceid {
|
||||||
|
|
||||||
|
AdaFace::AdaFace(
|
||||||
|
const std::string& model_file, const std::string& params_file,
|
||||||
|
const fastdeploy::RuntimeOption& custom_option,
|
||||||
|
const fastdeploy::ModelFormat& model_format) {
|
||||||
|
|
||||||
|
if (model_format == ModelFormat::ONNX) {
|
||||||
|
valid_cpu_backends = {Backend::ORT};
|
||||||
|
valid_gpu_backends = {Backend::ORT, Backend::TRT};
|
||||||
|
} else {
|
||||||
|
valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::LITE};
|
||||||
|
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
|
||||||
|
}
|
||||||
|
runtime_option = custom_option;
|
||||||
|
runtime_option.model_format = model_format;
|
||||||
|
runtime_option.model_file = model_file;
|
||||||
|
runtime_option.params_file = params_file;
|
||||||
|
initialized = Initialize();
|
||||||
|
}
|
||||||
|
|
||||||
|
bool AdaFace::Initialize() {
|
||||||
|
if (!InitRuntime()) {
|
||||||
|
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool AdaFace::Predict(const cv::Mat& im,
|
||||||
|
FaceRecognitionResult* result) {
|
||||||
|
std::vector<FaceRecognitionResult> results;
|
||||||
|
if (!BatchPredict({im}, &results)) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
if(!results.empty()){
|
||||||
|
*result = std::move(results[0]);
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool AdaFace::BatchPredict(const std::vector<cv::Mat>& images,
|
||||||
|
std::vector<FaceRecognitionResult>* results){
|
||||||
|
std::vector<FDMat> fd_images = WrapMat(images);
|
||||||
|
FDASSERT(images.size() == 1, "Only support batch = 1 now.");
|
||||||
|
if (!preprocessor_.Run(&fd_images, &reused_input_tensors_)) {
|
||||||
|
FDERROR << "Failed to preprocess the input image." << std::endl;
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
|
||||||
|
if (!Infer(reused_input_tensors_, &reused_output_tensors_)) {
|
||||||
|
FDERROR << "Failed to inference by runtime." << std::endl;
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!postprocessor_.Run(reused_output_tensors_, results)){
|
||||||
|
FDERROR << "Failed to postprocess the inference results by runtime." << std::endl;
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace faceid
|
||||||
|
} // namespace vision
|
||||||
|
} // namespace fastdeploy
|
77
fastdeploy/vision/faceid/contrib/adaface/adaface.h
Executable file
77
fastdeploy/vision/faceid/contrib/adaface/adaface.h
Executable file
@@ -0,0 +1,77 @@
|
|||||||
|
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. //NOLINT
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "fastdeploy/fastdeploy_model.h"
|
||||||
|
#include "fastdeploy/vision/faceid/contrib/adaface/postprocessor.h"
|
||||||
|
#include "fastdeploy/vision/faceid/contrib/adaface/preprocessor.h"
|
||||||
|
|
||||||
|
namespace fastdeploy {
|
||||||
|
namespace vision {
|
||||||
|
namespace faceid {
|
||||||
|
/*! @brief AdaFace model object used when to load a AdaFace model exported by AdaFace.
|
||||||
|
*/
|
||||||
|
class FASTDEPLOY_DECL AdaFace : public FastDeployModel {
|
||||||
|
public:
|
||||||
|
/** \brief Set path of model file and the configuration of runtime.
|
||||||
|
*
|
||||||
|
* \param[in] model_file Path of model file, e.g ./adaface.onnx
|
||||||
|
* \param[in] params_file Path of parameter file, e.g adaface/model.pdiparams, if the model format is ONNX, this parameter will be ignored
|
||||||
|
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in "valid_cpu_backends"
|
||||||
|
* \param[in] model_format Model format of the loaded model, default is ONNX format
|
||||||
|
*/
|
||||||
|
AdaFace(
|
||||||
|
const std::string& model_file, const std::string& params_file = "",
|
||||||
|
const RuntimeOption& custom_option = RuntimeOption(),
|
||||||
|
const ModelFormat& model_format = ModelFormat::ONNX);
|
||||||
|
|
||||||
|
std::string ModelName() const { return "insightface_rec"; }
|
||||||
|
|
||||||
|
/** \brief Predict the detection result for an input image
|
||||||
|
*
|
||||||
|
* \param[in] img The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
|
||||||
|
* \param[in] result The output FaceRecognitionResult will be writen to this structure
|
||||||
|
* \return true if the prediction successed, otherwise false
|
||||||
|
*/
|
||||||
|
virtual bool Predict(const cv::Mat& im, FaceRecognitionResult* result);
|
||||||
|
|
||||||
|
/** \brief Predict the detection results for a batch of input images
|
||||||
|
*
|
||||||
|
* \param[in] imgs, The input image list, each element comes from cv::imread()
|
||||||
|
* \param[in] results The output FaceRecognitionResult list
|
||||||
|
* \return true if the prediction successed, otherwise false
|
||||||
|
*/
|
||||||
|
virtual bool BatchPredict(const std::vector<cv::Mat>& images,
|
||||||
|
std::vector<FaceRecognitionResult>* results);
|
||||||
|
|
||||||
|
/// Get preprocessor reference of AdaFace
|
||||||
|
virtual AdaFacePreprocessor& GetPreprocessor() {
|
||||||
|
return preprocessor_;
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get postprocessor reference of AdaFace
|
||||||
|
virtual AdaFacePostprocessor& GetPostprocessor() {
|
||||||
|
return postprocessor_;
|
||||||
|
}
|
||||||
|
|
||||||
|
protected:
|
||||||
|
bool Initialize();
|
||||||
|
AdaFacePreprocessor preprocessor_;
|
||||||
|
AdaFacePostprocessor postprocessor_;
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace faceid
|
||||||
|
} // namespace vision
|
||||||
|
} // namespace fastdeploy
|
89
fastdeploy/vision/faceid/contrib/adaface/adaface_pybind.cc
Normal file
89
fastdeploy/vision/faceid/contrib/adaface/adaface_pybind.cc
Normal file
@@ -0,0 +1,89 @@
|
|||||||
|
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#include "fastdeploy/pybind/main.h"
|
||||||
|
|
||||||
|
namespace fastdeploy {
|
||||||
|
void BindAdaFace(pybind11::module& m) {
|
||||||
|
pybind11::class_<vision::faceid::AdaFacePreprocessor>(
|
||||||
|
m, "AdaFacePreprocessor")
|
||||||
|
.def(pybind11::init())
|
||||||
|
.def("run", [](vision::faceid::AdaFacePreprocessor& self,
|
||||||
|
std::vector<pybind11::array>& im_list) {
|
||||||
|
std::vector<vision::FDMat> images;
|
||||||
|
for (size_t i = 0; i < im_list.size(); ++i) {
|
||||||
|
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
|
||||||
|
}
|
||||||
|
std::vector<FDTensor> outputs;
|
||||||
|
if (!self.Run(&images, &outputs)) {
|
||||||
|
throw std::runtime_error("Failed to preprocess the input data in AdaFacePreprocessor.");
|
||||||
|
}
|
||||||
|
for (size_t i = 0; i < outputs.size(); ++i) {
|
||||||
|
outputs[i].StopSharing();
|
||||||
|
}
|
||||||
|
return outputs;
|
||||||
|
})
|
||||||
|
.def_property("permute", &vision::faceid::AdaFacePreprocessor::GetPermute,
|
||||||
|
&vision::faceid::AdaFacePreprocessor::SetPermute)
|
||||||
|
.def_property("alpha", &vision::faceid::AdaFacePreprocessor::GetAlpha,
|
||||||
|
&vision::faceid::AdaFacePreprocessor::SetAlpha)
|
||||||
|
.def_property("beta", &vision::faceid::AdaFacePreprocessor::GetBeta,
|
||||||
|
&vision::faceid::AdaFacePreprocessor::SetBeta)
|
||||||
|
.def_property("size", &vision::faceid::AdaFacePreprocessor::GetSize,
|
||||||
|
&vision::faceid::AdaFacePreprocessor::SetSize);
|
||||||
|
|
||||||
|
pybind11::class_<vision::faceid::AdaFacePostprocessor>(
|
||||||
|
m, "AdaFacePostprocessor")
|
||||||
|
.def(pybind11::init())
|
||||||
|
.def("run", [](vision::faceid::AdaFacePostprocessor& self, std::vector<FDTensor>& inputs) {
|
||||||
|
std::vector<vision::FaceRecognitionResult> results;
|
||||||
|
if (!self.Run(inputs, &results)) {
|
||||||
|
throw std::runtime_error("Failed to postprocess the runtime result in AdaFacePostprocessor.");
|
||||||
|
}
|
||||||
|
return results;
|
||||||
|
})
|
||||||
|
.def("run", [](vision::faceid::AdaFacePostprocessor& self, std::vector<pybind11::array>& input_array) {
|
||||||
|
std::vector<vision::FaceRecognitionResult> results;
|
||||||
|
std::vector<FDTensor> inputs;
|
||||||
|
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
|
||||||
|
if (!self.Run(inputs, &results)) {
|
||||||
|
throw std::runtime_error("Failed to postprocess the runtime result in AdaFacePostprocessor.");
|
||||||
|
}
|
||||||
|
return results;
|
||||||
|
})
|
||||||
|
.def_property("l2_normalize", &vision::faceid::AdaFacePostprocessor::GetL2Normalize,
|
||||||
|
&vision::faceid::AdaFacePostprocessor::SetL2Normalize);
|
||||||
|
|
||||||
|
pybind11::class_<vision::faceid::AdaFace, FastDeployModel>(
|
||||||
|
m, "AdaFace")
|
||||||
|
.def(pybind11::init<std::string, std::string, RuntimeOption, ModelFormat>())
|
||||||
|
.def("predict", [](vision::faceid::AdaFace& self, pybind11::array& data) {
|
||||||
|
cv::Mat im = PyArrayToCvMat(data);
|
||||||
|
vision::FaceRecognitionResult result;
|
||||||
|
self.Predict(im, &result);
|
||||||
|
return result;
|
||||||
|
})
|
||||||
|
.def("batch_predict", [](vision::faceid::AdaFace& self, std::vector<pybind11::array>& data) {
|
||||||
|
std::vector<cv::Mat> images;
|
||||||
|
for (size_t i = 0; i < data.size(); ++i) {
|
||||||
|
images.push_back(PyArrayToCvMat(data[i]));
|
||||||
|
}
|
||||||
|
std::vector<vision::FaceRecognitionResult> results;
|
||||||
|
self.BatchPredict(images, &results);
|
||||||
|
return results;
|
||||||
|
})
|
||||||
|
.def_property_readonly("preprocessor", &vision::faceid::AdaFace::GetPreprocessor)
|
||||||
|
.def_property_readonly("postprocessor", &vision::faceid::AdaFace::GetPostprocessor);
|
||||||
|
}
|
||||||
|
} // namespace fastdeploy
|
67
fastdeploy/vision/faceid/contrib/adaface/postprocessor.cc
Executable file
67
fastdeploy/vision/faceid/contrib/adaface/postprocessor.cc
Executable file
@@ -0,0 +1,67 @@
|
|||||||
|
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#include "fastdeploy/vision/faceid/contrib/adaface/postprocessor.h"
|
||||||
|
#include "fastdeploy/vision/utils/utils.h"
|
||||||
|
|
||||||
|
namespace fastdeploy {
|
||||||
|
namespace vision {
|
||||||
|
namespace faceid {
|
||||||
|
|
||||||
|
AdaFacePostprocessor::AdaFacePostprocessor() {
|
||||||
|
l2_normalize_ = false;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool AdaFacePostprocessor::Run(std::vector<FDTensor>& infer_result,
|
||||||
|
std::vector<FaceRecognitionResult>* results) {
|
||||||
|
if (infer_result[0].dtype != FDDataType::FP32) {
|
||||||
|
FDERROR << "Only support post process with float32 data." << std::endl;
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
if(infer_result.size() != 1){
|
||||||
|
FDERROR << "The default number of output tensor "
|
||||||
|
"must be 1 according to insightface." << std::endl;
|
||||||
|
}
|
||||||
|
int batch = infer_result[0].shape[0];
|
||||||
|
results->resize(batch);
|
||||||
|
for (size_t bs = 0; bs < batch; ++bs) {
|
||||||
|
FDTensor& embedding_tensor = infer_result.at(bs);
|
||||||
|
FDASSERT((embedding_tensor.shape[0] == 1), "Only support batch = 1 now.");
|
||||||
|
if (embedding_tensor.dtype != FDDataType::FP32) {
|
||||||
|
FDERROR << "Only support post process with float32 data." << std::endl;
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
(*results)[bs].Clear();
|
||||||
|
(*results)[bs].Resize(embedding_tensor.Numel());
|
||||||
|
|
||||||
|
// Copy the raw embedding vector directly without L2 normalize
|
||||||
|
// post process. Let the user decide whether to normalize or not.
|
||||||
|
// Will call utils::L2Normlize() method to perform L2
|
||||||
|
// normalize if l2_normalize was set as 'true'.
|
||||||
|
std::memcpy((*results)[bs].embedding.data(),
|
||||||
|
embedding_tensor.Data(),
|
||||||
|
embedding_tensor.Nbytes());
|
||||||
|
if (l2_normalize_) {
|
||||||
|
auto norm_embedding = utils::L2Normalize((*results)[bs].embedding);
|
||||||
|
std::memcpy((*results)[bs].embedding.data(),
|
||||||
|
norm_embedding.data(),
|
||||||
|
embedding_tensor.Nbytes());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace detection
|
||||||
|
} // namespace vision
|
||||||
|
} // namespace fastdeploy
|
50
fastdeploy/vision/faceid/contrib/adaface/postprocessor.h
Executable file
50
fastdeploy/vision/faceid/contrib/adaface/postprocessor.h
Executable file
@@ -0,0 +1,50 @@
|
|||||||
|
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
#include "fastdeploy/vision/common/processors/transform.h"
|
||||||
|
#include "fastdeploy/vision/common/result.h"
|
||||||
|
|
||||||
|
namespace fastdeploy {
|
||||||
|
namespace vision {
|
||||||
|
|
||||||
|
namespace faceid {
|
||||||
|
/*! @brief Postprocessor object for AdaFace serials model.
|
||||||
|
*/
|
||||||
|
class FASTDEPLOY_DECL AdaFacePostprocessor {
|
||||||
|
public:
|
||||||
|
/** \brief Create a postprocessor instance for AdaFace serials model
|
||||||
|
*/
|
||||||
|
AdaFacePostprocessor();
|
||||||
|
|
||||||
|
/** \brief Process the result of runtime and fill to FaceRecognitionResult structure
|
||||||
|
*
|
||||||
|
* \param[in] tensors The inference result from runtime
|
||||||
|
* \param[in] result The output result of FaceRecognitionResult
|
||||||
|
* \return true if the postprocess successed, otherwise false
|
||||||
|
*/
|
||||||
|
bool Run(std::vector<FDTensor>& infer_result,
|
||||||
|
std::vector<FaceRecognitionResult>* results);
|
||||||
|
|
||||||
|
void SetL2Normalize(bool& l2_normalize) { l2_normalize_ = l2_normalize; }
|
||||||
|
|
||||||
|
bool GetL2Normalize() { return l2_normalize_; }
|
||||||
|
|
||||||
|
private:
|
||||||
|
bool l2_normalize_;
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace faceid
|
||||||
|
} // namespace vision
|
||||||
|
} // namespace fastdeploy
|
76
fastdeploy/vision/faceid/contrib/adaface/preprocessor.cc
Executable file
76
fastdeploy/vision/faceid/contrib/adaface/preprocessor.cc
Executable file
@@ -0,0 +1,76 @@
|
|||||||
|
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#include "fastdeploy/vision/faceid/contrib/adaface/preprocessor.h"
|
||||||
|
|
||||||
|
namespace fastdeploy {
|
||||||
|
namespace vision {
|
||||||
|
namespace faceid {
|
||||||
|
|
||||||
|
AdaFacePreprocessor::AdaFacePreprocessor() {
|
||||||
|
// parameters for preprocess
|
||||||
|
size_ = {112, 112};
|
||||||
|
alpha_ = {1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f};
|
||||||
|
beta_ = {-1.f, -1.f, -1.f}; // RGB
|
||||||
|
permute_ = true;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool AdaFacePreprocessor::Preprocess(FDMat * mat, FDTensor* output) {
|
||||||
|
|
||||||
|
// face recognition model's preprocess steps in insightface
|
||||||
|
// reference: insightface/recognition/arcface_torch/inference.py
|
||||||
|
// 1. Resize
|
||||||
|
// 2. BGR2RGB
|
||||||
|
// 3. Convert(opencv style) or Normalize
|
||||||
|
// 4. HWC2CHW
|
||||||
|
int resize_w = size_[0];
|
||||||
|
int resize_h = size_[1];
|
||||||
|
if (resize_h != mat->Height() || resize_w != mat->Width()) {
|
||||||
|
Resize::Run(mat, resize_w, resize_h);
|
||||||
|
}
|
||||||
|
if (permute_) {
|
||||||
|
BGR2RGB::Run(mat);
|
||||||
|
}
|
||||||
|
|
||||||
|
Convert::Run(mat, alpha_, beta_);
|
||||||
|
HWC2CHW::Run(mat);
|
||||||
|
Cast::Run(mat, "float");
|
||||||
|
|
||||||
|
mat->ShareWithTensor(output);
|
||||||
|
output->ExpandDim(0); // reshape to n, h, w, c
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool AdaFacePreprocessor::Run(std::vector<FDMat>* images,
|
||||||
|
std::vector<FDTensor>* outputs) {
|
||||||
|
if (images->empty()) {
|
||||||
|
FDERROR << "The size of input images should be greater than 0." << std::endl;
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
FDASSERT(images->size() == 1, "Only support batch = 1 now.");
|
||||||
|
outputs->resize(1);
|
||||||
|
// Concat all the preprocessed data to a batch tensor
|
||||||
|
std::vector<FDTensor> tensors(images->size());
|
||||||
|
for (size_t i = 0; i < images->size(); ++i) {
|
||||||
|
if (!Preprocess(&(*images)[i], &tensors[i])) {
|
||||||
|
FDERROR << "Failed to preprocess input image." << std::endl;
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
(*outputs)[0] = std::move(tensors[0]);
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
} // namespace faceid
|
||||||
|
} // namespace vision
|
||||||
|
} // namespace fastdeploy
|
80
fastdeploy/vision/faceid/contrib/adaface/preprocessor.h
Executable file
80
fastdeploy/vision/faceid/contrib/adaface/preprocessor.h
Executable file
@@ -0,0 +1,80 @@
|
|||||||
|
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
#include "fastdeploy/vision/common/processors/transform.h"
|
||||||
|
#include "fastdeploy/vision/common/result.h"
|
||||||
|
|
||||||
|
namespace fastdeploy {
|
||||||
|
namespace vision {
|
||||||
|
|
||||||
|
namespace faceid {
|
||||||
|
/*! @brief Preprocessor object for AdaFace serials model.
|
||||||
|
*/
|
||||||
|
class FASTDEPLOY_DECL AdaFacePreprocessor {
|
||||||
|
public:
|
||||||
|
/** \brief Create a preprocessor instance for AdaFace serials model
|
||||||
|
*/
|
||||||
|
AdaFacePreprocessor();
|
||||||
|
|
||||||
|
/** \brief Process the input image and prepare input tensors for runtime
|
||||||
|
*
|
||||||
|
* \param[in] images The input image data list, all the elements are returned by cv::imread()
|
||||||
|
* \param[in] outputs The output tensors which will feed in runtime
|
||||||
|
* \return true if the preprocess successed, otherwise false
|
||||||
|
*/
|
||||||
|
bool Run(std::vector<FDMat>* images, std::vector<FDTensor>* outputs);
|
||||||
|
|
||||||
|
/// Get Size
|
||||||
|
std::vector<int> GetSize() { return size_; }
|
||||||
|
|
||||||
|
/// Set size.
|
||||||
|
void SetSize(std::vector<int>& size) { size_ = size; }
|
||||||
|
|
||||||
|
/// Get alpha
|
||||||
|
std::vector<float> GetAlpha() { return alpha_; }
|
||||||
|
|
||||||
|
/// Set alpha.
|
||||||
|
void SetAlpha(std::vector<float>& alpha) { alpha_ = alpha; }
|
||||||
|
|
||||||
|
/// Get beta
|
||||||
|
std::vector<float> GetBeta() { return beta_; }
|
||||||
|
|
||||||
|
/// Set beta.
|
||||||
|
void SetBeta(std::vector<float>& beta) { beta_ = beta; }
|
||||||
|
|
||||||
|
bool GetPermute() { return permute_; }
|
||||||
|
|
||||||
|
/// Set permute.
|
||||||
|
void SetPermute(bool permute) { permute_ = permute; }
|
||||||
|
|
||||||
|
protected:
|
||||||
|
bool Preprocess(FDMat* mat, FDTensor* output);
|
||||||
|
// Argument for image preprocessing step, tuple of (width, height),
|
||||||
|
// decide the target size after resize, default (112, 112)
|
||||||
|
std::vector<int> size_;
|
||||||
|
// Argument for image preprocessing step, alpha values for normalization,
|
||||||
|
// default alpha = {1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f};
|
||||||
|
std::vector<float> alpha_;
|
||||||
|
// Argument for image preprocessing step, beta values for normalization,
|
||||||
|
// default beta = {-1.f, -1.f, -1.f}
|
||||||
|
std::vector<float> beta_;
|
||||||
|
// Argument for image preprocessing step, whether to swap the B and R channel,
|
||||||
|
// such as BGR->RGB, default true.
|
||||||
|
bool permute_;
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace faceid
|
||||||
|
} // namespace vision
|
||||||
|
} // namespace fastdeploy
|
@@ -1,38 +0,0 @@
|
|||||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
||||||
//
|
|
||||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
// you may not use this file except in compliance with the License.
|
|
||||||
// You may obtain a copy of the License at
|
|
||||||
//
|
|
||||||
// http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
//
|
|
||||||
// Unless required by applicable law or agreed to in writing, software
|
|
||||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
// See the License for the specific language governing permissions and
|
|
||||||
// limitations under the License.
|
|
||||||
|
|
||||||
#include "fastdeploy/pybind/main.h"
|
|
||||||
|
|
||||||
namespace fastdeploy {
|
|
||||||
void BindAdaFace(pybind11::module& m) {
|
|
||||||
// Bind AdaFace
|
|
||||||
pybind11::class_<vision::faceid::AdaFace,
|
|
||||||
vision::faceid::InsightFaceRecognitionModel>(m, "AdaFace")
|
|
||||||
.def(pybind11::init<std::string, std::string, RuntimeOption,
|
|
||||||
ModelFormat>())
|
|
||||||
.def("predict",
|
|
||||||
[](vision::faceid::AdaFace& self, pybind11::array& data) {
|
|
||||||
auto mat = PyArrayToCvMat(data);
|
|
||||||
vision::FaceRecognitionResult res;
|
|
||||||
self.Predict(&mat, &res);
|
|
||||||
return res;
|
|
||||||
})
|
|
||||||
.def_readwrite("size", &vision::faceid::AdaFace::size)
|
|
||||||
.def_readwrite("alpha", &vision::faceid::AdaFace::alpha)
|
|
||||||
.def_readwrite("beta", &vision::faceid::AdaFace::beta)
|
|
||||||
.def_readwrite("swap_rb", &vision::faceid::AdaFace::swap_rb)
|
|
||||||
.def_readwrite("l2_normalize", &vision::faceid::AdaFace::l2_normalize);
|
|
||||||
}
|
|
||||||
|
|
||||||
} // namespace fastdeploy
|
|
@@ -1,74 +0,0 @@
|
|||||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
||||||
//
|
|
||||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
// you may not use this file except in compliance with the License.
|
|
||||||
// You may obtain a copy of the License at
|
|
||||||
//
|
|
||||||
// http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
//
|
|
||||||
// Unless required by applicable law or agreed to in writing, software
|
|
||||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
// See the License for the specific language governing permissions and
|
|
||||||
// limitations under the License.
|
|
||||||
|
|
||||||
#include "fastdeploy/vision/faceid/contrib/arcface.h"
|
|
||||||
#include "fastdeploy/utils/perf.h"
|
|
||||||
#include "fastdeploy/vision/utils/utils.h"
|
|
||||||
|
|
||||||
namespace fastdeploy {
|
|
||||||
|
|
||||||
namespace vision {
|
|
||||||
|
|
||||||
namespace faceid {
|
|
||||||
|
|
||||||
ArcFace::ArcFace(const std::string& model_file, const std::string& params_file,
|
|
||||||
const RuntimeOption& custom_option,
|
|
||||||
const ModelFormat& model_format)
|
|
||||||
: InsightFaceRecognitionModel(model_file, params_file, custom_option,
|
|
||||||
model_format) {
|
|
||||||
initialized = Initialize();
|
|
||||||
}
|
|
||||||
|
|
||||||
bool ArcFace::Initialize() {
|
|
||||||
|
|
||||||
// (1) if parent class initialed backend
|
|
||||||
if (initialized) {
|
|
||||||
// (1.1) re-init parameters for specific sub-classes
|
|
||||||
size = {112, 112};
|
|
||||||
alpha = {1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f};
|
|
||||||
beta = {-1.f, -1.f, -1.f}; // RGB
|
|
||||||
swap_rb = true;
|
|
||||||
l2_normalize = false;
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
// (2) if parent class not initialed backend
|
|
||||||
if (!InsightFaceRecognitionModel::Initialize()) {
|
|
||||||
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
// (2.1) re-init parameters for specific sub-classes
|
|
||||||
size = {112, 112};
|
|
||||||
alpha = {1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f};
|
|
||||||
beta = {-1.f, -1.f, -1.f}; // RGB
|
|
||||||
swap_rb = true;
|
|
||||||
l2_normalize = false;
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
bool ArcFace::Preprocess(Mat* mat, FDTensor* output) {
|
|
||||||
return InsightFaceRecognitionModel::Preprocess(mat, output);
|
|
||||||
}
|
|
||||||
|
|
||||||
bool ArcFace::Postprocess(std::vector<FDTensor>& infer_result,
|
|
||||||
FaceRecognitionResult* result) {
|
|
||||||
return InsightFaceRecognitionModel::Postprocess(infer_result, result);
|
|
||||||
}
|
|
||||||
|
|
||||||
bool ArcFace::Predict(cv::Mat* im, FaceRecognitionResult* result) {
|
|
||||||
return InsightFaceRecognitionModel::Predict(im, result);
|
|
||||||
}
|
|
||||||
|
|
||||||
} // namespace faceid
|
|
||||||
} // namespace vision
|
|
||||||
} // namespace fastdeploy
|
|
@@ -1,63 +0,0 @@
|
|||||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
||||||
//
|
|
||||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
// you may not use this file except in compliance with the License.
|
|
||||||
// You may obtain a copy of the License at
|
|
||||||
//
|
|
||||||
// http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
//
|
|
||||||
// Unless required by applicable law or agreed to in writing, software
|
|
||||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
// See the License for the specific language governing permissions and
|
|
||||||
// limitations under the License.
|
|
||||||
|
|
||||||
#pragma once
|
|
||||||
#include "fastdeploy/fastdeploy_model.h"
|
|
||||||
#include "fastdeploy/vision/common/processors/transform.h"
|
|
||||||
#include "fastdeploy/vision/common/result.h"
|
|
||||||
#include "fastdeploy/vision/faceid/contrib/insightface_rec.h"
|
|
||||||
|
|
||||||
namespace fastdeploy {
|
|
||||||
|
|
||||||
namespace vision {
|
|
||||||
|
|
||||||
namespace faceid {
|
|
||||||
/*! @brief ArcFace model object used when to load a ArcFace model exported by IngsightFace.
|
|
||||||
*/
|
|
||||||
class FASTDEPLOY_DECL ArcFace : public InsightFaceRecognitionModel {
|
|
||||||
public:
|
|
||||||
/** \brief Set path of model file and the configuration of runtime.
|
|
||||||
*
|
|
||||||
* \param[in] model_file Path of model file, e.g ./arcface.onnx
|
|
||||||
* \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, if the model format is ONNX, this parameter will be ignored
|
|
||||||
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in "valid_cpu_backends"
|
|
||||||
* \param[in] model_format Model format of the loaded model, default is ONNX format
|
|
||||||
*/
|
|
||||||
ArcFace(const std::string& model_file, const std::string& params_file = "",
|
|
||||||
const RuntimeOption& custom_option = RuntimeOption(),
|
|
||||||
const ModelFormat& model_format = ModelFormat::ONNX);
|
|
||||||
|
|
||||||
std::string ModelName() const override {
|
|
||||||
return "deepinsight/insightface/recognition/arcface_pytorch";
|
|
||||||
}
|
|
||||||
/** \brief Predict the face recognition result for an input image
|
|
||||||
*
|
|
||||||
* \param[in] im The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
|
|
||||||
* \param[in] result The output face recognition result will be writen to this structure
|
|
||||||
* \return true if the prediction successed, otherwise false
|
|
||||||
*/
|
|
||||||
bool Predict(cv::Mat* im, FaceRecognitionResult* result) override;
|
|
||||||
|
|
||||||
private:
|
|
||||||
bool Initialize() override;
|
|
||||||
|
|
||||||
bool Preprocess(Mat* mat, FDTensor* output) override;
|
|
||||||
|
|
||||||
bool Postprocess(std::vector<FDTensor>& infer_result,
|
|
||||||
FaceRecognitionResult* result) override;
|
|
||||||
};
|
|
||||||
|
|
||||||
} // namespace faceid
|
|
||||||
} // namespace vision
|
|
||||||
} // namespace fastdeploy
|
|
@@ -1,38 +0,0 @@
|
|||||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
||||||
//
|
|
||||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
// you may not use this file except in compliance with the License.
|
|
||||||
// You may obtain a copy of the License at
|
|
||||||
//
|
|
||||||
// http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
//
|
|
||||||
// Unless required by applicable law or agreed to in writing, software
|
|
||||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
// See the License for the specific language governing permissions and
|
|
||||||
// limitations under the License.
|
|
||||||
|
|
||||||
#include "fastdeploy/pybind/main.h"
|
|
||||||
|
|
||||||
namespace fastdeploy {
|
|
||||||
void BindArcFace(pybind11::module& m) {
|
|
||||||
// Bind ArcFace
|
|
||||||
pybind11::class_<vision::faceid::ArcFace,
|
|
||||||
vision::faceid::InsightFaceRecognitionModel>(m, "ArcFace")
|
|
||||||
.def(pybind11::init<std::string, std::string, RuntimeOption,
|
|
||||||
ModelFormat>())
|
|
||||||
.def("predict",
|
|
||||||
[](vision::faceid::ArcFace& self, pybind11::array& data) {
|
|
||||||
auto mat = PyArrayToCvMat(data);
|
|
||||||
vision::FaceRecognitionResult res;
|
|
||||||
self.Predict(&mat, &res);
|
|
||||||
return res;
|
|
||||||
})
|
|
||||||
.def_readwrite("size", &vision::faceid::ArcFace::size)
|
|
||||||
.def_readwrite("alpha", &vision::faceid::ArcFace::alpha)
|
|
||||||
.def_readwrite("beta", &vision::faceid::ArcFace::beta)
|
|
||||||
.def_readwrite("swap_rb", &vision::faceid::ArcFace::swap_rb)
|
|
||||||
.def_readwrite("l2_normalize", &vision::faceid::ArcFace::l2_normalize);
|
|
||||||
}
|
|
||||||
|
|
||||||
} // namespace fastdeploy
|
|
@@ -1,72 +0,0 @@
|
|||||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
||||||
//
|
|
||||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
// you may not use this file except in compliance with the License.
|
|
||||||
// You may obtain a copy of the License at
|
|
||||||
//
|
|
||||||
// http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
//
|
|
||||||
// Unless required by applicable law or agreed to in writing, software
|
|
||||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
// See the License for the specific language governing permissions and
|
|
||||||
// limitations under the License.
|
|
||||||
|
|
||||||
#include "fastdeploy/vision/faceid/contrib/cosface.h"
|
|
||||||
#include "fastdeploy/utils/perf.h"
|
|
||||||
#include "fastdeploy/vision/utils/utils.h"
|
|
||||||
|
|
||||||
namespace fastdeploy {
|
|
||||||
|
|
||||||
namespace vision {
|
|
||||||
|
|
||||||
namespace faceid {
|
|
||||||
|
|
||||||
CosFace::CosFace(const std::string& model_file, const std::string& params_file,
|
|
||||||
const RuntimeOption& custom_option,
|
|
||||||
const ModelFormat& model_format)
|
|
||||||
: InsightFaceRecognitionModel(model_file, params_file, custom_option,
|
|
||||||
model_format) {
|
|
||||||
initialized = Initialize();
|
|
||||||
}
|
|
||||||
|
|
||||||
bool CosFace::Initialize() {
|
|
||||||
|
|
||||||
if (initialized) {
|
|
||||||
// (1.1) re-init parameters for specific sub-classes
|
|
||||||
size = {112, 112};
|
|
||||||
alpha = {1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f};
|
|
||||||
beta = {-1.f, -1.f, -1.f}; // RGB
|
|
||||||
swap_rb = true;
|
|
||||||
l2_normalize = false;
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
if (!InsightFaceRecognitionModel::Initialize()) {
|
|
||||||
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
// (2.1) re-init parameters for specific sub-classes
|
|
||||||
size = {112, 112};
|
|
||||||
alpha = {1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f};
|
|
||||||
beta = {-1.f, -1.f, -1.f}; // RGB
|
|
||||||
swap_rb = true;
|
|
||||||
l2_normalize = false;
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
bool CosFace::Preprocess(Mat* mat, FDTensor* output) {
|
|
||||||
return InsightFaceRecognitionModel::Preprocess(mat, output);
|
|
||||||
}
|
|
||||||
|
|
||||||
bool CosFace::Postprocess(std::vector<FDTensor>& infer_result,
|
|
||||||
FaceRecognitionResult* result) {
|
|
||||||
return InsightFaceRecognitionModel::Postprocess(infer_result, result);
|
|
||||||
}
|
|
||||||
|
|
||||||
bool CosFace::Predict(cv::Mat* im, FaceRecognitionResult* result) {
|
|
||||||
return InsightFaceRecognitionModel::Predict(im, result);
|
|
||||||
}
|
|
||||||
|
|
||||||
} // namespace faceid
|
|
||||||
} // namespace vision
|
|
||||||
} // namespace fastdeploy
|
|
@@ -1,63 +0,0 @@
|
|||||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
||||||
//
|
|
||||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
// you may not use this file except in compliance with the License.
|
|
||||||
// You may obtain a copy of the License at
|
|
||||||
//
|
|
||||||
// http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
//
|
|
||||||
// Unless required by applicable law or agreed to in writing, software
|
|
||||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
// See the License for the specific language governing permissions and
|
|
||||||
// limitations under the License.
|
|
||||||
|
|
||||||
#pragma once
|
|
||||||
#include "fastdeploy/fastdeploy_model.h"
|
|
||||||
#include "fastdeploy/vision/common/processors/transform.h"
|
|
||||||
#include "fastdeploy/vision/common/result.h"
|
|
||||||
#include "fastdeploy/vision/faceid/contrib/insightface_rec.h"
|
|
||||||
|
|
||||||
namespace fastdeploy {
|
|
||||||
|
|
||||||
namespace vision {
|
|
||||||
|
|
||||||
namespace faceid {
|
|
||||||
/*! @brief CosFace model object used when to load a CosFace model exported by IngsightFace.
|
|
||||||
*/
|
|
||||||
class FASTDEPLOY_DECL CosFace : public InsightFaceRecognitionModel {
|
|
||||||
public:
|
|
||||||
/** \brief Set path of model file and the configuration of runtime.
|
|
||||||
*
|
|
||||||
* \param[in] model_file Path of model file, e.g ./cosface.onnx
|
|
||||||
* \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, if the model format is ONNX, this parameter will be ignored
|
|
||||||
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in "valid_cpu_backends"
|
|
||||||
* \param[in] model_format Model format of the loaded model, default is ONNX format
|
|
||||||
*/
|
|
||||||
CosFace(const std::string& model_file, const std::string& params_file = "",
|
|
||||||
const RuntimeOption& custom_option = RuntimeOption(),
|
|
||||||
const ModelFormat& model_format = ModelFormat::ONNX);
|
|
||||||
|
|
||||||
std::string ModelName() const override {
|
|
||||||
return "deepinsight/insightface/recognition/arcface_pytorch";
|
|
||||||
}
|
|
||||||
/** \brief Predict the face recognition result for an input image
|
|
||||||
*
|
|
||||||
* \param[in] im The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
|
|
||||||
* \param[in] result The output face recognition result will be writen to this structure
|
|
||||||
* \return true if the prediction successed, otherwise false
|
|
||||||
*/
|
|
||||||
bool Predict(cv::Mat* im, FaceRecognitionResult* result) override;
|
|
||||||
|
|
||||||
private:
|
|
||||||
bool Initialize() override;
|
|
||||||
|
|
||||||
bool Preprocess(Mat* mat, FDTensor* output) override;
|
|
||||||
|
|
||||||
bool Postprocess(std::vector<FDTensor>& infer_result,
|
|
||||||
FaceRecognitionResult* result) override;
|
|
||||||
};
|
|
||||||
|
|
||||||
} // namespace faceid
|
|
||||||
} // namespace vision
|
|
||||||
} // namespace fastdeploy
|
|
@@ -1,38 +0,0 @@
|
|||||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
||||||
//
|
|
||||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
// you may not use this file except in compliance with the License.
|
|
||||||
// You may obtain a copy of the License at
|
|
||||||
//
|
|
||||||
// http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
//
|
|
||||||
// Unless required by applicable law or agreed to in writing, software
|
|
||||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
// See the License for the specific language governing permissions and
|
|
||||||
// limitations under the License.
|
|
||||||
|
|
||||||
#include "fastdeploy/pybind/main.h"
|
|
||||||
|
|
||||||
namespace fastdeploy {
|
|
||||||
void BindCosFace(pybind11::module& m) {
|
|
||||||
// Bind CosFace
|
|
||||||
pybind11::class_<vision::faceid::CosFace,
|
|
||||||
vision::faceid::InsightFaceRecognitionModel>(m, "CosFace")
|
|
||||||
.def(pybind11::init<std::string, std::string, RuntimeOption,
|
|
||||||
ModelFormat>())
|
|
||||||
.def("predict",
|
|
||||||
[](vision::faceid::CosFace& self, pybind11::array& data) {
|
|
||||||
auto mat = PyArrayToCvMat(data);
|
|
||||||
vision::FaceRecognitionResult res;
|
|
||||||
self.Predict(&mat, &res);
|
|
||||||
return res;
|
|
||||||
})
|
|
||||||
.def_readwrite("size", &vision::faceid::CosFace::size)
|
|
||||||
.def_readwrite("alpha", &vision::faceid::CosFace::alpha)
|
|
||||||
.def_readwrite("beta", &vision::faceid::CosFace::beta)
|
|
||||||
.def_readwrite("swap_rb", &vision::faceid::CosFace::swap_rb)
|
|
||||||
.def_readwrite("l2_normalize", &vision::faceid::CosFace::l2_normalize);
|
|
||||||
}
|
|
||||||
|
|
||||||
} // namespace fastdeploy
|
|
82
fastdeploy/vision/faceid/contrib/insightface/base.cc
Executable file
82
fastdeploy/vision/faceid/contrib/insightface/base.cc
Executable file
@@ -0,0 +1,82 @@
|
|||||||
|
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#include "fastdeploy/vision/faceid/contrib/insightface/base.h"
|
||||||
|
|
||||||
|
namespace fastdeploy {
|
||||||
|
namespace vision {
|
||||||
|
namespace faceid {
|
||||||
|
|
||||||
|
InsightFaceRecognitionBase::InsightFaceRecognitionBase(
|
||||||
|
const std::string& model_file, const std::string& params_file,
|
||||||
|
const fastdeploy::RuntimeOption& custom_option,
|
||||||
|
const fastdeploy::ModelFormat& model_format) {
|
||||||
|
|
||||||
|
if (model_format == ModelFormat::ONNX) {
|
||||||
|
valid_cpu_backends = {Backend::ORT};
|
||||||
|
valid_gpu_backends = {Backend::ORT, Backend::TRT};
|
||||||
|
} else {
|
||||||
|
valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::LITE};
|
||||||
|
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
|
||||||
|
valid_xpu_backends = {Backend::LITE};
|
||||||
|
}
|
||||||
|
runtime_option = custom_option;
|
||||||
|
runtime_option.model_format = model_format;
|
||||||
|
runtime_option.model_file = model_file;
|
||||||
|
runtime_option.params_file = params_file;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool InsightFaceRecognitionBase::Initialize() {
|
||||||
|
if (!InitRuntime()) {
|
||||||
|
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool InsightFaceRecognitionBase::Predict(const cv::Mat& im,
|
||||||
|
FaceRecognitionResult* result) {
|
||||||
|
std::vector<FaceRecognitionResult> results;
|
||||||
|
if (!BatchPredict({im}, &results)) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
*result = std::move(results[0]);
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool InsightFaceRecognitionBase::BatchPredict(const std::vector<cv::Mat>& images,
|
||||||
|
std::vector<FaceRecognitionResult>* results){
|
||||||
|
std::vector<FDMat> fd_images = WrapMat(images);
|
||||||
|
FDASSERT(images.size() == 1, "Only support batch = 1 now.");
|
||||||
|
if (!preprocessor_.Run(&fd_images, &reused_input_tensors_)) {
|
||||||
|
FDERROR << "Failed to preprocess the input image." << std::endl;
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
|
||||||
|
if (!Infer(reused_input_tensors_, &reused_output_tensors_)) {
|
||||||
|
FDERROR << "Failed to inference by runtime." << std::endl;
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!postprocessor_.Run(reused_output_tensors_, results)){
|
||||||
|
FDERROR << "Failed to postprocess the inference results by runtime." << std::endl;
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace faceid
|
||||||
|
} // namespace vision
|
||||||
|
} // namespace fastdeploy
|
77
fastdeploy/vision/faceid/contrib/insightface/base.h
Executable file
77
fastdeploy/vision/faceid/contrib/insightface/base.h
Executable file
@@ -0,0 +1,77 @@
|
|||||||
|
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. //NOLINT
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "fastdeploy/fastdeploy_model.h"
|
||||||
|
#include "fastdeploy/vision/faceid/contrib/insightface/postprocessor.h"
|
||||||
|
#include "fastdeploy/vision/faceid/contrib/insightface/preprocessor.h"
|
||||||
|
|
||||||
|
namespace fastdeploy {
|
||||||
|
namespace vision {
|
||||||
|
namespace faceid {
|
||||||
|
/*! @brief InsightFaceRecognition model object used when to load a InsightFaceRecognition model exported by InsightFaceRecognition.
|
||||||
|
*/
|
||||||
|
class FASTDEPLOY_DECL InsightFaceRecognitionBase : public FastDeployModel {
|
||||||
|
public:
|
||||||
|
/** \brief Set path of model file and the configuration of runtime.
|
||||||
|
*
|
||||||
|
* \param[in] model_file Path of model file, e.g ./arcface.onnx
|
||||||
|
* \param[in] params_file Path of parameter file, e.g arcface/model.pdiparams, if the model format is ONNX, this parameter will be ignored
|
||||||
|
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in "valid_cpu_backends"
|
||||||
|
* \param[in] model_format Model format of the loaded model, default is ONNX format
|
||||||
|
*/
|
||||||
|
InsightFaceRecognitionBase(
|
||||||
|
const std::string& model_file, const std::string& params_file = "",
|
||||||
|
const RuntimeOption& custom_option = RuntimeOption(),
|
||||||
|
const ModelFormat& model_format = ModelFormat::ONNX);
|
||||||
|
|
||||||
|
std::string ModelName() const { return "insightface_rec"; }
|
||||||
|
|
||||||
|
/** \brief Predict the detection result for an input image
|
||||||
|
*
|
||||||
|
* \param[in] img The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
|
||||||
|
* \param[in] result The output FaceRecognitionResult will be writen to this structure
|
||||||
|
* \return true if the prediction successed, otherwise false
|
||||||
|
*/
|
||||||
|
virtual bool Predict(const cv::Mat& im, FaceRecognitionResult* result);
|
||||||
|
|
||||||
|
/** \brief Predict the detection results for a batch of input images
|
||||||
|
*
|
||||||
|
* \param[in] imgs, The input image list, each element comes from cv::imread()
|
||||||
|
* \param[in] results The output FaceRecognitionResult list
|
||||||
|
* \return true if the prediction successed, otherwise false
|
||||||
|
*/
|
||||||
|
virtual bool BatchPredict(const std::vector<cv::Mat>& images,
|
||||||
|
std::vector<FaceRecognitionResult>* results);
|
||||||
|
|
||||||
|
/// Get preprocessor reference of InsightFaceRecognition
|
||||||
|
virtual InsightFaceRecognitionPreprocessor& GetPreprocessor() {
|
||||||
|
return preprocessor_;
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get postprocessor reference of InsightFaceRecognition
|
||||||
|
virtual InsightFaceRecognitionPostprocessor& GetPostprocessor() {
|
||||||
|
return postprocessor_;
|
||||||
|
}
|
||||||
|
|
||||||
|
protected:
|
||||||
|
bool Initialize();
|
||||||
|
InsightFaceRecognitionPreprocessor preprocessor_;
|
||||||
|
InsightFaceRecognitionPostprocessor postprocessor_;
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace faceid
|
||||||
|
} // namespace vision
|
||||||
|
} // namespace fastdeploy
|
@@ -0,0 +1,101 @@
|
|||||||
|
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#include "fastdeploy/pybind/main.h"
|
||||||
|
|
||||||
|
namespace fastdeploy {
|
||||||
|
void BindInsightFace(pybind11::module& m) {
|
||||||
|
pybind11::class_<vision::faceid::InsightFaceRecognitionPreprocessor>(
|
||||||
|
m, "InsightFaceRecognitionPreprocessor")
|
||||||
|
.def(pybind11::init())
|
||||||
|
.def("run", [](vision::faceid::InsightFaceRecognitionPreprocessor& self,
|
||||||
|
std::vector<pybind11::array>& im_list) {
|
||||||
|
std::vector<vision::FDMat> images;
|
||||||
|
for (size_t i = 0; i < im_list.size(); ++i) {
|
||||||
|
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
|
||||||
|
}
|
||||||
|
std::vector<FDTensor> outputs;
|
||||||
|
if (!self.Run(&images, &outputs)) {
|
||||||
|
throw std::runtime_error("Failed to preprocess the input data in InsightFaceRecognitionPreprocessor.");
|
||||||
|
}
|
||||||
|
for (size_t i = 0; i < outputs.size(); ++i) {
|
||||||
|
outputs[i].StopSharing();
|
||||||
|
}
|
||||||
|
return outputs;
|
||||||
|
})
|
||||||
|
.def_property("permute", &vision::faceid::InsightFaceRecognitionPreprocessor::GetPermute,
|
||||||
|
&vision::faceid::InsightFaceRecognitionPreprocessor::SetPermute)
|
||||||
|
.def_property("alpha", &vision::faceid::InsightFaceRecognitionPreprocessor::GetAlpha,
|
||||||
|
&vision::faceid::InsightFaceRecognitionPreprocessor::SetAlpha)
|
||||||
|
.def_property("beta", &vision::faceid::InsightFaceRecognitionPreprocessor::GetBeta,
|
||||||
|
&vision::faceid::InsightFaceRecognitionPreprocessor::SetBeta)
|
||||||
|
.def_property("size", &vision::faceid::InsightFaceRecognitionPreprocessor::GetSize,
|
||||||
|
&vision::faceid::InsightFaceRecognitionPreprocessor::SetSize);
|
||||||
|
|
||||||
|
pybind11::class_<vision::faceid::InsightFaceRecognitionPostprocessor>(
|
||||||
|
m, "InsightFaceRecognitionPostprocessor")
|
||||||
|
.def(pybind11::init())
|
||||||
|
.def("run", [](vision::faceid::InsightFaceRecognitionPostprocessor& self, std::vector<FDTensor>& inputs) {
|
||||||
|
std::vector<vision::FaceRecognitionResult> results;
|
||||||
|
if (!self.Run(inputs, &results)) {
|
||||||
|
throw std::runtime_error("Failed to postprocess the runtime result in InsightFaceRecognitionPostprocessor.");
|
||||||
|
}
|
||||||
|
return results;
|
||||||
|
})
|
||||||
|
.def("run", [](vision::faceid::InsightFaceRecognitionPostprocessor& self, std::vector<pybind11::array>& input_array) {
|
||||||
|
std::vector<vision::FaceRecognitionResult> results;
|
||||||
|
std::vector<FDTensor> inputs;
|
||||||
|
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
|
||||||
|
if (!self.Run(inputs, &results)) {
|
||||||
|
throw std::runtime_error("Failed to postprocess the runtime result in InsightFaceRecognitionPostprocessor.");
|
||||||
|
}
|
||||||
|
return results;
|
||||||
|
})
|
||||||
|
.def_property("l2_normalize", &vision::faceid::InsightFaceRecognitionPostprocessor::GetL2Normalize,
|
||||||
|
&vision::faceid::InsightFaceRecognitionPostprocessor::SetL2Normalize);
|
||||||
|
|
||||||
|
pybind11::class_<vision::faceid::InsightFaceRecognitionBase, FastDeployModel>(
|
||||||
|
m, "InsightFaceRecognitionBase")
|
||||||
|
.def(pybind11::init<std::string, std::string, RuntimeOption, ModelFormat>())
|
||||||
|
.def("predict", [](vision::faceid::InsightFaceRecognitionBase& self, pybind11::array& data) {
|
||||||
|
cv::Mat im = PyArrayToCvMat(data);
|
||||||
|
vision::FaceRecognitionResult result;
|
||||||
|
self.Predict(im, &result);
|
||||||
|
return result;
|
||||||
|
})
|
||||||
|
.def("batch_predict", [](vision::faceid::InsightFaceRecognitionBase& self, std::vector<pybind11::array>& data) {
|
||||||
|
std::vector<cv::Mat> images;
|
||||||
|
for (size_t i = 0; i < data.size(); ++i) {
|
||||||
|
images.push_back(PyArrayToCvMat(data[i]));
|
||||||
|
}
|
||||||
|
std::vector<vision::FaceRecognitionResult> results;
|
||||||
|
self.BatchPredict(images, &results);
|
||||||
|
return results;
|
||||||
|
})
|
||||||
|
.def_property_readonly("preprocessor", &vision::faceid::InsightFaceRecognitionBase::GetPreprocessor)
|
||||||
|
.def_property_readonly("postprocessor", &vision::faceid::InsightFaceRecognitionBase::GetPostprocessor);
|
||||||
|
|
||||||
|
pybind11::class_<vision::faceid::ArcFace, vision::faceid::InsightFaceRecognitionBase>(m, "ArcFace")
|
||||||
|
.def(pybind11::init<std::string, std::string, RuntimeOption,ModelFormat>());
|
||||||
|
|
||||||
|
pybind11::class_<vision::faceid::CosFace, vision::faceid::InsightFaceRecognitionBase>(m, "CosFace")
|
||||||
|
.def(pybind11::init<std::string, std::string, RuntimeOption,ModelFormat>());
|
||||||
|
|
||||||
|
pybind11::class_<vision::faceid::PartialFC, vision::faceid::InsightFaceRecognitionBase>(m, "PartialFC")
|
||||||
|
.def(pybind11::init<std::string, std::string, RuntimeOption,ModelFormat>());
|
||||||
|
|
||||||
|
pybind11::class_<vision::faceid::VPL, vision::faceid::InsightFaceRecognitionBase>(m, "VPL")
|
||||||
|
.def(pybind11::init<std::string, std::string, RuntimeOption,ModelFormat>());
|
||||||
|
}
|
||||||
|
} // namespace fastdeploy
|
133
fastdeploy/vision/faceid/contrib/insightface/model.h
Normal file
133
fastdeploy/vision/faceid/contrib/insightface/model.h
Normal file
@@ -0,0 +1,133 @@
|
|||||||
|
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. //NOLINT
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
#include "fastdeploy/vision/faceid/contrib/insightface/base.h"
|
||||||
|
|
||||||
|
namespace fastdeploy {
|
||||||
|
namespace vision {
|
||||||
|
namespace faceid {
|
||||||
|
class FASTDEPLOY_DECL ArcFace : public InsightFaceRecognitionBase {
|
||||||
|
public:
|
||||||
|
/** \brief Set path of model file and configuration file, and the configuration of runtime
|
||||||
|
*
|
||||||
|
* \param[in] model_file Path of model file, e.g ArcFace/model.pdmodel
|
||||||
|
* \param[in] params_file Path of parameter file, e.g ArcFace/model.pdiparams, if the model format is ONNX, this parameter will be ignored
|
||||||
|
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends`
|
||||||
|
* \param[in] model_format Model format of the loaded model, default is Paddle format
|
||||||
|
*/
|
||||||
|
ArcFace(const std::string& model_file, const std::string& params_file = "",
|
||||||
|
const RuntimeOption& custom_option = RuntimeOption(),
|
||||||
|
const ModelFormat& model_format = ModelFormat::ONNX)
|
||||||
|
: InsightFaceRecognitionBase(model_file, params_file, custom_option,
|
||||||
|
model_format) {
|
||||||
|
if (model_format == ModelFormat::ONNX) {
|
||||||
|
valid_cpu_backends = {Backend::ORT};
|
||||||
|
valid_gpu_backends = {Backend::ORT, Backend::TRT};
|
||||||
|
} else {
|
||||||
|
valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::LITE};
|
||||||
|
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
|
||||||
|
valid_xpu_backends = {Backend::LITE};
|
||||||
|
}
|
||||||
|
initialized = Initialize();
|
||||||
|
}
|
||||||
|
|
||||||
|
virtual std::string ModelName() const { return "ArcFace"; }
|
||||||
|
};
|
||||||
|
|
||||||
|
class FASTDEPLOY_DECL CosFace : public InsightFaceRecognitionBase {
|
||||||
|
public:
|
||||||
|
/** \brief Set path of model file and configuration file, and the configuration of runtime
|
||||||
|
*
|
||||||
|
* \param[in] model_file Path of model file, e.g CosFace/model.pdmodel
|
||||||
|
* \param[in] params_file Path of parameter file, e.g CosFace/model.pdiparams, if the model format is ONNX, this parameter will be ignored
|
||||||
|
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends`
|
||||||
|
* \param[in] model_format Model format of the loaded model, default is Paddle format
|
||||||
|
*/
|
||||||
|
CosFace(const std::string& model_file, const std::string& params_file = "",
|
||||||
|
const RuntimeOption& custom_option = RuntimeOption(),
|
||||||
|
const ModelFormat& model_format = ModelFormat::ONNX)
|
||||||
|
: InsightFaceRecognitionBase(model_file, params_file, custom_option,
|
||||||
|
model_format) {
|
||||||
|
if (model_format == ModelFormat::ONNX) {
|
||||||
|
valid_cpu_backends = {Backend::ORT};
|
||||||
|
valid_gpu_backends = {Backend::ORT, Backend::TRT};
|
||||||
|
} else {
|
||||||
|
valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::LITE};
|
||||||
|
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
|
||||||
|
valid_xpu_backends = {Backend::LITE};
|
||||||
|
}
|
||||||
|
initialized = Initialize();
|
||||||
|
}
|
||||||
|
|
||||||
|
virtual std::string ModelName() const { return "CosFace"; }
|
||||||
|
};
|
||||||
|
class FASTDEPLOY_DECL PartialFC : public InsightFaceRecognitionBase {
|
||||||
|
public:
|
||||||
|
/** \brief Set path of model file and configuration file, and the configuration of runtime
|
||||||
|
*
|
||||||
|
* \param[in] model_file Path of model file, e.g PartialFC/model.pdmodel
|
||||||
|
* \param[in] params_file Path of parameter file, e.g PartialFC/model.pdiparams, if the model format is ONNX, this parameter will be ignored
|
||||||
|
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends`
|
||||||
|
* \param[in] model_format Model format of the loaded model, default is Paddle format
|
||||||
|
*/
|
||||||
|
PartialFC(const std::string& model_file, const std::string& params_file = "",
|
||||||
|
const RuntimeOption& custom_option = RuntimeOption(),
|
||||||
|
const ModelFormat& model_format = ModelFormat::ONNX)
|
||||||
|
: InsightFaceRecognitionBase(model_file, params_file, custom_option,
|
||||||
|
model_format) {
|
||||||
|
if (model_format == ModelFormat::ONNX) {
|
||||||
|
valid_cpu_backends = {Backend::ORT};
|
||||||
|
valid_gpu_backends = {Backend::ORT, Backend::TRT};
|
||||||
|
} else {
|
||||||
|
valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::LITE};
|
||||||
|
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
|
||||||
|
valid_xpu_backends = {Backend::LITE};
|
||||||
|
}
|
||||||
|
initialized = Initialize();
|
||||||
|
}
|
||||||
|
|
||||||
|
virtual std::string ModelName() const { return "PartialFC"; }
|
||||||
|
};
|
||||||
|
class FASTDEPLOY_DECL VPL : public InsightFaceRecognitionBase {
|
||||||
|
public:
|
||||||
|
/** \brief Set path of model file and configuration file, and the configuration of runtime
|
||||||
|
*
|
||||||
|
* \param[in] model_file Path of model file, e.g VPL/model.pdmodel
|
||||||
|
* \param[in] params_file Path of parameter file, e.g VPL/model.pdiparams, if the model format is ONNX, this parameter will be ignored
|
||||||
|
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends`
|
||||||
|
* \param[in] model_format Model format of the loaded model, default is Paddle format
|
||||||
|
*/
|
||||||
|
VPL(const std::string& model_file, const std::string& params_file = "",
|
||||||
|
const RuntimeOption& custom_option = RuntimeOption(),
|
||||||
|
const ModelFormat& model_format = ModelFormat::ONNX)
|
||||||
|
: InsightFaceRecognitionBase(model_file, params_file, custom_option,
|
||||||
|
model_format) {
|
||||||
|
if (model_format == ModelFormat::ONNX) {
|
||||||
|
valid_cpu_backends = {Backend::ORT};
|
||||||
|
valid_gpu_backends = {Backend::ORT, Backend::TRT};
|
||||||
|
} else {
|
||||||
|
valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::LITE};
|
||||||
|
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
|
||||||
|
valid_xpu_backends = {Backend::LITE};
|
||||||
|
}
|
||||||
|
initialized = Initialize();
|
||||||
|
}
|
||||||
|
|
||||||
|
virtual std::string ModelName() const { return "VPL"; }
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace faceid
|
||||||
|
} // namespace vision
|
||||||
|
} // namespace fastdeploy
|
67
fastdeploy/vision/faceid/contrib/insightface/postprocessor.cc
Executable file
67
fastdeploy/vision/faceid/contrib/insightface/postprocessor.cc
Executable file
@@ -0,0 +1,67 @@
|
|||||||
|
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#include "fastdeploy/vision/faceid/contrib/insightface/postprocessor.h"
|
||||||
|
#include "fastdeploy/vision/utils/utils.h"
|
||||||
|
|
||||||
|
namespace fastdeploy {
|
||||||
|
namespace vision {
|
||||||
|
namespace faceid {
|
||||||
|
|
||||||
|
InsightFaceRecognitionPostprocessor::InsightFaceRecognitionPostprocessor() {
|
||||||
|
l2_normalize_ = false;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool InsightFaceRecognitionPostprocessor::Run(std::vector<FDTensor>& infer_result,
|
||||||
|
std::vector<FaceRecognitionResult>* results) {
|
||||||
|
if (infer_result[0].dtype != FDDataType::FP32) {
|
||||||
|
FDERROR << "Only support post process with float32 data." << std::endl;
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
if(infer_result.size() != 1){
|
||||||
|
FDERROR << "The default number of output tensor "
|
||||||
|
"must be 1 according to insightface." << std::endl;
|
||||||
|
}
|
||||||
|
int batch = infer_result[0].shape[0];
|
||||||
|
results->resize(batch);
|
||||||
|
for (size_t bs = 0; bs < batch; ++bs) {
|
||||||
|
FDTensor& embedding_tensor = infer_result.at(bs);
|
||||||
|
FDASSERT((embedding_tensor.shape[0] == 1), "Only support batch = 1 now.");
|
||||||
|
if (embedding_tensor.dtype != FDDataType::FP32) {
|
||||||
|
FDERROR << "Only support post process with float32 data." << std::endl;
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
(*results)[bs].Clear();
|
||||||
|
(*results)[bs].Resize(embedding_tensor.Numel());
|
||||||
|
|
||||||
|
// Copy the raw embedding vector directly without L2 normalize
|
||||||
|
// post process. Let the user decide whether to normalize or not.
|
||||||
|
// Will call utils::L2Normlize() method to perform L2
|
||||||
|
// normalize if l2_normalize was set as 'true'.
|
||||||
|
std::memcpy((*results)[bs].embedding.data(),
|
||||||
|
embedding_tensor.Data(),
|
||||||
|
embedding_tensor.Nbytes());
|
||||||
|
if (l2_normalize_) {
|
||||||
|
auto norm_embedding = utils::L2Normalize((*results)[bs].embedding);
|
||||||
|
std::memcpy((*results)[bs].embedding.data(),
|
||||||
|
norm_embedding.data(),
|
||||||
|
embedding_tensor.Nbytes());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace detection
|
||||||
|
} // namespace vision
|
||||||
|
} // namespace fastdeploy
|
50
fastdeploy/vision/faceid/contrib/insightface/postprocessor.h
Executable file
50
fastdeploy/vision/faceid/contrib/insightface/postprocessor.h
Executable file
@@ -0,0 +1,50 @@
|
|||||||
|
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
#include "fastdeploy/vision/common/processors/transform.h"
|
||||||
|
#include "fastdeploy/vision/common/result.h"
|
||||||
|
|
||||||
|
namespace fastdeploy {
|
||||||
|
namespace vision {
|
||||||
|
|
||||||
|
namespace faceid {
|
||||||
|
/*! @brief Postprocessor object for InsightFaceRecognition serials model.
|
||||||
|
*/
|
||||||
|
class FASTDEPLOY_DECL InsightFaceRecognitionPostprocessor {
|
||||||
|
public:
|
||||||
|
/** \brief Create a postprocessor instance for InsightFaceRecognition serials model
|
||||||
|
*/
|
||||||
|
InsightFaceRecognitionPostprocessor();
|
||||||
|
|
||||||
|
/** \brief Process the result of runtime and fill to FaceRecognitionResult structure
|
||||||
|
*
|
||||||
|
* \param[in] tensors The inference result from runtime
|
||||||
|
* \param[in] result The output result of FaceRecognitionResult
|
||||||
|
* \return true if the postprocess successed, otherwise false
|
||||||
|
*/
|
||||||
|
bool Run(std::vector<FDTensor>& infer_result,
|
||||||
|
std::vector<FaceRecognitionResult>* results);
|
||||||
|
|
||||||
|
void SetL2Normalize(bool& l2_normalize) { l2_normalize_ = l2_normalize; }
|
||||||
|
|
||||||
|
bool GetL2Normalize() { return l2_normalize_; }
|
||||||
|
|
||||||
|
private:
|
||||||
|
bool l2_normalize_;
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace faceid
|
||||||
|
} // namespace vision
|
||||||
|
} // namespace fastdeploy
|
76
fastdeploy/vision/faceid/contrib/insightface/preprocessor.cc
Executable file
76
fastdeploy/vision/faceid/contrib/insightface/preprocessor.cc
Executable file
@@ -0,0 +1,76 @@
|
|||||||
|
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#include "fastdeploy/vision/faceid/contrib/insightface/preprocessor.h"
|
||||||
|
|
||||||
|
namespace fastdeploy {
|
||||||
|
namespace vision {
|
||||||
|
namespace faceid {
|
||||||
|
|
||||||
|
InsightFaceRecognitionPreprocessor::InsightFaceRecognitionPreprocessor() {
|
||||||
|
// parameters for preprocess
|
||||||
|
size_ = {112, 112};
|
||||||
|
alpha_ = {1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f};
|
||||||
|
beta_ = {-1.f, -1.f, -1.f}; // RGB
|
||||||
|
permute_ = true;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool InsightFaceRecognitionPreprocessor::Preprocess(FDMat * mat, FDTensor* output) {
|
||||||
|
|
||||||
|
// face recognition model's preprocess steps in insightface
|
||||||
|
// reference: insightface/recognition/arcface_torch/inference.py
|
||||||
|
// 1. Resize
|
||||||
|
// 2. BGR2RGB
|
||||||
|
// 3. Convert(opencv style) or Normalize
|
||||||
|
// 4. HWC2CHW
|
||||||
|
int resize_w = size_[0];
|
||||||
|
int resize_h = size_[1];
|
||||||
|
if (resize_h != mat->Height() || resize_w != mat->Width()) {
|
||||||
|
Resize::Run(mat, resize_w, resize_h);
|
||||||
|
}
|
||||||
|
if (permute_) {
|
||||||
|
BGR2RGB::Run(mat);
|
||||||
|
}
|
||||||
|
|
||||||
|
Convert::Run(mat, alpha_, beta_);
|
||||||
|
HWC2CHW::Run(mat);
|
||||||
|
Cast::Run(mat, "float");
|
||||||
|
|
||||||
|
mat->ShareWithTensor(output);
|
||||||
|
output->ExpandDim(0); // reshape to n, h, w, c
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool InsightFaceRecognitionPreprocessor::Run(std::vector<FDMat>* images,
|
||||||
|
std::vector<FDTensor>* outputs) {
|
||||||
|
if (images->empty()) {
|
||||||
|
FDERROR << "The size of input images should be greater than 0." << std::endl;
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
FDASSERT(images->size() == 1, "Only support batch = 1 now.");
|
||||||
|
outputs->resize(1);
|
||||||
|
// Concat all the preprocessed data to a batch tensor
|
||||||
|
std::vector<FDTensor> tensors(images->size());
|
||||||
|
for (size_t i = 0; i < images->size(); ++i) {
|
||||||
|
if (!Preprocess(&(*images)[i], &tensors[i])) {
|
||||||
|
FDERROR << "Failed to preprocess input image." << std::endl;
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
(*outputs)[0] = std::move(tensors[0]);
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
} // namespace faceid
|
||||||
|
} // namespace vision
|
||||||
|
} // namespace fastdeploy
|
80
fastdeploy/vision/faceid/contrib/insightface/preprocessor.h
Executable file
80
fastdeploy/vision/faceid/contrib/insightface/preprocessor.h
Executable file
@@ -0,0 +1,80 @@
|
|||||||
|
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
#include "fastdeploy/vision/common/processors/transform.h"
|
||||||
|
#include "fastdeploy/vision/common/result.h"
|
||||||
|
|
||||||
|
namespace fastdeploy {
|
||||||
|
namespace vision {
|
||||||
|
|
||||||
|
namespace faceid {
|
||||||
|
/*! @brief Preprocessor object for InsightFaceRecognition serials model.
|
||||||
|
*/
|
||||||
|
class FASTDEPLOY_DECL InsightFaceRecognitionPreprocessor {
|
||||||
|
public:
|
||||||
|
/** \brief Create a preprocessor instance for InsightFaceRecognition serials model
|
||||||
|
*/
|
||||||
|
InsightFaceRecognitionPreprocessor();
|
||||||
|
|
||||||
|
/** \brief Process the input image and prepare input tensors for runtime
|
||||||
|
*
|
||||||
|
* \param[in] images The input image data list, all the elements are returned by cv::imread()
|
||||||
|
* \param[in] outputs The output tensors which will feed in runtime
|
||||||
|
* \return true if the preprocess successed, otherwise false
|
||||||
|
*/
|
||||||
|
bool Run(std::vector<FDMat>* images, std::vector<FDTensor>* outputs);
|
||||||
|
|
||||||
|
/// Get Size
|
||||||
|
std::vector<int> GetSize() { return size_; }
|
||||||
|
|
||||||
|
/// Set size.
|
||||||
|
void SetSize(std::vector<int>& size) { size_ = size; }
|
||||||
|
|
||||||
|
/// Get alpha
|
||||||
|
std::vector<float> GetAlpha() { return alpha_; }
|
||||||
|
|
||||||
|
/// Set alpha.
|
||||||
|
void SetAlpha(std::vector<float>& alpha) { alpha_ = alpha; }
|
||||||
|
|
||||||
|
/// Get beta
|
||||||
|
std::vector<float> GetBeta() { return beta_; }
|
||||||
|
|
||||||
|
/// Set beta.
|
||||||
|
void SetBeta(std::vector<float>& beta) { beta_ = beta; }
|
||||||
|
|
||||||
|
bool GetPermute() { return permute_; }
|
||||||
|
|
||||||
|
/// Set permute.
|
||||||
|
void SetPermute(bool permute) { permute_ = permute; }
|
||||||
|
|
||||||
|
protected:
|
||||||
|
bool Preprocess(FDMat* mat, FDTensor* output);
|
||||||
|
// Argument for image preprocessing step, tuple of (width, height),
|
||||||
|
// decide the target size after resize, default (112, 112)
|
||||||
|
std::vector<int> size_;
|
||||||
|
// Argument for image preprocessing step, alpha values for normalization,
|
||||||
|
// default alpha = {1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f};
|
||||||
|
std::vector<float> alpha_;
|
||||||
|
// Argument for image preprocessing step, beta values for normalization,
|
||||||
|
// default beta = {-1.f, -1.f, -1.f}
|
||||||
|
std::vector<float> beta_;
|
||||||
|
// Argument for image preprocessing step, whether to swap the B and R channel,
|
||||||
|
// such as BGR->RGB, default true.
|
||||||
|
bool permute_;
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace faceid
|
||||||
|
} // namespace vision
|
||||||
|
} // namespace fastdeploy
|
@@ -1,138 +0,0 @@
|
|||||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
||||||
//
|
|
||||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
// you may not use this file except in compliance with the License.
|
|
||||||
// You may obtain a copy of the License at
|
|
||||||
//
|
|
||||||
// http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
//
|
|
||||||
// Unless required by applicable law or agreed to in writing, software
|
|
||||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
// See the License for the specific language governing permissions and
|
|
||||||
// limitations under the License.
|
|
||||||
|
|
||||||
#include "fastdeploy/vision/faceid/contrib/insightface_rec.h"
|
|
||||||
|
|
||||||
#include "fastdeploy/utils/perf.h"
|
|
||||||
#include "fastdeploy/vision/utils/utils.h"
|
|
||||||
|
|
||||||
namespace fastdeploy {
|
|
||||||
|
|
||||||
namespace vision {
|
|
||||||
|
|
||||||
namespace faceid {
|
|
||||||
|
|
||||||
InsightFaceRecognitionModel::InsightFaceRecognitionModel(
|
|
||||||
const std::string& model_file, const std::string& params_file,
|
|
||||||
const RuntimeOption& custom_option, const ModelFormat& model_format) {
|
|
||||||
if (model_format == ModelFormat::ONNX) {
|
|
||||||
valid_cpu_backends = {Backend::ORT};
|
|
||||||
valid_gpu_backends = {Backend::ORT, Backend::TRT};
|
|
||||||
} else {
|
|
||||||
valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::LITE};
|
|
||||||
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
|
|
||||||
valid_xpu_backends = {Backend::LITE};
|
|
||||||
}
|
|
||||||
runtime_option = custom_option;
|
|
||||||
runtime_option.model_format = model_format;
|
|
||||||
runtime_option.model_file = model_file;
|
|
||||||
runtime_option.params_file = params_file;
|
|
||||||
initialized = Initialize();
|
|
||||||
}
|
|
||||||
|
|
||||||
bool InsightFaceRecognitionModel::Initialize() {
|
|
||||||
// parameters for preprocess
|
|
||||||
size = {112, 112};
|
|
||||||
alpha = {1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f};
|
|
||||||
beta = {-1.f, -1.f, -1.f}; // RGB
|
|
||||||
swap_rb = true;
|
|
||||||
l2_normalize = false;
|
|
||||||
|
|
||||||
if (!InitRuntime()) {
|
|
||||||
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
bool InsightFaceRecognitionModel::Preprocess(Mat* mat, FDTensor* output) {
|
|
||||||
// face recognition model's preprocess steps in insightface
|
|
||||||
// reference: insightface/recognition/arcface_torch/inference.py
|
|
||||||
// 1. Resize
|
|
||||||
// 2. BGR2RGB
|
|
||||||
// 3. Convert(opencv style) or Normalize
|
|
||||||
// 4. HWC2CHW
|
|
||||||
int resize_w = size[0];
|
|
||||||
int resize_h = size[1];
|
|
||||||
if (resize_h != mat->Height() || resize_w != mat->Width()) {
|
|
||||||
Resize::Run(mat, resize_w, resize_h);
|
|
||||||
}
|
|
||||||
if (swap_rb) {
|
|
||||||
BGR2RGB::Run(mat);
|
|
||||||
}
|
|
||||||
|
|
||||||
Convert::Run(mat, alpha, beta);
|
|
||||||
HWC2CHW::Run(mat);
|
|
||||||
Cast::Run(mat, "float");
|
|
||||||
|
|
||||||
mat->ShareWithTensor(output);
|
|
||||||
output->shape.insert(output->shape.begin(), 1); // reshape to n, h, w, c
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
bool InsightFaceRecognitionModel::Postprocess(
|
|
||||||
std::vector<FDTensor>& infer_result, FaceRecognitionResult* result) {
|
|
||||||
FDASSERT((infer_result.size() == 1),
|
|
||||||
"The default number of output tensor must be 1 according to "
|
|
||||||
"insightface.");
|
|
||||||
FDTensor& embedding_tensor = infer_result.at(0);
|
|
||||||
FDASSERT((embedding_tensor.shape[0] == 1), "Only support batch =1 now.");
|
|
||||||
if (embedding_tensor.dtype != FDDataType::FP32) {
|
|
||||||
FDERROR << "Only support post process with float32 data." << std::endl;
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
result->Clear();
|
|
||||||
result->Resize(embedding_tensor.Numel());
|
|
||||||
// Copy the raw embedding vector directly without L2 normalize
|
|
||||||
// post process. Let the user decide whether to normalize or not.
|
|
||||||
// Will call utils::L2Normlize() method to perform L2
|
|
||||||
// normalize if l2_normalize was set as 'true'.
|
|
||||||
std::memcpy(result->embedding.data(), embedding_tensor.Data(),
|
|
||||||
embedding_tensor.Nbytes());
|
|
||||||
if (l2_normalize) {
|
|
||||||
auto norm_embedding = utils::L2Normalize(result->embedding);
|
|
||||||
std::memcpy(result->embedding.data(), norm_embedding.data(),
|
|
||||||
embedding_tensor.Nbytes());
|
|
||||||
}
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
bool InsightFaceRecognitionModel::Predict(cv::Mat* im,
|
|
||||||
FaceRecognitionResult* result) {
|
|
||||||
Mat mat(*im);
|
|
||||||
std::vector<FDTensor> input_tensors(1);
|
|
||||||
|
|
||||||
if (!Preprocess(&mat, &input_tensors[0])) {
|
|
||||||
FDERROR << "Failed to preprocess input image." << std::endl;
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
input_tensors[0].name = InputInfoOfRuntime(0).name;
|
|
||||||
std::vector<FDTensor> output_tensors;
|
|
||||||
if (!Infer(input_tensors, &output_tensors)) {
|
|
||||||
FDERROR << "Failed to inference." << std::endl;
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (!Postprocess(output_tensors, result)) {
|
|
||||||
FDERROR << "Failed to post process." << std::endl;
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
} // namespace faceid
|
|
||||||
} // namespace vision
|
|
||||||
} // namespace fastdeploy
|
|
@@ -1,81 +0,0 @@
|
|||||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
||||||
//
|
|
||||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
// you may not use this file except in compliance with the License.
|
|
||||||
// You may obtain a copy of the License at
|
|
||||||
//
|
|
||||||
// http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
//
|
|
||||||
// Unless required by applicable law or agreed to in writing, software
|
|
||||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
// See the License for the specific language governing permissions and
|
|
||||||
// limitations under the License.
|
|
||||||
|
|
||||||
#pragma once
|
|
||||||
#include "fastdeploy/fastdeploy_model.h"
|
|
||||||
#include "fastdeploy/vision/common/processors/transform.h"
|
|
||||||
#include "fastdeploy/vision/common/result.h"
|
|
||||||
|
|
||||||
namespace fastdeploy {
|
|
||||||
|
|
||||||
namespace vision {
|
|
||||||
|
|
||||||
namespace faceid {
|
|
||||||
/*! @brief CosFace model object used when to load a CosFace model exported by IngsightFace.
|
|
||||||
*/
|
|
||||||
class FASTDEPLOY_DECL InsightFaceRecognitionModel : public FastDeployModel {
|
|
||||||
public:
|
|
||||||
/** \brief Set path of model file and the configuration of runtime.
|
|
||||||
*
|
|
||||||
* \param[in] model_file Path of model file, e.g ./arcface.onnx
|
|
||||||
* \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, if the model format is ONNX, this parameter will be ignored
|
|
||||||
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in "valid_cpu_backends"
|
|
||||||
* \param[in] model_format Model format of the loaded model, default is ONNX format
|
|
||||||
*/
|
|
||||||
InsightFaceRecognitionModel(
|
|
||||||
const std::string& model_file, const std::string& params_file = "",
|
|
||||||
const RuntimeOption& custom_option = RuntimeOption(),
|
|
||||||
const ModelFormat& model_format = ModelFormat::ONNX);
|
|
||||||
|
|
||||||
virtual std::string ModelName() const { return "deepinsight/insightface"; }
|
|
||||||
|
|
||||||
/*! @brief
|
|
||||||
Argument for image preprocessing step, tuple of (width, height), decide the target size after resize, default (112, 112)
|
|
||||||
*/
|
|
||||||
std::vector<int> size;
|
|
||||||
/*! @brief
|
|
||||||
Argument for image preprocessing step, alpha values for normalization, default alpha = {1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f};
|
|
||||||
*/
|
|
||||||
std::vector<float> alpha;
|
|
||||||
/*! @brief
|
|
||||||
Argument for image preprocessing step, beta values for normalization, default beta = {-1.f, -1.f, -1.f}
|
|
||||||
*/
|
|
||||||
std::vector<float> beta;
|
|
||||||
/*! @brief
|
|
||||||
Argument for image preprocessing step, whether to swap the B and R channel, such as BGR->RGB, default true.
|
|
||||||
*/
|
|
||||||
bool swap_rb;
|
|
||||||
/*! @brief
|
|
||||||
Argument for image postprocessing step, whether to apply l2 normalize to embedding values, default false;
|
|
||||||
*/
|
|
||||||
bool l2_normalize;
|
|
||||||
/** \brief Predict the face recognition result for an input image
|
|
||||||
*
|
|
||||||
* \param[in] im The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
|
|
||||||
* \param[in] result The output face recognition result will be writen to this structure
|
|
||||||
* \return true if the prediction successed, otherwise false
|
|
||||||
*/
|
|
||||||
virtual bool Predict(cv::Mat* im, FaceRecognitionResult* result);
|
|
||||||
|
|
||||||
virtual bool Initialize();
|
|
||||||
|
|
||||||
virtual bool Preprocess(Mat* mat, FDTensor* output);
|
|
||||||
|
|
||||||
virtual bool Postprocess(std::vector<FDTensor>& infer_result,
|
|
||||||
FaceRecognitionResult* result);
|
|
||||||
};
|
|
||||||
|
|
||||||
} // namespace faceid
|
|
||||||
} // namespace vision
|
|
||||||
} // namespace fastdeploy
|
|
@@ -1,43 +0,0 @@
|
|||||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
||||||
//
|
|
||||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
// you may not use this file except in compliance with the License.
|
|
||||||
// You may obtain a copy of the License at
|
|
||||||
//
|
|
||||||
// http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
//
|
|
||||||
// Unless required by applicable law or agreed to in writing, software
|
|
||||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
// See the License for the specific language governing permissions and
|
|
||||||
// limitations under the License.
|
|
||||||
|
|
||||||
#include "fastdeploy/pybind/main.h"
|
|
||||||
|
|
||||||
namespace fastdeploy {
|
|
||||||
void BindInsightFaceRecognitionModel(pybind11::module& m) {
|
|
||||||
// Bind InsightFaceRecognitionModel
|
|
||||||
pybind11::class_<vision::faceid::InsightFaceRecognitionModel,
|
|
||||||
FastDeployModel>(m, "InsightFaceRecognitionModel")
|
|
||||||
.def(pybind11::init<std::string, std::string, RuntimeOption,
|
|
||||||
ModelFormat>())
|
|
||||||
.def("predict",
|
|
||||||
[](vision::faceid::InsightFaceRecognitionModel& self,
|
|
||||||
pybind11::array& data) {
|
|
||||||
auto mat = PyArrayToCvMat(data);
|
|
||||||
vision::FaceRecognitionResult res;
|
|
||||||
self.Predict(&mat, &res);
|
|
||||||
return res;
|
|
||||||
})
|
|
||||||
.def_readwrite("size", &vision::faceid::InsightFaceRecognitionModel::size)
|
|
||||||
.def_readwrite("alpha",
|
|
||||||
&vision::faceid::InsightFaceRecognitionModel::alpha)
|
|
||||||
.def_readwrite("beta", &vision::faceid::InsightFaceRecognitionModel::beta)
|
|
||||||
.def_readwrite("swap_rb",
|
|
||||||
&vision::faceid::InsightFaceRecognitionModel::swap_rb)
|
|
||||||
.def_readwrite(
|
|
||||||
"l2_normalize",
|
|
||||||
&vision::faceid::InsightFaceRecognitionModel::l2_normalize);
|
|
||||||
}
|
|
||||||
|
|
||||||
} // namespace fastdeploy
|
|
@@ -1,73 +0,0 @@
|
|||||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
||||||
//
|
|
||||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
// you may not use this file except in compliance with the License.
|
|
||||||
// You may obtain a copy of the License at
|
|
||||||
//
|
|
||||||
// http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
//
|
|
||||||
// Unless required by applicable law or agreed to in writing, software
|
|
||||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
// See the License for the specific language governing permissions and
|
|
||||||
// limitations under the License.
|
|
||||||
|
|
||||||
#include "fastdeploy/vision/faceid/contrib/partial_fc.h"
|
|
||||||
#include "fastdeploy/utils/perf.h"
|
|
||||||
#include "fastdeploy/vision/utils/utils.h"
|
|
||||||
|
|
||||||
namespace fastdeploy {
|
|
||||||
|
|
||||||
namespace vision {
|
|
||||||
|
|
||||||
namespace faceid {
|
|
||||||
|
|
||||||
PartialFC::PartialFC(const std::string& model_file,
|
|
||||||
const std::string& params_file,
|
|
||||||
const RuntimeOption& custom_option,
|
|
||||||
const ModelFormat& model_format)
|
|
||||||
: InsightFaceRecognitionModel(model_file, params_file, custom_option,
|
|
||||||
model_format) {
|
|
||||||
initialized = Initialize();
|
|
||||||
}
|
|
||||||
|
|
||||||
bool PartialFC::Initialize() {
|
|
||||||
|
|
||||||
if (initialized) {
|
|
||||||
// (1.1) re-init parameters for specific sub-classes
|
|
||||||
size = {112, 112};
|
|
||||||
alpha = {1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f};
|
|
||||||
beta = {-1.f, -1.f, -1.f}; // RGB
|
|
||||||
swap_rb = true;
|
|
||||||
l2_normalize = false;
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
if (!InsightFaceRecognitionModel::Initialize()) {
|
|
||||||
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
// (2.1) re-init parameters for specific sub-classes
|
|
||||||
size = {112, 112};
|
|
||||||
alpha = {1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f};
|
|
||||||
beta = {-1.f, -1.f, -1.f}; // RGB
|
|
||||||
swap_rb = true;
|
|
||||||
l2_normalize = false;
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
bool PartialFC::Preprocess(Mat* mat, FDTensor* output) {
|
|
||||||
return InsightFaceRecognitionModel::Preprocess(mat, output);
|
|
||||||
}
|
|
||||||
|
|
||||||
bool PartialFC::Postprocess(std::vector<FDTensor>& infer_result,
|
|
||||||
FaceRecognitionResult* result) {
|
|
||||||
return InsightFaceRecognitionModel::Postprocess(infer_result, result);
|
|
||||||
}
|
|
||||||
|
|
||||||
bool PartialFC::Predict(cv::Mat* im, FaceRecognitionResult* result) {
|
|
||||||
return InsightFaceRecognitionModel::Predict(im, result);
|
|
||||||
}
|
|
||||||
|
|
||||||
} // namespace faceid
|
|
||||||
} // namespace vision
|
|
||||||
} // namespace fastdeploy
|
|
@@ -1,63 +0,0 @@
|
|||||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
||||||
//
|
|
||||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
// you may not use this file except in compliance with the License.
|
|
||||||
// You may obtain a copy of the License at
|
|
||||||
//
|
|
||||||
// http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
//
|
|
||||||
// Unless required by applicable law or agreed to in writing, software
|
|
||||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
// See the License for the specific language governing permissions and
|
|
||||||
// limitations under the License.
|
|
||||||
|
|
||||||
#pragma once
|
|
||||||
#include "fastdeploy/fastdeploy_model.h"
|
|
||||||
#include "fastdeploy/vision/common/processors/transform.h"
|
|
||||||
#include "fastdeploy/vision/common/result.h"
|
|
||||||
#include "fastdeploy/vision/faceid/contrib/insightface_rec.h"
|
|
||||||
|
|
||||||
namespace fastdeploy {
|
|
||||||
|
|
||||||
namespace vision {
|
|
||||||
|
|
||||||
namespace faceid {
|
|
||||||
/*! @brief PartialFC model object used when to load a PartialFC model exported by IngsightFace.
|
|
||||||
*/
|
|
||||||
class FASTDEPLOY_DECL PartialFC : public InsightFaceRecognitionModel {
|
|
||||||
public:
|
|
||||||
/** \brief Set path of model file and the configuration of runtime.
|
|
||||||
*
|
|
||||||
* \param[in] model_file Path of model file, e.g ./partial_fc.onnx
|
|
||||||
* \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, if the model format is ONNX, this parameter will be ignored
|
|
||||||
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in "valid_cpu_backends"
|
|
||||||
* \param[in] model_format Model format of the loaded model, default is ONNX format
|
|
||||||
*/
|
|
||||||
PartialFC(const std::string& model_file, const std::string& params_file = "",
|
|
||||||
const RuntimeOption& custom_option = RuntimeOption(),
|
|
||||||
const ModelFormat& model_format = ModelFormat::ONNX);
|
|
||||||
|
|
||||||
std::string ModelName() const override {
|
|
||||||
return "deepinsight/insightface/recognition/partial_fc";
|
|
||||||
}
|
|
||||||
/** \brief Predict the face recognition result for an input image
|
|
||||||
*
|
|
||||||
* \param[in] im The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
|
|
||||||
* \param[in] result The output face recognition result will be writen to this structure
|
|
||||||
* \return true if the prediction successed, otherwise false
|
|
||||||
*/
|
|
||||||
bool Predict(cv::Mat* im, FaceRecognitionResult* result) override;
|
|
||||||
|
|
||||||
private:
|
|
||||||
bool Initialize() override;
|
|
||||||
|
|
||||||
bool Preprocess(Mat* mat, FDTensor* output) override;
|
|
||||||
|
|
||||||
bool Postprocess(std::vector<FDTensor>& infer_result,
|
|
||||||
FaceRecognitionResult* result) override;
|
|
||||||
};
|
|
||||||
|
|
||||||
} // namespace faceid
|
|
||||||
} // namespace vision
|
|
||||||
} // namespace fastdeploy
|
|
@@ -1,38 +0,0 @@
|
|||||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
||||||
//
|
|
||||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
// you may not use this file except in compliance with the License.
|
|
||||||
// You may obtain a copy of the License at
|
|
||||||
//
|
|
||||||
// http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
//
|
|
||||||
// Unless required by applicable law or agreed to in writing, software
|
|
||||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
// See the License for the specific language governing permissions and
|
|
||||||
// limitations under the License.
|
|
||||||
|
|
||||||
#include "fastdeploy/pybind/main.h"
|
|
||||||
|
|
||||||
namespace fastdeploy {
|
|
||||||
void BindPartialFC(pybind11::module& m) {
|
|
||||||
// Bind Partial FC
|
|
||||||
pybind11::class_<vision::faceid::PartialFC,
|
|
||||||
vision::faceid::InsightFaceRecognitionModel>(m, "PartialFC")
|
|
||||||
.def(pybind11::init<std::string, std::string, RuntimeOption,
|
|
||||||
ModelFormat>())
|
|
||||||
.def("predict",
|
|
||||||
[](vision::faceid::PartialFC& self, pybind11::array& data) {
|
|
||||||
auto mat = PyArrayToCvMat(data);
|
|
||||||
vision::FaceRecognitionResult res;
|
|
||||||
self.Predict(&mat, &res);
|
|
||||||
return res;
|
|
||||||
})
|
|
||||||
.def_readwrite("size", &vision::faceid::PartialFC::size)
|
|
||||||
.def_readwrite("alpha", &vision::faceid::PartialFC::alpha)
|
|
||||||
.def_readwrite("beta", &vision::faceid::PartialFC::beta)
|
|
||||||
.def_readwrite("swap_rb", &vision::faceid::PartialFC::swap_rb)
|
|
||||||
.def_readwrite("l2_normalize", &vision::faceid::PartialFC::l2_normalize);
|
|
||||||
}
|
|
||||||
|
|
||||||
} // namespace fastdeploy
|
|
@@ -1,71 +0,0 @@
|
|||||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
||||||
//
|
|
||||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
// you may not use this file except in compliance with the License.
|
|
||||||
// You may obtain a copy of the License at
|
|
||||||
//
|
|
||||||
// http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
//
|
|
||||||
// Unless required by applicable law or agreed to in writing, software
|
|
||||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
// See the License for the specific language governing permissions and
|
|
||||||
// limitations under the License.
|
|
||||||
|
|
||||||
#include "fastdeploy/vision/faceid/contrib/vpl.h"
|
|
||||||
#include "fastdeploy/utils/perf.h"
|
|
||||||
#include "fastdeploy/vision/utils/utils.h"
|
|
||||||
|
|
||||||
namespace fastdeploy {
|
|
||||||
|
|
||||||
namespace vision {
|
|
||||||
|
|
||||||
namespace faceid {
|
|
||||||
|
|
||||||
VPL::VPL(const std::string& model_file, const std::string& params_file,
|
|
||||||
const RuntimeOption& custom_option, const ModelFormat& model_format)
|
|
||||||
: InsightFaceRecognitionModel(model_file, params_file, custom_option,
|
|
||||||
model_format) {
|
|
||||||
initialized = Initialize();
|
|
||||||
}
|
|
||||||
|
|
||||||
bool VPL::Initialize() {
|
|
||||||
|
|
||||||
if (initialized) {
|
|
||||||
// (1.1) re-init parameters for specific sub-classes
|
|
||||||
size = {112, 112};
|
|
||||||
alpha = {1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f};
|
|
||||||
beta = {-1.f, -1.f, -1.f}; // RGB
|
|
||||||
swap_rb = true;
|
|
||||||
l2_normalize = false;
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
if (!InsightFaceRecognitionModel::Initialize()) {
|
|
||||||
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
// (2.1) re-init parameters for specific sub-classes
|
|
||||||
size = {112, 112};
|
|
||||||
alpha = {1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f};
|
|
||||||
beta = {-1.f, -1.f, -1.f}; // RGB
|
|
||||||
swap_rb = true;
|
|
||||||
l2_normalize = false;
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
bool VPL::Preprocess(Mat* mat, FDTensor* output) {
|
|
||||||
return InsightFaceRecognitionModel::Preprocess(mat, output);
|
|
||||||
}
|
|
||||||
|
|
||||||
bool VPL::Postprocess(std::vector<FDTensor>& infer_result,
|
|
||||||
FaceRecognitionResult* result) {
|
|
||||||
return InsightFaceRecognitionModel::Postprocess(infer_result, result);
|
|
||||||
}
|
|
||||||
|
|
||||||
bool VPL::Predict(cv::Mat* im, FaceRecognitionResult* result) {
|
|
||||||
return InsightFaceRecognitionModel::Predict(im, result);
|
|
||||||
}
|
|
||||||
|
|
||||||
} // namespace faceid
|
|
||||||
} // namespace vision
|
|
||||||
} // namespace fastdeploy
|
|
@@ -1,63 +0,0 @@
|
|||||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
||||||
//
|
|
||||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
// you may not use this file except in compliance with the License.
|
|
||||||
// You may obtain a copy of the License at
|
|
||||||
//
|
|
||||||
// http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
//
|
|
||||||
// Unless required by applicable law or agreed to in writing, software
|
|
||||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
// See the License for the specific language governing permissions and
|
|
||||||
// limitations under the License.
|
|
||||||
|
|
||||||
#pragma once
|
|
||||||
#include "fastdeploy/fastdeploy_model.h"
|
|
||||||
#include "fastdeploy/vision/common/processors/transform.h"
|
|
||||||
#include "fastdeploy/vision/common/result.h"
|
|
||||||
#include "fastdeploy/vision/faceid/contrib/insightface_rec.h"
|
|
||||||
|
|
||||||
namespace fastdeploy {
|
|
||||||
|
|
||||||
namespace vision {
|
|
||||||
|
|
||||||
namespace faceid {
|
|
||||||
/*! @brief VPL model object used when to load a VPL model exported by IngsightFace.
|
|
||||||
*/
|
|
||||||
class FASTDEPLOY_DECL VPL : public InsightFaceRecognitionModel {
|
|
||||||
public:
|
|
||||||
/** \brief Set path of model file and the configuration of runtime.
|
|
||||||
*
|
|
||||||
* \param[in] model_file Path of model file, e.g ./vpl.onnx
|
|
||||||
* \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, if the model format is ONNX, this parameter will be ignored
|
|
||||||
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in "valid_cpu_backends"
|
|
||||||
* \param[in] model_format Model format of the loaded model, default is ONNX format
|
|
||||||
*/
|
|
||||||
VPL(const std::string& model_file, const std::string& params_file = "",
|
|
||||||
const RuntimeOption& custom_option = RuntimeOption(),
|
|
||||||
const ModelFormat& model_format = ModelFormat::ONNX);
|
|
||||||
|
|
||||||
std::string ModelName() const override {
|
|
||||||
return "deepinsight/insightface/recognition/vpl";
|
|
||||||
}
|
|
||||||
/** \brief Predict the face recognition result for an input image
|
|
||||||
*
|
|
||||||
* \param[in] im The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
|
|
||||||
* \param[in] result The output face recognition result will be writen to this structure
|
|
||||||
* \return true if the prediction successed, otherwise false
|
|
||||||
*/
|
|
||||||
bool Predict(cv::Mat* im, FaceRecognitionResult* result) override;
|
|
||||||
|
|
||||||
private:
|
|
||||||
bool Initialize() override;
|
|
||||||
|
|
||||||
bool Preprocess(Mat* mat, FDTensor* output) override;
|
|
||||||
|
|
||||||
bool Postprocess(std::vector<FDTensor>& infer_result,
|
|
||||||
FaceRecognitionResult* result) override;
|
|
||||||
};
|
|
||||||
|
|
||||||
} // namespace faceid
|
|
||||||
} // namespace vision
|
|
||||||
} // namespace fastdeploy
|
|
@@ -1,38 +0,0 @@
|
|||||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
||||||
//
|
|
||||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
// you may not use this file except in compliance with the License.
|
|
||||||
// You may obtain a copy of the License at
|
|
||||||
//
|
|
||||||
// http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
//
|
|
||||||
// Unless required by applicable law or agreed to in writing, software
|
|
||||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
// See the License for the specific language governing permissions and
|
|
||||||
// limitations under the License.
|
|
||||||
|
|
||||||
#include "fastdeploy/pybind/main.h"
|
|
||||||
|
|
||||||
namespace fastdeploy {
|
|
||||||
void BindVPL(pybind11::module& m) {
|
|
||||||
// Bind VPL
|
|
||||||
pybind11::class_<vision::faceid::VPL,
|
|
||||||
vision::faceid::InsightFaceRecognitionModel>(m, "VPL")
|
|
||||||
.def(pybind11::init<std::string, std::string, RuntimeOption,
|
|
||||||
ModelFormat>())
|
|
||||||
.def("predict",
|
|
||||||
[](vision::faceid::VPL& self, pybind11::array& data) {
|
|
||||||
auto mat = PyArrayToCvMat(data);
|
|
||||||
vision::FaceRecognitionResult res;
|
|
||||||
self.Predict(&mat, &res);
|
|
||||||
return res;
|
|
||||||
})
|
|
||||||
.def_readwrite("size", &vision::faceid::VPL::size)
|
|
||||||
.def_readwrite("alpha", &vision::faceid::VPL::alpha)
|
|
||||||
.def_readwrite("beta", &vision::faceid::VPL::beta)
|
|
||||||
.def_readwrite("swap_rb", &vision::faceid::VPL::swap_rb)
|
|
||||||
.def_readwrite("l2_normalize", &vision::faceid::VPL::l2_normalize);
|
|
||||||
}
|
|
||||||
|
|
||||||
} // namespace fastdeploy
|
|
@@ -15,20 +15,11 @@
|
|||||||
#include "fastdeploy/pybind/main.h"
|
#include "fastdeploy/pybind/main.h"
|
||||||
|
|
||||||
namespace fastdeploy {
|
namespace fastdeploy {
|
||||||
|
void BindInsightFace(pybind11::module& m);
|
||||||
void BindAdaFace(pybind11::module& m);
|
void BindAdaFace(pybind11::module& m);
|
||||||
void BindArcFace(pybind11::module& m);
|
|
||||||
void BindInsightFaceRecognitionModel(pybind11::module& m);
|
|
||||||
void BindCosFace(pybind11::module& m);
|
|
||||||
void BindPartialFC(pybind11::module& m);
|
|
||||||
void BindVPL(pybind11::module& m);
|
|
||||||
|
|
||||||
void BindFaceId(pybind11::module& m) {
|
void BindFaceId(pybind11::module& m) {
|
||||||
auto faceid_module = m.def_submodule("faceid", "Face recognition models.");
|
auto faceid_module = m.def_submodule("faceid", "Face recognition models.");
|
||||||
BindInsightFaceRecognitionModel(faceid_module);
|
BindInsightFace(faceid_module);
|
||||||
BindAdaFace(faceid_module);
|
BindAdaFace(faceid_module);
|
||||||
BindArcFace(faceid_module);
|
|
||||||
BindCosFace(faceid_module);
|
|
||||||
BindPartialFC(faceid_module);
|
|
||||||
BindVPL(faceid_module);
|
|
||||||
}
|
}
|
||||||
} // namespace fastdeploy
|
} // namespace fastdeploy
|
||||||
|
0
python/__init__.py
Normal file
0
python/__init__.py
Normal file
@@ -13,9 +13,4 @@
|
|||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
from __future__ import absolute_import
|
from __future__ import absolute_import
|
||||||
from .contrib.adaface import AdaFace
|
from .contrib import *
|
||||||
from .contrib.arcface import ArcFace
|
|
||||||
from .contrib.cosface import CosFace
|
|
||||||
from .contrib.insightface_rec import InsightFaceRecognitionModel
|
|
||||||
from .contrib.partial_fc import PartialFC
|
|
||||||
from .contrib.vpl import VPL
|
|
||||||
|
@@ -13,3 +13,5 @@
|
|||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
from __future__ import absolute_import
|
from __future__ import absolute_import
|
||||||
|
from .insightface import *
|
||||||
|
from .adaface import *
|
@@ -1,126 +0,0 @@
|
|||||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
from __future__ import absolute_import
|
|
||||||
from .... import FastDeployModel, ModelFormat
|
|
||||||
from .... import c_lib_wrap as C
|
|
||||||
|
|
||||||
|
|
||||||
class AdaFace(FastDeployModel):
|
|
||||||
def __init__(self,
|
|
||||||
model_file,
|
|
||||||
params_file="",
|
|
||||||
runtime_option=None,
|
|
||||||
model_format=ModelFormat.PADDLE):
|
|
||||||
"""Load a AdaFace model exported by InsigtFace.
|
|
||||||
|
|
||||||
:param model_file: (str)Path of model file, e.g ./adaface.onnx
|
|
||||||
:param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
|
||||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
|
||||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
|
||||||
"""
|
|
||||||
# 调用基函数进行backend_option的初始化
|
|
||||||
# 初始化后的option保存在self._runtime_option
|
|
||||||
super(AdaFace, self).__init__(runtime_option)
|
|
||||||
|
|
||||||
self._model = C.vision.faceid.AdaFace(
|
|
||||||
model_file, params_file, self._runtime_option, model_format)
|
|
||||||
# 通过self.initialized判断整个模型的初始化是否成功
|
|
||||||
assert self.initialized, "AdaFace initialize failed."
|
|
||||||
|
|
||||||
def predict(self, input_image):
|
|
||||||
""" Predict the face recognition result for an input image
|
|
||||||
|
|
||||||
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
|
||||||
:return: FaceRecognitionResult
|
|
||||||
"""
|
|
||||||
return self._model.predict(input_image)
|
|
||||||
|
|
||||||
# 一些跟模型有关的属性封装
|
|
||||||
# 多数是预处理相关,可通过修改如model.size = [112, 112]改变预处理时resize的大小(前提是模型支持)
|
|
||||||
@property
|
|
||||||
def size(self):
|
|
||||||
"""
|
|
||||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default (112, 112)
|
|
||||||
"""
|
|
||||||
return self._model.size
|
|
||||||
|
|
||||||
@property
|
|
||||||
def alpha(self):
|
|
||||||
"""
|
|
||||||
Argument for image preprocessing step, alpha value for normalization, default alpha = [1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f]
|
|
||||||
"""
|
|
||||||
return self._model.alpha
|
|
||||||
|
|
||||||
@property
|
|
||||||
def beta(self):
|
|
||||||
"""
|
|
||||||
Argument for image preprocessing step, beta values for normalization, default beta = {-1.f, -1.f, -1.f}
|
|
||||||
|
|
||||||
"""
|
|
||||||
return self._model.beta
|
|
||||||
|
|
||||||
@property
|
|
||||||
def swap_rb(self):
|
|
||||||
"""
|
|
||||||
Argument for image preprocessing step, whether to swap the B and R channel, such as BGR->RGB, default True.
|
|
||||||
"""
|
|
||||||
return self._model.swap_rb
|
|
||||||
|
|
||||||
@property
|
|
||||||
def l2_normalize(self):
|
|
||||||
"""
|
|
||||||
Argument for image preprocessing step, whether to apply l2 normalize to embedding values, default False;
|
|
||||||
"""
|
|
||||||
return self._model.l2_normalize
|
|
||||||
|
|
||||||
@size.setter
|
|
||||||
def size(self, wh):
|
|
||||||
assert isinstance(wh, (list, tuple)), \
|
|
||||||
"The value to set `size` must be type of tuple or list."
|
|
||||||
assert len(wh) == 2, \
|
|
||||||
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
|
|
||||||
len(wh))
|
|
||||||
self._model.size = wh
|
|
||||||
|
|
||||||
@alpha.setter
|
|
||||||
def alpha(self, value):
|
|
||||||
assert isinstance(value, (list, tuple)), \
|
|
||||||
"The value to set `alpha` must be type of tuple or list."
|
|
||||||
assert len(value) == 3, \
|
|
||||||
"The value to set `alpha` must contatins 3 elements for each channels, but now it contains {} elements.".format(
|
|
||||||
len(value))
|
|
||||||
self._model.alpha = value
|
|
||||||
|
|
||||||
@beta.setter
|
|
||||||
def beta(self, value):
|
|
||||||
assert isinstance(value, (list, tuple)), \
|
|
||||||
"The value to set `beta` must be type of tuple or list."
|
|
||||||
assert len(value) == 3, \
|
|
||||||
"The value to set `beta` must contatins 3 elements for each channels, but now it contains {} elements.".format(
|
|
||||||
len(value))
|
|
||||||
self._model.beta = value
|
|
||||||
|
|
||||||
@swap_rb.setter
|
|
||||||
def swap_rb(self, value):
|
|
||||||
assert isinstance(
|
|
||||||
value, bool), "The value to set `swap_rb` must be type of bool."
|
|
||||||
self._model.swap_rb = value
|
|
||||||
|
|
||||||
@l2_normalize.setter
|
|
||||||
def l2_normalize(self, value):
|
|
||||||
assert isinstance(
|
|
||||||
value,
|
|
||||||
bool), "The value to set `l2_normalize` must be type of bool."
|
|
||||||
self._model.l2_normalize = value
|
|
109
python/fastdeploy/vision/faceid/contrib/adaface/__init__.py
Normal file
109
python/fastdeploy/vision/faceid/contrib/adaface/__init__.py
Normal file
@@ -0,0 +1,109 @@
|
|||||||
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from __future__ import absolute_import
|
||||||
|
from ..... import FastDeployModel, ModelFormat
|
||||||
|
from ..... import c_lib_wrap as C
|
||||||
|
|
||||||
|
|
||||||
|
class AdaFacePreprocessor:
|
||||||
|
def __init__(self):
|
||||||
|
"""Create a preprocessor for AdaFace Model
|
||||||
|
"""
|
||||||
|
self._preprocessor = C.vision.faceid.AdaFacePreprocessor()
|
||||||
|
|
||||||
|
def run(self, input_ims):
|
||||||
|
"""Preprocess input images for AdaFace Model
|
||||||
|
|
||||||
|
:param: input_ims: (list of numpy.ndarray)The input image
|
||||||
|
:return: list of FDTensor, include image, scale_factor, im_shape
|
||||||
|
"""
|
||||||
|
return self._preprocessor.run(input_ims)
|
||||||
|
|
||||||
|
|
||||||
|
class AdaFacePostprocessor:
|
||||||
|
def __init__(self):
|
||||||
|
"""Create a postprocessor for AdaFace Model
|
||||||
|
|
||||||
|
"""
|
||||||
|
self._postprocessor = C.vision.faceid.AdaFacePostprocessor()
|
||||||
|
|
||||||
|
def run(self, runtime_results):
|
||||||
|
"""Postprocess the runtime results for PaddleClas Model
|
||||||
|
|
||||||
|
:param: runtime_results: (list of FDTensor)The output FDTensor results from runtime
|
||||||
|
:return: list of FaceRecognitionResult(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
|
||||||
|
"""
|
||||||
|
return self._postprocessor.run(runtime_results)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def l2_normalize(self):
|
||||||
|
"""
|
||||||
|
confidence threshold for postprocessing, default is 0.5
|
||||||
|
"""
|
||||||
|
return self._postprocessor.l2_normalize
|
||||||
|
|
||||||
|
|
||||||
|
class AdaFace(FastDeployModel):
|
||||||
|
def __init__(self,
|
||||||
|
model_file,
|
||||||
|
params_file="",
|
||||||
|
runtime_option=None,
|
||||||
|
model_format=ModelFormat.ONNX):
|
||||||
|
"""Load a AdaFace model exported by PaddleClas.
|
||||||
|
|
||||||
|
:param model_file: (str)Path of model file, e.g adaface/model.pdmodel
|
||||||
|
:param params_file: (str)Path of parameters file, e.g adaface/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||||
|
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||||
|
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||||
|
"""
|
||||||
|
super(AdaFace, self).__init__(runtime_option)
|
||||||
|
self._model = C.vision.faceid.AdaFace(
|
||||||
|
model_file, params_file, self._runtime_option, model_format)
|
||||||
|
assert self.initialized, "AdaFace model initialize failed."
|
||||||
|
|
||||||
|
def predict(self, im):
|
||||||
|
"""Detect an input image
|
||||||
|
|
||||||
|
:param im: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
||||||
|
:return: DetectionResult
|
||||||
|
"""
|
||||||
|
|
||||||
|
assert im is not None, "The input image data is None."
|
||||||
|
return self._model.predict(im)
|
||||||
|
|
||||||
|
def batch_predict(self, images):
|
||||||
|
"""Detect a batch of input image list
|
||||||
|
|
||||||
|
:param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
|
||||||
|
:return list of DetectionResult
|
||||||
|
"""
|
||||||
|
|
||||||
|
return self._model.batch_predict(images)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def preprocessor(self):
|
||||||
|
"""Get AdaFacePreprocessor object of the loaded model
|
||||||
|
|
||||||
|
:return AdaFacePreprocessor
|
||||||
|
"""
|
||||||
|
return self._model.preprocessor
|
||||||
|
|
||||||
|
@property
|
||||||
|
def postprocessor(self):
|
||||||
|
"""Get AdaFacePostprocessor object of the loaded model
|
||||||
|
|
||||||
|
:return AdaFacePostprocessor
|
||||||
|
"""
|
||||||
|
return self._model.postprocessor
|
@@ -1,127 +0,0 @@
|
|||||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
from __future__ import absolute_import
|
|
||||||
import logging
|
|
||||||
from .... import FastDeployModel, ModelFormat
|
|
||||||
from .... import c_lib_wrap as C
|
|
||||||
from ..contrib.insightface_rec import InsightFaceRecognitionModel
|
|
||||||
|
|
||||||
|
|
||||||
class ArcFace(FastDeployModel):
|
|
||||||
def __init__(self,
|
|
||||||
model_file,
|
|
||||||
params_file="",
|
|
||||||
runtime_option=None,
|
|
||||||
model_format=ModelFormat.ONNX):
|
|
||||||
"""Load a ArcFace model exported by InsigtFace.
|
|
||||||
|
|
||||||
:param model_file: (str)Path of model file, e.g ./arcface.onnx
|
|
||||||
:param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
|
||||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
|
||||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
|
||||||
"""
|
|
||||||
# 调用基函数进行backend_option的初始化
|
|
||||||
# 初始化后的option保存在self._runtime_option
|
|
||||||
super(ArcFace, self).__init__(runtime_option)
|
|
||||||
|
|
||||||
self._model = C.vision.faceid.ArcFace(
|
|
||||||
model_file, params_file, self._runtime_option, model_format)
|
|
||||||
# 通过self.initialized判断整个模型的初始化是否成功
|
|
||||||
assert self.initialized, "ArcFace initialize failed."
|
|
||||||
|
|
||||||
def predict(self, input_image):
|
|
||||||
""" Predict the face recognition result for an input image
|
|
||||||
|
|
||||||
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
|
||||||
:return: FaceRecognitionResult
|
|
||||||
"""
|
|
||||||
return self._model.predict(input_image)
|
|
||||||
|
|
||||||
# 一些跟模型有关的属性封装
|
|
||||||
# 多数是预处理相关,可通过修改如model.size = [112, 112]改变预处理时resize的大小(前提是模型支持)
|
|
||||||
@property
|
|
||||||
def size(self):
|
|
||||||
"""
|
|
||||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default (112, 112)
|
|
||||||
"""
|
|
||||||
return self._model.size
|
|
||||||
|
|
||||||
@property
|
|
||||||
def alpha(self):
|
|
||||||
"""
|
|
||||||
Argument for image preprocessing step, alpha value for normalization, default alpha = [1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f]
|
|
||||||
"""
|
|
||||||
return self._model.alpha
|
|
||||||
|
|
||||||
@property
|
|
||||||
def beta(self):
|
|
||||||
"""
|
|
||||||
Argument for image preprocessing step, beta values for normalization, default beta = {-1.f, -1.f, -1.f}
|
|
||||||
"""
|
|
||||||
return self._model.beta
|
|
||||||
|
|
||||||
@property
|
|
||||||
def swap_rb(self):
|
|
||||||
"""
|
|
||||||
Argument for image preprocessing step, whether to swap the B and R channel, such as BGR->RGB, default True.
|
|
||||||
"""
|
|
||||||
return self._model.swap_rb
|
|
||||||
|
|
||||||
@property
|
|
||||||
def l2_normalize(self):
|
|
||||||
"""
|
|
||||||
Argument for image preprocessing step, whether to apply l2 normalize to embedding values, default False;
|
|
||||||
"""
|
|
||||||
return self._model.l2_normalize
|
|
||||||
|
|
||||||
@size.setter
|
|
||||||
def size(self, wh):
|
|
||||||
assert isinstance(wh, (list, tuple)),\
|
|
||||||
"The value to set `size` must be type of tuple or list."
|
|
||||||
assert len(wh) == 2,\
|
|
||||||
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
|
|
||||||
len(wh))
|
|
||||||
self._model.size = wh
|
|
||||||
|
|
||||||
@alpha.setter
|
|
||||||
def alpha(self, value):
|
|
||||||
assert isinstance(value, (list, tuple)),\
|
|
||||||
"The value to set `alpha` must be type of tuple or list."
|
|
||||||
assert len(value) == 3,\
|
|
||||||
"The value to set `alpha` must contatins 3 elements for each channels, but now it contains {} elements.".format(
|
|
||||||
len(value))
|
|
||||||
self._model.alpha = value
|
|
||||||
|
|
||||||
@beta.setter
|
|
||||||
def beta(self, value):
|
|
||||||
assert isinstance(value, (list, tuple)),\
|
|
||||||
"The value to set `beta` must be type of tuple or list."
|
|
||||||
assert len(value) == 3,\
|
|
||||||
"The value to set `beta` must contatins 3 elements for each channels, but now it contains {} elements.".format(
|
|
||||||
len(value))
|
|
||||||
self._model.beta = value
|
|
||||||
|
|
||||||
@swap_rb.setter
|
|
||||||
def swap_rb(self, value):
|
|
||||||
assert isinstance(
|
|
||||||
value, bool), "The value to set `swap_rb` must be type of bool."
|
|
||||||
self._model.swap_rb = value
|
|
||||||
|
|
||||||
@l2_normalize.setter
|
|
||||||
def l2_normalize(self, value):
|
|
||||||
assert isinstance(
|
|
||||||
value,
|
|
||||||
bool), "The value to set `l2_normalize` must be type of bool."
|
|
||||||
self._model.l2_normalize = value
|
|
@@ -1,126 +0,0 @@
|
|||||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
from __future__ import absolute_import
|
|
||||||
import logging
|
|
||||||
from .... import FastDeployModel, ModelFormat
|
|
||||||
from .... import c_lib_wrap as C
|
|
||||||
|
|
||||||
|
|
||||||
class CosFace(FastDeployModel):
|
|
||||||
def __init__(self,
|
|
||||||
model_file,
|
|
||||||
params_file="",
|
|
||||||
runtime_option=None,
|
|
||||||
model_format=ModelFormat.ONNX):
|
|
||||||
"""Load a CosFace model exported by InsigtFace.
|
|
||||||
|
|
||||||
:param model_file: (str)Path of model file, e.g ./cosface.onnx
|
|
||||||
:param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
|
||||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
|
||||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
|
||||||
"""
|
|
||||||
# 调用基函数进行backend_option的初始化
|
|
||||||
# 初始化后的option保存在self._runtime_option
|
|
||||||
super(CosFace, self).__init__(runtime_option)
|
|
||||||
|
|
||||||
self._model = C.vision.faceid.CosFace(
|
|
||||||
model_file, params_file, self._runtime_option, model_format)
|
|
||||||
# 通过self.initialized判断整个模型的初始化是否成功
|
|
||||||
assert self.initialized, "CosFace initialize failed."
|
|
||||||
|
|
||||||
def predict(self, input_image):
|
|
||||||
""" Predict the face recognition result for an input image
|
|
||||||
|
|
||||||
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
|
||||||
:return: FaceRecognitionResult
|
|
||||||
"""
|
|
||||||
return self._model.predict(input_image)
|
|
||||||
|
|
||||||
# 一些跟模型有关的属性封装
|
|
||||||
# 多数是预处理相关,可通过修改如model.size = [112, 112]改变预处理时resize的大小(前提是模型支持)
|
|
||||||
@property
|
|
||||||
def size(self):
|
|
||||||
"""
|
|
||||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default (112, 112)
|
|
||||||
"""
|
|
||||||
return self._model.size
|
|
||||||
|
|
||||||
@property
|
|
||||||
def alpha(self):
|
|
||||||
"""
|
|
||||||
Argument for image preprocessing step, alpha value for normalization, default alpha = [1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f]
|
|
||||||
"""
|
|
||||||
return self._model.alpha
|
|
||||||
|
|
||||||
@property
|
|
||||||
def beta(self):
|
|
||||||
"""
|
|
||||||
Argument for image preprocessing step, beta values for normalization, default beta = {-1.f, -1.f, -1.f}
|
|
||||||
"""
|
|
||||||
return self._model.beta
|
|
||||||
|
|
||||||
@property
|
|
||||||
def swap_rb(self):
|
|
||||||
"""
|
|
||||||
Argument for image preprocessing step, whether to swap the B and R channel, such as BGR->RGB, default True.
|
|
||||||
"""
|
|
||||||
return self._model.swap_rb
|
|
||||||
|
|
||||||
@property
|
|
||||||
def l2_normalize(self):
|
|
||||||
"""
|
|
||||||
Argument for image preprocessing step, whether to apply l2 normalize to embedding values, default False;
|
|
||||||
"""
|
|
||||||
return self._model.l2_normalize
|
|
||||||
|
|
||||||
@size.setter
|
|
||||||
def size(self, wh):
|
|
||||||
assert isinstance(wh, (list, tuple)),\
|
|
||||||
"The value to set `size` must be type of tuple or list."
|
|
||||||
assert len(wh) == 2,\
|
|
||||||
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
|
|
||||||
len(wh))
|
|
||||||
self._model.size = wh
|
|
||||||
|
|
||||||
@alpha.setter
|
|
||||||
def alpha(self, value):
|
|
||||||
assert isinstance(value, (list, tuple)),\
|
|
||||||
"The value to set `alpha` must be type of tuple or list."
|
|
||||||
assert len(value) == 3,\
|
|
||||||
"The value to set `alpha` must contatins 3 elements for each channels, but now it contains {} elements.".format(
|
|
||||||
len(value))
|
|
||||||
self._model.alpha = value
|
|
||||||
|
|
||||||
@beta.setter
|
|
||||||
def beta(self, value):
|
|
||||||
assert isinstance(value, (list, tuple)),\
|
|
||||||
"The value to set `beta` must be type of tuple or list."
|
|
||||||
assert len(value) == 3,\
|
|
||||||
"The value to set `beta` must contatins 3 elements for each channels, but now it contains {} elements.".format(
|
|
||||||
len(value))
|
|
||||||
self._model.beta = value
|
|
||||||
|
|
||||||
@swap_rb.setter
|
|
||||||
def swap_rb(self, value):
|
|
||||||
assert isinstance(
|
|
||||||
value, bool), "The value to set `swap_rb` must be type of bool."
|
|
||||||
self._model.swap_rb = value
|
|
||||||
|
|
||||||
@l2_normalize.setter
|
|
||||||
def l2_normalize(self, value):
|
|
||||||
assert isinstance(
|
|
||||||
value,
|
|
||||||
bool), "The value to set `l2_normalize` must be type of bool."
|
|
||||||
self._model.l2_normalize = value
|
|
222
python/fastdeploy/vision/faceid/contrib/insightface/__init__.py
Normal file
222
python/fastdeploy/vision/faceid/contrib/insightface/__init__.py
Normal file
@@ -0,0 +1,222 @@
|
|||||||
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from __future__ import absolute_import
|
||||||
|
from ..... import FastDeployModel, ModelFormat
|
||||||
|
from ..... import c_lib_wrap as C
|
||||||
|
|
||||||
|
|
||||||
|
class InsightFaceRecognitionPreprocessor:
|
||||||
|
def __init__(self):
|
||||||
|
"""Create a preprocessor for InsightFaceRecognition Model
|
||||||
|
"""
|
||||||
|
self._preprocessor = C.vision.faceid.InsightFaceRecognitionPreprocessor(
|
||||||
|
)
|
||||||
|
|
||||||
|
def run(self, input_ims):
|
||||||
|
"""Preprocess input images for InsightFaceRecognition Model
|
||||||
|
|
||||||
|
:param: input_ims: (list of numpy.ndarray)The input image
|
||||||
|
:return: list of FDTensor, include image, scale_factor, im_shape
|
||||||
|
"""
|
||||||
|
return self._preprocessor.run(input_ims)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def size(self):
|
||||||
|
"""
|
||||||
|
Argument for image preprocessing step, tuple of (width, height),
|
||||||
|
decide the target size after resize, default (112, 112)
|
||||||
|
"""
|
||||||
|
return self._preprocessor.size
|
||||||
|
|
||||||
|
@property
|
||||||
|
def alpha(self):
|
||||||
|
"""
|
||||||
|
Argument for image preprocessing step, alpha values for normalization,
|
||||||
|
default alpha = {1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f};
|
||||||
|
"""
|
||||||
|
return self._preprocessor.alpha
|
||||||
|
|
||||||
|
@property
|
||||||
|
def beta(self):
|
||||||
|
"""
|
||||||
|
Argument for image preprocessing step, beta values for normalization,
|
||||||
|
default beta = {-1.f, -1.f, -1.f}
|
||||||
|
"""
|
||||||
|
return self._preprocessor.beta
|
||||||
|
|
||||||
|
@property
|
||||||
|
def permute(self):
|
||||||
|
"""
|
||||||
|
Argument for image preprocessing step, whether to swap the B and R channel,
|
||||||
|
such as BGR->RGB, default true.
|
||||||
|
"""
|
||||||
|
return self._preprocessor.permute
|
||||||
|
|
||||||
|
|
||||||
|
class InsightFaceRecognitionPostprocessor:
|
||||||
|
def __init__(self):
|
||||||
|
"""Create a postprocessor for InsightFaceRecognition Model
|
||||||
|
"""
|
||||||
|
self._postprocessor = C.vision.faceid.InsightFaceRecognitionPostprocessor(
|
||||||
|
)
|
||||||
|
|
||||||
|
def run(self, runtime_results):
|
||||||
|
"""Postprocess the runtime results for PaddleClas Model
|
||||||
|
|
||||||
|
:param: runtime_results: (list of FDTensor)The output FDTensor results from runtime
|
||||||
|
:return: list of FaceRecognitionResult(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
|
||||||
|
"""
|
||||||
|
return self._postprocessor.run(runtime_results)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def l2_normalize(self):
|
||||||
|
"""
|
||||||
|
confidence threshold for postprocessing, default is 0.5
|
||||||
|
"""
|
||||||
|
return self._postprocessor.l2_normalize
|
||||||
|
|
||||||
|
|
||||||
|
class InsightFaceRecognitionBase(FastDeployModel):
|
||||||
|
def __init__(self,
|
||||||
|
model_file,
|
||||||
|
params_file="",
|
||||||
|
runtime_option=None,
|
||||||
|
model_format=ModelFormat.ONNX):
|
||||||
|
"""Load a InsightFaceRecognitionBase model exported by PaddleClas.
|
||||||
|
|
||||||
|
:param model_file: (str)Path of model file, e.g InsightFaceRecognitionBase/model.pdmodel
|
||||||
|
:param params_file: (str)Path of parameters file, e.g InsightFaceRecognitionBase/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||||
|
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||||
|
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||||
|
"""
|
||||||
|
super(InsightFaceRecognitionBase, self).__init__(runtime_option)
|
||||||
|
self._model = C.vision.faceid.InsightFaceRecognitionBase(
|
||||||
|
model_file, params_file, self._runtime_option, model_format)
|
||||||
|
assert self.initialized, "InsightFaceRecognitionBase model initialize failed."
|
||||||
|
|
||||||
|
def predict(self, im):
|
||||||
|
"""Detect an input image
|
||||||
|
|
||||||
|
:param im: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
||||||
|
:return: DetectionResult
|
||||||
|
"""
|
||||||
|
|
||||||
|
assert im is not None, "The input image data is None."
|
||||||
|
return self._model.predict(im)
|
||||||
|
|
||||||
|
def batch_predict(self, images):
|
||||||
|
"""Detect a batch of input image list
|
||||||
|
|
||||||
|
:param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
|
||||||
|
:return list of DetectionResult
|
||||||
|
"""
|
||||||
|
|
||||||
|
return self._model.batch_predict(images)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def preprocessor(self):
|
||||||
|
"""Get InsightFaceRecognitionPreprocessor object of the loaded model
|
||||||
|
|
||||||
|
:return InsightFaceRecognitionPreprocessor
|
||||||
|
"""
|
||||||
|
return self._model.preprocessor
|
||||||
|
|
||||||
|
@property
|
||||||
|
def postprocessor(self):
|
||||||
|
"""Get InsightFaceRecognitionPostprocessor object of the loaded model
|
||||||
|
|
||||||
|
:return InsightFaceRecognitionPostprocessor
|
||||||
|
"""
|
||||||
|
return self._model.postprocessor
|
||||||
|
|
||||||
|
|
||||||
|
class ArcFace(InsightFaceRecognitionBase):
|
||||||
|
def __init__(self,
|
||||||
|
model_file,
|
||||||
|
params_file="",
|
||||||
|
runtime_option=None,
|
||||||
|
model_format=ModelFormat.ONNX):
|
||||||
|
"""Load a ArcFace model exported by PaddleClas.
|
||||||
|
:param model_file: (str)Path of model file, e.g ArcFace/model.pdmodel
|
||||||
|
:param params_file: (str)Path of parameters file, e.g ArcFace/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||||
|
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||||
|
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||||
|
"""
|
||||||
|
|
||||||
|
super(InsightFaceRecognitionBase, self).__init__(runtime_option)
|
||||||
|
|
||||||
|
self._model = C.vision.faceid.ArcFace(
|
||||||
|
model_file, params_file, self._runtime_option, model_format)
|
||||||
|
assert self.initialized, "ArcFace model initialize failed."
|
||||||
|
|
||||||
|
|
||||||
|
class CosFace(InsightFaceRecognitionBase):
|
||||||
|
def __init__(self,
|
||||||
|
model_file,
|
||||||
|
params_file="",
|
||||||
|
runtime_option=None,
|
||||||
|
model_format=ModelFormat.ONNX):
|
||||||
|
"""Load a CosFace model exported by PaddleClas.
|
||||||
|
:param model_file: (str)Path of model file, e.g CosFace/model.pdmodel
|
||||||
|
:param params_file: (str)Path of parameters file, e.g CosFace/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||||
|
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||||
|
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||||
|
"""
|
||||||
|
|
||||||
|
super(InsightFaceRecognitionBase, self).__init__(runtime_option)
|
||||||
|
|
||||||
|
self._model = C.vision.faceid.CosFace(
|
||||||
|
model_file, params_file, self._runtime_option, model_format)
|
||||||
|
assert self.initialized, "CosFace model initialize failed."
|
||||||
|
|
||||||
|
|
||||||
|
class PartialFC(InsightFaceRecognitionBase):
|
||||||
|
def __init__(self,
|
||||||
|
model_file,
|
||||||
|
params_file="",
|
||||||
|
runtime_option=None,
|
||||||
|
model_format=ModelFormat.ONNX):
|
||||||
|
"""Load a PartialFC model exported by PaddleClas.
|
||||||
|
:param model_file: (str)Path of model file, e.g PartialFC/model.pdmodel
|
||||||
|
:param params_file: (str)Path of parameters file, e.g PartialFC/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||||
|
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||||
|
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||||
|
"""
|
||||||
|
|
||||||
|
super(InsightFaceRecognitionBase, self).__init__(runtime_option)
|
||||||
|
|
||||||
|
self._model = C.vision.faceid.PartialFC(
|
||||||
|
model_file, params_file, self._runtime_option, model_format)
|
||||||
|
assert self.initialized, "PartialFC model initialize failed."
|
||||||
|
|
||||||
|
|
||||||
|
class VPL(InsightFaceRecognitionBase):
|
||||||
|
def __init__(self,
|
||||||
|
model_file,
|
||||||
|
params_file="",
|
||||||
|
runtime_option=None,
|
||||||
|
model_format=ModelFormat.ONNX):
|
||||||
|
"""Load a VPL model exported by PaddleClas.
|
||||||
|
:param model_file: (str)Path of model file, e.g VPL/model.pdmodel
|
||||||
|
:param params_file: (str)Path of parameters file, e.g VPL/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||||
|
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||||
|
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||||
|
"""
|
||||||
|
|
||||||
|
super(InsightFaceRecognitionBase, self).__init__(runtime_option)
|
||||||
|
|
||||||
|
self._model = C.vision.faceid.VPL(model_file, params_file,
|
||||||
|
self._runtime_option, model_format)
|
||||||
|
assert self.initialized, "VPL model initialize failed."
|
@@ -1,126 +0,0 @@
|
|||||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
from __future__ import absolute_import
|
|
||||||
import logging
|
|
||||||
from .... import FastDeployModel, ModelFormat
|
|
||||||
from .... import c_lib_wrap as C
|
|
||||||
|
|
||||||
|
|
||||||
class InsightFaceRecognitionModel(FastDeployModel):
|
|
||||||
def __init__(self,
|
|
||||||
model_file,
|
|
||||||
params_file="",
|
|
||||||
runtime_option=None,
|
|
||||||
model_format=ModelFormat.ONNX):
|
|
||||||
"""Load a InsightFace model exported by InsigtFace.
|
|
||||||
|
|
||||||
:param model_file: (str)Path of model file, e.g ./arcface.onnx
|
|
||||||
:param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
|
||||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
|
||||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
|
||||||
"""
|
|
||||||
# 调用基函数进行backend_option的初始化
|
|
||||||
# 初始化后的option保存在self._runtime_option
|
|
||||||
super(InsightFaceRecognitionModel, self).__init__(runtime_option)
|
|
||||||
|
|
||||||
self._model = C.vision.faceid.InsightFaceRecognitionModel(
|
|
||||||
model_file, params_file, self._runtime_option, model_format)
|
|
||||||
# 通过self.initialized判断整个模型的初始化是否成功
|
|
||||||
assert self.initialized, "InsightFaceRecognitionModel initialize failed."
|
|
||||||
|
|
||||||
def predict(self, input_image):
|
|
||||||
""" Predict the face recognition result for an input image
|
|
||||||
|
|
||||||
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
|
||||||
:return: FaceRecognitionResult
|
|
||||||
"""
|
|
||||||
return self._model.predict(input_image)
|
|
||||||
|
|
||||||
# 一些跟InsightFaceRecognitionModel模型有关的属性封装
|
|
||||||
# 多数是预处理相关,可通过修改如model.size = [112, 112]改变预处理时resize的大小(前提是模型支持)
|
|
||||||
@property
|
|
||||||
def size(self):
|
|
||||||
"""
|
|
||||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default (112, 112)
|
|
||||||
"""
|
|
||||||
return self._model.size
|
|
||||||
|
|
||||||
@property
|
|
||||||
def alpha(self):
|
|
||||||
"""
|
|
||||||
Argument for image preprocessing step, alpha value for normalization, default alpha = [1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f]
|
|
||||||
"""
|
|
||||||
return self._model.alpha
|
|
||||||
|
|
||||||
@property
|
|
||||||
def beta(self):
|
|
||||||
"""
|
|
||||||
Argument for image preprocessing step, beta values for normalization, default beta = {-1.f, -1.f, -1.f}
|
|
||||||
"""
|
|
||||||
return self._model.beta
|
|
||||||
|
|
||||||
@property
|
|
||||||
def swap_rb(self):
|
|
||||||
"""
|
|
||||||
Argument for image preprocessing step, whether to swap the B and R channel, such as BGR->RGB, default True.
|
|
||||||
"""
|
|
||||||
return self._model.swap_rb
|
|
||||||
|
|
||||||
@property
|
|
||||||
def l2_normalize(self):
|
|
||||||
"""
|
|
||||||
Argument for image preprocessing step, whether to apply l2 normalize to embedding values, default False;
|
|
||||||
"""
|
|
||||||
return self._model.l2_normalize
|
|
||||||
|
|
||||||
@size.setter
|
|
||||||
def size(self, wh):
|
|
||||||
assert isinstance(wh, (list, tuple)),\
|
|
||||||
"The value to set `size` must be type of tuple or list."
|
|
||||||
assert len(wh) == 2,\
|
|
||||||
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
|
|
||||||
len(wh))
|
|
||||||
self._model.size = wh
|
|
||||||
|
|
||||||
@alpha.setter
|
|
||||||
def alpha(self, value):
|
|
||||||
assert isinstance(value, (list, tuple)),\
|
|
||||||
"The value to set `alpha` must be type of tuple or list."
|
|
||||||
assert len(value) == 3,\
|
|
||||||
"The value to set `alpha` must contatins 3 elements for each channels, but now it contains {} elements.".format(
|
|
||||||
len(value))
|
|
||||||
self._model.alpha = value
|
|
||||||
|
|
||||||
@beta.setter
|
|
||||||
def beta(self, value):
|
|
||||||
assert isinstance(value, (list, tuple)),\
|
|
||||||
"The value to set `beta` must be type of tuple or list."
|
|
||||||
assert len(value) == 3,\
|
|
||||||
"The value to set `beta` must contatins 3 elements for each channels, but now it contains {} elements.".format(
|
|
||||||
len(value))
|
|
||||||
self._model.beta = value
|
|
||||||
|
|
||||||
@swap_rb.setter
|
|
||||||
def swap_rb(self, value):
|
|
||||||
assert isinstance(
|
|
||||||
value, bool), "The value to set `swap_rb` must be type of bool."
|
|
||||||
self._model.swap_rb = value
|
|
||||||
|
|
||||||
@l2_normalize.setter
|
|
||||||
def l2_normalize(self, value):
|
|
||||||
assert isinstance(
|
|
||||||
value,
|
|
||||||
bool), "The value to set `l2_normalize` must be type of bool."
|
|
||||||
self._model.l2_normalize = value
|
|
@@ -1,126 +0,0 @@
|
|||||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
from __future__ import absolute_import
|
|
||||||
import logging
|
|
||||||
from .... import FastDeployModel, ModelFormat
|
|
||||||
from .... import c_lib_wrap as C
|
|
||||||
|
|
||||||
|
|
||||||
class PartialFC(FastDeployModel):
|
|
||||||
def __init__(self,
|
|
||||||
model_file,
|
|
||||||
params_file="",
|
|
||||||
runtime_option=None,
|
|
||||||
model_format=ModelFormat.ONNX):
|
|
||||||
"""Load a PartialFC model exported by InsigtFace.
|
|
||||||
|
|
||||||
:param model_file: (str)Path of model file, e.g ./partial_fc.onnx
|
|
||||||
:param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
|
||||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
|
||||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
|
||||||
"""
|
|
||||||
# 调用基函数进行backend_option的初始化
|
|
||||||
# 初始化后的option保存在self._runtime_option
|
|
||||||
super(PartialFC, self).__init__(runtime_option)
|
|
||||||
|
|
||||||
self._model = C.vision.faceid.PartialFC(
|
|
||||||
model_file, params_file, self._runtime_option, model_format)
|
|
||||||
# 通过self.initialized判断整个模型的初始化是否成功
|
|
||||||
assert self.initialized, "PartialFC initialize failed."
|
|
||||||
|
|
||||||
def predict(self, input_image):
|
|
||||||
""" Predict the face recognition result for an input image
|
|
||||||
|
|
||||||
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
|
||||||
:return: FaceRecognitionResult
|
|
||||||
"""
|
|
||||||
return self._model.predict(input_image)
|
|
||||||
|
|
||||||
# 一些跟模型有关的属性封装
|
|
||||||
# 多数是预处理相关,可通过修改如model.size = [112, 112]改变预处理时resize的大小(前提是模型支持)
|
|
||||||
@property
|
|
||||||
def size(self):
|
|
||||||
"""
|
|
||||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default (112, 112)
|
|
||||||
"""
|
|
||||||
return self._model.size
|
|
||||||
|
|
||||||
@property
|
|
||||||
def alpha(self):
|
|
||||||
"""
|
|
||||||
Argument for image preprocessing step, alpha value for normalization, default alpha = [1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f]
|
|
||||||
"""
|
|
||||||
return self._model.alpha
|
|
||||||
|
|
||||||
@property
|
|
||||||
def beta(self):
|
|
||||||
"""
|
|
||||||
Argument for image preprocessing step, beta values for normalization, default beta = {-1.f, -1.f, -1.f}
|
|
||||||
"""
|
|
||||||
return self._model.beta
|
|
||||||
|
|
||||||
@property
|
|
||||||
def swap_rb(self):
|
|
||||||
"""
|
|
||||||
Argument for image preprocessing step, whether to swap the B and R channel, such as BGR->RGB, default True.
|
|
||||||
"""
|
|
||||||
return self._model.swap_rb
|
|
||||||
|
|
||||||
@property
|
|
||||||
def l2_normalize(self):
|
|
||||||
"""
|
|
||||||
Argument for image preprocessing step, whether to apply l2 normalize to embedding values, default False;
|
|
||||||
"""
|
|
||||||
return self._model.l2_normalize
|
|
||||||
|
|
||||||
@size.setter
|
|
||||||
def size(self, wh):
|
|
||||||
assert isinstance(wh, (list, tuple)),\
|
|
||||||
"The value to set `size` must be type of tuple or list."
|
|
||||||
assert len(wh) == 2,\
|
|
||||||
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
|
|
||||||
len(wh))
|
|
||||||
self._model.size = wh
|
|
||||||
|
|
||||||
@alpha.setter
|
|
||||||
def alpha(self, value):
|
|
||||||
assert isinstance(value, (list, tuple)),\
|
|
||||||
"The value to set `alpha` must be type of tuple or list."
|
|
||||||
assert len(value) == 3,\
|
|
||||||
"The value to set `alpha` must contatins 3 elements for each channels, but now it contains {} elements.".format(
|
|
||||||
len(value))
|
|
||||||
self._model.alpha = value
|
|
||||||
|
|
||||||
@beta.setter
|
|
||||||
def beta(self, value):
|
|
||||||
assert isinstance(value, (list, tuple)),\
|
|
||||||
"The value to set `beta` must be type of tuple or list."
|
|
||||||
assert len(value) == 3,\
|
|
||||||
"The value to set `beta` must contatins 3 elements for each channels, but now it contains {} elements.".format(
|
|
||||||
len(value))
|
|
||||||
self._model.beta = value
|
|
||||||
|
|
||||||
@swap_rb.setter
|
|
||||||
def swap_rb(self, value):
|
|
||||||
assert isinstance(
|
|
||||||
value, bool), "The value to set `swap_rb` must be type of bool."
|
|
||||||
self._model.swap_rb = value
|
|
||||||
|
|
||||||
@l2_normalize.setter
|
|
||||||
def l2_normalize(self, value):
|
|
||||||
assert isinstance(
|
|
||||||
value,
|
|
||||||
bool), "The value to set `l2_normalize` must be type of bool."
|
|
||||||
self._model.l2_normalize = value
|
|
@@ -1,126 +0,0 @@
|
|||||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
from __future__ import absolute_import
|
|
||||||
import logging
|
|
||||||
from .... import FastDeployModel, ModelFormat
|
|
||||||
from .... import c_lib_wrap as C
|
|
||||||
|
|
||||||
|
|
||||||
class VPL(FastDeployModel):
|
|
||||||
def __init__(self,
|
|
||||||
model_file,
|
|
||||||
params_file="",
|
|
||||||
runtime_option=None,
|
|
||||||
model_format=ModelFormat.ONNX):
|
|
||||||
"""Load a VPL model exported by InsigtFace.
|
|
||||||
|
|
||||||
:param model_file: (str)Path of model file, e.g ./vpl.onnx
|
|
||||||
:param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
|
||||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
|
||||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
|
||||||
"""
|
|
||||||
# 调用基函数进行backend_option的初始化
|
|
||||||
# 初始化后的option保存在self._runtime_option
|
|
||||||
super(VPL, self).__init__(runtime_option)
|
|
||||||
|
|
||||||
self._model = C.vision.faceid.VPL(model_file, params_file,
|
|
||||||
self._runtime_option, model_format)
|
|
||||||
# 通过self.initialized判断整个模型的初始化是否成功
|
|
||||||
assert self.initialized, "VPL initialize failed."
|
|
||||||
|
|
||||||
def predict(self, input_image):
|
|
||||||
""" Predict the face recognition result for an input image
|
|
||||||
|
|
||||||
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
|
||||||
:return: FaceRecognitionResult
|
|
||||||
"""
|
|
||||||
return self._model.predict(input_image)
|
|
||||||
|
|
||||||
# 一些跟模型有关的属性封装
|
|
||||||
# 多数是预处理相关,可通过修改如model.size = [112, 112]改变预处理时resize的大小(前提是模型支持)
|
|
||||||
@property
|
|
||||||
def size(self):
|
|
||||||
"""
|
|
||||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default (112, 112)
|
|
||||||
"""
|
|
||||||
return self._model.size
|
|
||||||
|
|
||||||
@property
|
|
||||||
def alpha(self):
|
|
||||||
"""
|
|
||||||
Argument for image preprocessing step, alpha value for normalization, default alpha = [1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f]
|
|
||||||
"""
|
|
||||||
return self._model.alpha
|
|
||||||
|
|
||||||
@property
|
|
||||||
def beta(self):
|
|
||||||
"""
|
|
||||||
Argument for image preprocessing step, beta values for normalization, default beta = {-1.f, -1.f, -1.f}
|
|
||||||
"""
|
|
||||||
return self._model.beta
|
|
||||||
|
|
||||||
@property
|
|
||||||
def swap_rb(self):
|
|
||||||
"""
|
|
||||||
Argument for image preprocessing step, whether to swap the B and R channel, such as BGR->RGB, default True.
|
|
||||||
"""
|
|
||||||
return self._model.swap_rb
|
|
||||||
|
|
||||||
@property
|
|
||||||
def l2_normalize(self):
|
|
||||||
"""
|
|
||||||
Argument for image preprocessing step, whether to apply l2 normalize to embedding values, default False;
|
|
||||||
"""
|
|
||||||
return self._model.l2_normalize
|
|
||||||
|
|
||||||
@size.setter
|
|
||||||
def size(self, wh):
|
|
||||||
assert isinstance(wh, (list, tuple)),\
|
|
||||||
"The value to set `size` must be type of tuple or list."
|
|
||||||
assert len(wh) == 2,\
|
|
||||||
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
|
|
||||||
len(wh))
|
|
||||||
self._model.size = wh
|
|
||||||
|
|
||||||
@alpha.setter
|
|
||||||
def alpha(self, value):
|
|
||||||
assert isinstance(value, (list, tuple)),\
|
|
||||||
"The value to set `alpha` must be type of tuple or list."
|
|
||||||
assert len(value) == 3,\
|
|
||||||
"The value to set `alpha` must contatins 3 elements for each channels, but now it contains {} elements.".format(
|
|
||||||
len(value))
|
|
||||||
self._model.alpha = value
|
|
||||||
|
|
||||||
@beta.setter
|
|
||||||
def beta(self, value):
|
|
||||||
assert isinstance(value, (list, tuple)),\
|
|
||||||
"The value to set `beta` must be type of tuple or list."
|
|
||||||
assert len(value) == 3,\
|
|
||||||
"The value to set `beta` must contatins 3 elements for each channels, but now it contains {} elements.".format(
|
|
||||||
len(value))
|
|
||||||
self._model.beta = value
|
|
||||||
|
|
||||||
@swap_rb.setter
|
|
||||||
def swap_rb(self, value):
|
|
||||||
assert isinstance(
|
|
||||||
value, bool), "The value to set `swap_rb` must be type of bool."
|
|
||||||
self._model.swap_rb = value
|
|
||||||
|
|
||||||
@l2_normalize.setter
|
|
||||||
def l2_normalize(self, value):
|
|
||||||
assert isinstance(
|
|
||||||
value,
|
|
||||||
bool), "The value to set `l2_normalize` must be type of bool."
|
|
||||||
self._model.l2_normalize = value
|
|
Reference in New Issue
Block a user