mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-20 23:29:39 +08:00

* 重构insightface代码 * 重写insightface example代码 * 重写insightface example代码 * 删除多余代码 * 修改预处理代码 * 修改文档 * 修改文档 * 恢复误删除的文件 * 修改cpp example * 修改cpp example * 测试python代码 * 测试python代码 * 测试python代码 * 测试python代码 * 测试python代码 * 测试python代码 * 测试python代码 * 跑通python代码 * 修复重复初始化的bug * 更新adaface的python代码 * 修复c++重复初始化的问题 * 修复c++重复初始化的问题 * 修复Python重复初始化的问题 * 新增preprocess的几个参数的获取方式 * 修复注释的错误 * 按照要求修改 * 修改文档中的图片为图片压缩包 * 修改编译完成后程序的提示 * 更新错误include * 删除无用文件 * 更新文档
90 lines
4.1 KiB
C++
90 lines
4.1 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/pybind/main.h"
|
|
|
|
namespace fastdeploy {
|
|
void BindAdaFace(pybind11::module& m) {
|
|
pybind11::class_<vision::faceid::AdaFacePreprocessor>(
|
|
m, "AdaFacePreprocessor")
|
|
.def(pybind11::init())
|
|
.def("run", [](vision::faceid::AdaFacePreprocessor& self,
|
|
std::vector<pybind11::array>& im_list) {
|
|
std::vector<vision::FDMat> images;
|
|
for (size_t i = 0; i < im_list.size(); ++i) {
|
|
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
|
|
}
|
|
std::vector<FDTensor> outputs;
|
|
if (!self.Run(&images, &outputs)) {
|
|
throw std::runtime_error("Failed to preprocess the input data in AdaFacePreprocessor.");
|
|
}
|
|
for (size_t i = 0; i < outputs.size(); ++i) {
|
|
outputs[i].StopSharing();
|
|
}
|
|
return outputs;
|
|
})
|
|
.def_property("permute", &vision::faceid::AdaFacePreprocessor::GetPermute,
|
|
&vision::faceid::AdaFacePreprocessor::SetPermute)
|
|
.def_property("alpha", &vision::faceid::AdaFacePreprocessor::GetAlpha,
|
|
&vision::faceid::AdaFacePreprocessor::SetAlpha)
|
|
.def_property("beta", &vision::faceid::AdaFacePreprocessor::GetBeta,
|
|
&vision::faceid::AdaFacePreprocessor::SetBeta)
|
|
.def_property("size", &vision::faceid::AdaFacePreprocessor::GetSize,
|
|
&vision::faceid::AdaFacePreprocessor::SetSize);
|
|
|
|
pybind11::class_<vision::faceid::AdaFacePostprocessor>(
|
|
m, "AdaFacePostprocessor")
|
|
.def(pybind11::init())
|
|
.def("run", [](vision::faceid::AdaFacePostprocessor& self, std::vector<FDTensor>& inputs) {
|
|
std::vector<vision::FaceRecognitionResult> results;
|
|
if (!self.Run(inputs, &results)) {
|
|
throw std::runtime_error("Failed to postprocess the runtime result in AdaFacePostprocessor.");
|
|
}
|
|
return results;
|
|
})
|
|
.def("run", [](vision::faceid::AdaFacePostprocessor& self, std::vector<pybind11::array>& input_array) {
|
|
std::vector<vision::FaceRecognitionResult> results;
|
|
std::vector<FDTensor> inputs;
|
|
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
|
|
if (!self.Run(inputs, &results)) {
|
|
throw std::runtime_error("Failed to postprocess the runtime result in AdaFacePostprocessor.");
|
|
}
|
|
return results;
|
|
})
|
|
.def_property("l2_normalize", &vision::faceid::AdaFacePostprocessor::GetL2Normalize,
|
|
&vision::faceid::AdaFacePostprocessor::SetL2Normalize);
|
|
|
|
pybind11::class_<vision::faceid::AdaFace, FastDeployModel>(
|
|
m, "AdaFace")
|
|
.def(pybind11::init<std::string, std::string, RuntimeOption, ModelFormat>())
|
|
.def("predict", [](vision::faceid::AdaFace& self, pybind11::array& data) {
|
|
cv::Mat im = PyArrayToCvMat(data);
|
|
vision::FaceRecognitionResult result;
|
|
self.Predict(im, &result);
|
|
return result;
|
|
})
|
|
.def("batch_predict", [](vision::faceid::AdaFace& self, std::vector<pybind11::array>& data) {
|
|
std::vector<cv::Mat> images;
|
|
for (size_t i = 0; i < data.size(); ++i) {
|
|
images.push_back(PyArrayToCvMat(data[i]));
|
|
}
|
|
std::vector<vision::FaceRecognitionResult> results;
|
|
self.BatchPredict(images, &results);
|
|
return results;
|
|
})
|
|
.def_property_readonly("preprocessor", &vision::faceid::AdaFace::GetPreprocessor)
|
|
.def_property_readonly("postprocessor", &vision::faceid::AdaFace::GetPostprocessor);
|
|
}
|
|
} // namespace fastdeploy
|