mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* 重构insightface代码 * 重写insightface example代码 * 重写insightface example代码 * 删除多余代码 * 修改预处理代码 * 修改文档 * 修改文档 * 恢复误删除的文件 * 修改cpp example * 修改cpp example * 测试python代码 * 测试python代码 * 测试python代码 * 测试python代码 * 测试python代码 * 测试python代码 * 测试python代码 * 跑通python代码 * 修复重复初始化的bug * 更新adaface的python代码 * 修复c++重复初始化的问题 * 修复c++重复初始化的问题 * 修复Python重复初始化的问题 * 新增preprocess的几个参数的获取方式 * 修复注释的错误 * 按照要求修改 * 修改文档中的图片为图片压缩包 * 修改编译完成后程序的提示 * 更新错误include * 删除无用文件 * 更新文档
91 lines
2.3 KiB
Python
91 lines
2.3 KiB
Python
import fastdeploy as fd
|
||
import cv2
|
||
import numpy as np
|
||
|
||
|
||
# 余弦相似度
|
||
def cosine_similarity(a, b):
|
||
a = np.array(a)
|
||
b = np.array(b)
|
||
mul_a = np.linalg.norm(a, ord=2)
|
||
mul_b = np.linalg.norm(b, ord=2)
|
||
mul_ab = np.dot(a, b)
|
||
return mul_ab / (mul_a * mul_b)
|
||
|
||
|
||
def parse_arguments():
|
||
import argparse
|
||
import ast
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument(
|
||
"--model", required=True, help="Path of insightface onnx model.")
|
||
parser.add_argument(
|
||
"--face", required=True, help="Path of test face image file.")
|
||
parser.add_argument(
|
||
"--face_positive",
|
||
required=True,
|
||
help="Path of test face_positive image file.")
|
||
parser.add_argument(
|
||
"--face_negative",
|
||
required=True,
|
||
help="Path of test face_negative image file.")
|
||
parser.add_argument(
|
||
"--device",
|
||
type=str,
|
||
default='cpu',
|
||
help="Type of inference device, support 'cpu' or 'gpu'.")
|
||
parser.add_argument(
|
||
"--use_trt",
|
||
type=ast.literal_eval,
|
||
default=False,
|
||
help="Wether to use tensorrt.")
|
||
return parser.parse_args()
|
||
|
||
|
||
def build_option(args):
|
||
option = fd.RuntimeOption()
|
||
|
||
if args.device.lower() == "gpu":
|
||
option.use_gpu()
|
||
|
||
if args.use_trt:
|
||
option.use_trt_backend()
|
||
option.set_trt_input_shape("data", [1, 3, 112, 112])
|
||
return option
|
||
|
||
|
||
args = parse_arguments()
|
||
|
||
# 配置runtime,加载模型
|
||
runtime_option = build_option(args)
|
||
model = fd.vision.faceid.VPL(args.model, runtime_option=runtime_option)
|
||
|
||
# 加载图片
|
||
face0 = cv2.imread(args.face) # 0,1 同一个人
|
||
face1 = cv2.imread(args.face_positive)
|
||
face2 = cv2.imread(args.face_negative) # 0,2 不同的人
|
||
|
||
# 设置 l2 normalize
|
||
model.postprocessor.l2_normalize = True
|
||
|
||
# 预测图片检测结果
|
||
result0 = model.predict(face0)
|
||
result1 = model.predict(face1)
|
||
result2 = model.predict(face2)
|
||
|
||
# 计算余弦相似度
|
||
embedding0 = result0.embedding
|
||
embedding1 = result1.embedding
|
||
embedding2 = result2.embedding
|
||
|
||
cosine01 = cosine_similarity(embedding0, embedding1)
|
||
cosine02 = cosine_similarity(embedding0, embedding2)
|
||
|
||
# 打印结果
|
||
print(result0, end="")
|
||
print(result1, end="")
|
||
print(result2, end="")
|
||
print("Cosine 01: ", cosine01)
|
||
print("Cosine 02: ", cosine02)
|
||
print(model.runtime_option)
|