mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 09:07:10 +08:00

* 重构insightface代码 * 重写insightface example代码 * 重写insightface example代码 * 删除多余代码 * 修改预处理代码 * 修改文档 * 修改文档 * 恢复误删除的文件 * 修改cpp example * 修改cpp example * 测试python代码 * 测试python代码 * 测试python代码 * 测试python代码 * 测试python代码 * 测试python代码 * 测试python代码 * 跑通python代码 * 修复重复初始化的bug * 更新adaface的python代码 * 修复c++重复初始化的问题 * 修复c++重复初始化的问题 * 修复Python重复初始化的问题 * 新增preprocess的几个参数的获取方式 * 修复注释的错误 * 按照要求修改 * 修改文档中的图片为图片压缩包 * 修改编译完成后程序的提示 * 更新错误include * 删除无用文件 * 更新文档
InsightFace Python部署示例
本目录下提供infer_xxx.py快速完成InsighFace模型包括ArcFace\CosFace\VPL\Partial_FC在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。
在部署前,需确认以下两个步骤
-
- 软硬件环境满足要求,参考FastDeploy环境要求
-
- FastDeploy Python whl包安装,参考FastDeploy Python安装
以ArcFace为例子, 提供infer_arcface.py
快速完成ArcFace在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
#下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd examples/vision/faceid/insightface/python/
#下载ArcFace模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/ms1mv3_arcface_r100.onnx
wget https://bj.bcebos.com/paddlehub/fastdeploy/rknpu2/face_demo.zip
unzip face_demo.zip
# CPU推理
python infer_arcface.py --model ms1mv3_arcface_r100.onnx \
--face face_0.jpg \
--face_positive face_1.jpg \
--face_negative face_2.jpg \
--device cpu
# GPU推理
python infer_arcface.py --model ms1mv3_arcface_r100.onnx \
--face face_0.jpg \
--face_positive face_1.jpg \
--face_negative face_2.jpg \
--device gpu
# GPU上使用TensorRT推理
python infer_arcface.py --model ms1mv3_arcface_r100.onnx \
--face face_0.jpg \
--face_positive face_1.jpg \
--face_negative face_2.jpg \
--device gpu \
--use_trt True
运行完成可视化结果如下图所示
Prediction Done!
--- [Face 0]:FaceRecognitionResult: [Dim(512), Min(-2.309220), Max(2.372197), Mean(0.016987)]
--- [Face 1]:FaceRecognitionResult: [Dim(512), Min(-2.288258), Max(1.995104), Mean(-0.003400)]
--- [Face 2]:FaceRecognitionResult: [Dim(512), Min(-3.243411), Max(3.875866), Mean(-0.030682)]
Detect Done! Cosine 01: 0.814385, Cosine 02:-0.059388
InsightFace Python接口
fastdeploy.vision.faceid.ArcFace(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
fastdeploy.vision.faceid.CosFace(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
fastdeploy.vision.faceid.PartialFC(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
fastdeploy.vision.faceid.VPL(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
ArcFace模型加载和初始化,其中model_file为导出的ONNX模型格式
参数
- model_file(str): 模型文件路径
- params_file(str): 参数文件路径,当模型格式为ONNX格式时,此参数无需设定
- runtime_option(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
- model_format(ModelFormat): 模型格式,默认为ONNX
predict函数
ArcFace.predict(image_data)
模型预测结口,输入图像直接输出检测结果。
参数
- image_data(np.ndarray): 输入数据,注意需为HWC,BGR格式
返回
返回
fastdeploy.vision.FaceRecognitionResult
结构体,结构体说明参考文档视觉模型预测结果
类成员属性
预处理参数
用户可按照自己的实际需求,修改下列预处理参数,从而影响最终的推理和部署效果
AdaFacePreprocessor的成员变量
以下变量为AdaFacePreprocessor的成员变量
- size(list[int]): 通过此参数修改预处理过程中resize的大小,包含两个整型元素,表示[width, height], 默认值为[112, 112]
- alpha(list[float]): 预处理归一化的alpha值,计算公式为
x'=x*alpha+beta
,alpha默认为[1. / 127.5, 1.f / 127.5, 1. / 127.5]- beta(list[float]): 预处理归一化的beta值,计算公式为
x'=x*alpha+beta
,beta默认为[-1.f, -1.f, -1.f]- swap_rb(bool): 预处理是否将BGR转换成RGB,默认True
AdaFacePostprocessor的成员变量
以下变量为AdaFacePostprocessor的成员变量
- l2_normalize(bool): 输出人脸向量之前是否执行l2归一化,默认False