mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-26 20:41:53 +08:00
[Feature]CP support data clear (#4214)
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
* Update serving_chat.py * Update serving_completion.py * Update serving_completion.py * mv connection_manager init * [BugFix] fix kv cache * fix format * [Feature] support clear data --------- Co-authored-by: Yuanle Liu <yuanlehome@163.com> Co-authored-by: RAM <gstian5555@outlook.com>
This commit is contained in:
@@ -801,6 +801,18 @@ class EngineSevice:
|
||||
def check_and_free_block_tables(self):
|
||||
self.resource_manager.check_and_free_block_tables()
|
||||
|
||||
def clear_data(self):
|
||||
try:
|
||||
llm_logger.info("Clear Data: Start")
|
||||
self.token_processor.clear_data()
|
||||
self.engine_worker_queue.clear_data()
|
||||
self.zmq_server.req_dict.clear()
|
||||
llm_logger.info("Clear Data: Successfully")
|
||||
return True
|
||||
except Exception as e:
|
||||
llm_logger.error(f"Clear data error: {e}")
|
||||
return False
|
||||
|
||||
def _exit_sub_services(self):
|
||||
"""
|
||||
exit sub services
|
||||
|
@@ -512,6 +512,10 @@ class ResourceManagerV1(ResourceManager):
|
||||
def finish_requests_async(self, request_ids: Union[str, Iterable[str]]):
|
||||
return self.finish_execution_pool.submit(self.finish_requests, request_ids)
|
||||
|
||||
def clear_data(self):
|
||||
self.waiting: deque[Request] = deque()
|
||||
self.to_be_rescheduled_request_id_set = set()
|
||||
|
||||
def finish_requests(self, request_ids: Union[str, Iterable[str]]):
|
||||
llm_logger.info(f"recycle resources for requests: {request_ids}")
|
||||
try:
|
||||
|
@@ -141,6 +141,9 @@ class EngineClient:
|
||||
self.zmq_client = ZmqIpcClient(model, mode)
|
||||
self.zmq_client.connect()
|
||||
|
||||
def check_model_weight_status(self):
|
||||
return self.model_weights_status_signal.value[0] < 0
|
||||
|
||||
async def format_and_add_data(self, prompts: dict):
|
||||
"""
|
||||
Format the request data and send the request to the server.
|
||||
|
@@ -480,6 +480,7 @@ def reset_scheduler():
|
||||
|
||||
if llm_engine is None:
|
||||
return Response("Engine not loaded", status_code=500)
|
||||
llm_engine.engine.clear_data()
|
||||
llm_engine.engine.scheduler.reset()
|
||||
return Response("Scheduler Reset Successfully", status_code=200)
|
||||
|
||||
|
@@ -210,6 +210,8 @@ class OpenAIServingChat:
|
||||
decoder_base_url=self.tokenizer_base_url,
|
||||
)
|
||||
while num_choices > 0:
|
||||
if self.engine_client.check_model_weight_status():
|
||||
raise ValueError("Engine is clearing model weight")
|
||||
try:
|
||||
response = await asyncio.wait_for(response_queue.get(), timeout=10)
|
||||
current_waiting_time = 0
|
||||
@@ -425,6 +427,8 @@ class OpenAIServingChat:
|
||||
decoder_base_url=self.tokenizer_base_url,
|
||||
)
|
||||
while True:
|
||||
if self.engine_client.check_model_weight_status():
|
||||
raise ValueError("Engine is clearing model weight")
|
||||
try:
|
||||
response = await asyncio.wait_for(response_queue.get(), timeout=10)
|
||||
current_waiting_time = 0
|
||||
|
@@ -216,6 +216,8 @@ class OpenAIServingCompletion:
|
||||
completion_batched_token_ids = [[] for _ in range(num_choices)]
|
||||
current_waiting_time = 0
|
||||
while num_choices > 0:
|
||||
if self.engine_client.check_model_weight_status():
|
||||
raise ValueError("Engine is clearing model weight")
|
||||
try:
|
||||
response = await asyncio.wait_for(response_queue.get(), timeout=10)
|
||||
current_waiting_time = 0
|
||||
@@ -333,6 +335,8 @@ class OpenAIServingCompletion:
|
||||
)
|
||||
current_waiting_time = 0
|
||||
while num_choices > 0:
|
||||
if self.engine_client.check_model_weight_status():
|
||||
raise ValueError("Engine is clearing model weight")
|
||||
try:
|
||||
response = await asyncio.wait_for(response_queue.get(), timeout=10)
|
||||
current_waiting_time = 0
|
||||
|
@@ -392,6 +392,13 @@ class EngineWorkerQueue:
|
||||
llm_logger.debug("get tasks from queue success")
|
||||
return item
|
||||
|
||||
def clear_data(self):
|
||||
self.lock.acquire()
|
||||
self.tasks[:] = list()
|
||||
self.client_read_flag[:] = [1] * self.num_client
|
||||
self.lock.release()
|
||||
llm_logger.info("clear data for engine worker queue")
|
||||
|
||||
def cleanup(self):
|
||||
"""
|
||||
Exit the worker queue gracefully.
|
||||
|
@@ -464,6 +464,31 @@ class TokenProcessor:
|
||||
main_process_metrics.request_inference_time.observe(current_time - task.inference_start_time)
|
||||
main_process_metrics.request_generation_tokens.observe(self.tokens_counter[task.request_id])
|
||||
|
||||
def clear_data(self):
|
||||
if envs.ENABLE_V1_KVCACHE_SCHEDULER:
|
||||
self.resource_manager.clear_data()
|
||||
for i in range(self.cfg.max_num_seqs):
|
||||
if self.resource_manager.stop_flags[i]:
|
||||
continue
|
||||
task = self.resource_manager.tasks_list[i]
|
||||
result = RequestOutput(
|
||||
request_id=task.request_id,
|
||||
outputs=CompletionOutput(
|
||||
index=i,
|
||||
send_idx=self.tokens_counter[task.request_id],
|
||||
token_ids=task.eos_token_ids,
|
||||
draft_token_ids=[],
|
||||
),
|
||||
finished=True,
|
||||
metrics=RequestMetrics(
|
||||
arrival_time=time.time(),
|
||||
request_start_time=task.arrival_time,
|
||||
),
|
||||
)
|
||||
is_prefill = task.disaggregate_info is not None and task.disaggregate_info["role"] == "prefill"
|
||||
self._recycle_resources(task.request_id, i, task, result, is_prefill)
|
||||
llm_logger.warning(f"clear data for task {task.request_id}")
|
||||
|
||||
def _record_speculative_decoding_mertics(self, accept_num):
|
||||
"""Record metrics of speculative decoding"""
|
||||
if not hasattr(main_process_metrics, "spec_decode_draft_acceptance_rate"):
|
||||
|
@@ -228,6 +228,7 @@ class DynamicWeightManager:
|
||||
logger.info("finished loading new checkpoint")
|
||||
elif model_weights_status.value[0] == ModelWeightsStatus.CLEARING:
|
||||
logger.info("infer engine stopped! start to clear checkpoint...")
|
||||
model_runner.clear_requests()
|
||||
model_runner.clear_parameters(pid)
|
||||
while model_weights_status.value[0] != ModelWeightsStatus.CLEARED:
|
||||
time.sleep(0.01)
|
||||
|
@@ -1704,6 +1704,10 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
self.forward_meta.clear_caches()
|
||||
paddle.device.cuda.empty_cache()
|
||||
|
||||
def clear_requests(self):
|
||||
"""Dynamic model loader use to clear requests use for RL"""
|
||||
self.share_inputs["stop_flags"][:] = True
|
||||
|
||||
def clear_parameters(self, pid):
|
||||
"""Dynamic model loader use to clear parameters use for RL"""
|
||||
# Clear CUDAGraph
|
||||
|
Reference in New Issue
Block a user