mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-12 20:11:20 +08:00

* 重构insightface代码 * 重写insightface example代码 * 重写insightface example代码 * 删除多余代码 * 修改预处理代码 * 修改文档 * 修改文档 * 恢复误删除的文件 * 修改cpp example * 修改cpp example * 测试python代码 * 测试python代码 * 测试python代码 * 测试python代码 * 测试python代码 * 测试python代码 * 测试python代码 * 跑通python代码 * 修复重复初始化的bug * 更新adaface的python代码 * 修复c++重复初始化的问题 * 修复c++重复初始化的问题 * 修复Python重复初始化的问题 * 新增preprocess的几个参数的获取方式 * 修复注释的错误 * 按照要求修改 * 修改文档中的图片为图片压缩包 * 修改编译完成后程序的提示 * 更新错误include * 删除无用文件 * 更新文档
68 lines
2.5 KiB
C++
Executable File
68 lines
2.5 KiB
C++
Executable File
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision/faceid/contrib/adaface/postprocessor.h"
|
|
#include "fastdeploy/vision/utils/utils.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
namespace faceid {
|
|
|
|
AdaFacePostprocessor::AdaFacePostprocessor() {
|
|
l2_normalize_ = false;
|
|
}
|
|
|
|
bool AdaFacePostprocessor::Run(std::vector<FDTensor>& infer_result,
|
|
std::vector<FaceRecognitionResult>* results) {
|
|
if (infer_result[0].dtype != FDDataType::FP32) {
|
|
FDERROR << "Only support post process with float32 data." << std::endl;
|
|
return false;
|
|
}
|
|
if(infer_result.size() != 1){
|
|
FDERROR << "The default number of output tensor "
|
|
"must be 1 according to insightface." << std::endl;
|
|
}
|
|
int batch = infer_result[0].shape[0];
|
|
results->resize(batch);
|
|
for (size_t bs = 0; bs < batch; ++bs) {
|
|
FDTensor& embedding_tensor = infer_result.at(bs);
|
|
FDASSERT((embedding_tensor.shape[0] == 1), "Only support batch = 1 now.");
|
|
if (embedding_tensor.dtype != FDDataType::FP32) {
|
|
FDERROR << "Only support post process with float32 data." << std::endl;
|
|
return false;
|
|
}
|
|
(*results)[bs].Clear();
|
|
(*results)[bs].Resize(embedding_tensor.Numel());
|
|
|
|
// Copy the raw embedding vector directly without L2 normalize
|
|
// post process. Let the user decide whether to normalize or not.
|
|
// Will call utils::L2Normlize() method to perform L2
|
|
// normalize if l2_normalize was set as 'true'.
|
|
std::memcpy((*results)[bs].embedding.data(),
|
|
embedding_tensor.Data(),
|
|
embedding_tensor.Nbytes());
|
|
if (l2_normalize_) {
|
|
auto norm_embedding = utils::L2Normalize((*results)[bs].embedding);
|
|
std::memcpy((*results)[bs].embedding.data(),
|
|
norm_embedding.data(),
|
|
embedding_tensor.Nbytes());
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // namespace detection
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|