Files
FastDeploy/fastdeploy/entrypoints/openai/serving_chat.py
ltd0924 de4feff147
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
[Feature]CP support data clear (#4214)
* Update serving_chat.py

* Update serving_completion.py

* Update serving_completion.py

* mv connection_manager init

* [BugFix] fix kv cache

* fix format

* [Feature] support clear data

---------

Co-authored-by: Yuanle Liu <yuanlehome@163.com>
Co-authored-by: RAM <gstian5555@outlook.com>
2025-09-23 16:53:39 +08:00

626 lines
28 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import asyncio
import time
import traceback
import uuid
from typing import List, Optional
import numpy as np
from fastdeploy.entrypoints.openai.protocol import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseChoice,
ChatCompletionResponseStreamChoice,
ChatCompletionStreamResponse,
ChatMessage,
DeltaMessage,
ErrorResponse,
LogProbEntry,
LogProbs,
PromptTokenUsageInfo,
UsageInfo,
)
from fastdeploy.entrypoints.openai.response_processors import ChatResponseProcessor
from fastdeploy.metrics.work_metrics import work_process_metrics
from fastdeploy.utils import api_server_logger
from fastdeploy.worker.output import LogprobsLists
class OpenAIServingChat:
"""
OpenAI-style chat completions serving
"""
def __init__(
self,
engine_client,
models,
pid,
ips,
max_waiting_time,
chat_template,
enable_mm_output: Optional[bool] = False,
tokenizer_base_url: Optional[str] = None,
):
self.engine_client = engine_client
self.models = models
self.pid = pid
self.max_waiting_time = max_waiting_time
self.chat_template = chat_template
self.enable_mm_output = enable_mm_output
self.tokenizer_base_url = tokenizer_base_url
if ips is not None:
if isinstance(ips, list):
self.master_ip = ips[0]
else:
self.master_ip = ips.split(",")[0]
else:
self.master_ip = "0.0.0.0"
api_server_logger.info(f"master ip: {self.master_ip}")
def _check_master(self):
return self.engine_client.is_master
async def create_chat_completion(self, request: ChatCompletionRequest):
"""
Create a new chat completion using the specified parameters.
"""
if not self._check_master():
err_msg = (
f"Only master node can accept completion request, please send request to master node: {self.master_ip}"
)
api_server_logger.error(err_msg)
return ErrorResponse(message=err_msg, code=400)
if self.models:
is_supported, request.model = self.models.is_supported_model(request.model)
if not is_supported:
err_msg = f"Unsupported model: [{request.model}], support [{', '.join([x.name for x in self.models.model_paths])}] or default"
api_server_logger.error(err_msg)
return ErrorResponse(message=err_msg, code=400)
try:
if self.max_waiting_time < 0:
await self.engine_client.semaphore.acquire()
else:
await asyncio.wait_for(self.engine_client.semaphore.acquire(), timeout=self.max_waiting_time)
api_server_logger.info(f"current {self.engine_client.semaphore.status()}")
if request.user is not None:
request_id = f"chatcmpl-{request.user}-{uuid.uuid4()}"
else:
request_id = f"chatcmpl-{uuid.uuid4()}"
api_server_logger.info(f"create chat completion request: {request_id}")
text_after_process = None
try:
current_req_dict = request.to_dict_for_infer(request_id)
if "chat_template" not in current_req_dict:
current_req_dict["chat_template"] = self.chat_template
current_req_dict["arrival_time"] = time.time()
prompt_token_ids = await self.engine_client.format_and_add_data(current_req_dict)
text_after_process = current_req_dict.get("text_after_process")
if isinstance(prompt_token_ids, np.ndarray):
prompt_token_ids = prompt_token_ids.tolist()
except Exception as e:
error_msg = f"request[{request_id}] generator error: {str(e)}, {str(traceback.format_exc())}"
api_server_logger.error(error_msg)
self.engine_client.semaphore.release()
return ErrorResponse(code=400, message=error_msg)
del current_req_dict
if request.stream:
return self.chat_completion_stream_generator(
request, request_id, request.model, prompt_token_ids, text_after_process
)
else:
try:
return await self.chat_completion_full_generator(
request, request_id, request.model, prompt_token_ids, text_after_process
)
except Exception as e:
error_msg = f"request[{request_id}]full generator error: {str(e)}, {str(traceback.format_exc())}"
api_server_logger.error(error_msg)
return ErrorResponse(code=408, message=error_msg)
except Exception as e:
error_msg = (
f"request[{request_id}] waiting error: {str(e)}, {str(traceback.format_exc())}, "
f"max waiting time: {self.max_waiting_time}"
)
api_server_logger.error(error_msg)
return ErrorResponse(code=408, message=error_msg)
def _create_streaming_error_response(self, message: str) -> str:
api_server_logger.error(message)
error_response = ErrorResponse(
code=400,
message=message,
)
return error_response.model_dump_json()
async def chat_completion_stream_generator(
self,
request: ChatCompletionRequest,
request_id: str,
model_name: str,
prompt_token_ids: list(),
text_after_process: str,
):
"""
Streaming chat completion generator.
"""
created_time = int(time.time())
chunk_object_type: str = "chat.completion.chunk"
first_iteration = True
previous_num_tokens = 0
num_prompt_tokens = 0
num_choices = 1
tool_called = False
max_streaming_response_tokens = (
request.max_streaming_response_tokens
if request.max_streaming_response_tokens is not None
else (request.metadata or {}).get("max_streaming_response_tokens", 1)
) # dierctly passed & passed in metadata
max_streaming_response_tokens = max(max_streaming_response_tokens, 1)
enable_thinking = request.chat_template_kwargs.get("enable_thinking") if request.chat_template_kwargs else None
if enable_thinking is None:
enable_thinking = request.metadata.get("enable_thinking") if request.metadata else None
include_stop_str_in_output = request.include_stop_str_in_output
stream_options = request.stream_options
if stream_options is None:
include_usage = False
include_continuous_usage = False
else:
include_usage = stream_options.include_usage
include_continuous_usage = stream_options.continuous_usage_stats
chunk = ChatCompletionStreamResponse(
id=request_id,
object=chunk_object_type,
created=created_time,
choices=[],
model=model_name,
)
api_server_logger.info(f"create chat completion request: {request_id}")
try:
dealer, response_queue = await self.engine_client.connection_manager.get_connection(request_id)
dealer.write([b"", request_id.encode("utf-8")])
choices = []
current_waiting_time = 0
response_processor = ChatResponseProcessor(
data_processor=self.engine_client.data_processor,
enable_mm_output=self.enable_mm_output,
decoder_base_url=self.tokenizer_base_url,
)
while num_choices > 0:
if self.engine_client.check_model_weight_status():
raise ValueError("Engine is clearing model weight")
try:
response = await asyncio.wait_for(response_queue.get(), timeout=10)
current_waiting_time = 0
except asyncio.TimeoutError:
current_waiting_time += 10
if current_waiting_time == 300:
status, msg = self.engine_client.check_health()
if not status:
if choices:
chunk.choices = choices
yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
raise ValueError(f"Engine is not healthy: {msg}")
else:
current_waiting_time = 0
await asyncio.sleep(0.01)
continue
generator = response_processor.process_response_chat(
response,
stream=True,
enable_thinking=enable_thinking,
include_stop_str_in_output=include_stop_str_in_output,
)
async for res in generator:
if res.get("error_code", 200) != 200:
raise ValueError("{}".format(res["error_msg"]))
if res["metrics"]["first_token_time"] is not None:
arrival_time = res["metrics"]["first_token_time"]
inference_start_time = res["metrics"]["inference_start_time"]
else:
arrival_time = res["metrics"]["arrival_time"] - inference_start_time
if first_iteration:
num_prompt_tokens = len(prompt_token_ids)
num_cached_tokens = res.get("num_cached_tokens", 0)
for i in range(num_choices):
choice = ChatCompletionResponseStreamChoice(
index=i,
delta=DeltaMessage(
role="assistant",
reasoning_content="",
tool_calls=None,
prompt_token_ids=None,
completion_token_ids=None,
),
)
if response_processor.enable_multimodal_content():
choice.delta.multimodal_content = [
{
"type": "text",
"text": "",
}
]
else:
choice.delta.content = ""
if request.return_token_ids:
choice.delta.prompt_token_ids = list(prompt_token_ids)
choice.delta.text_after_process = text_after_process
choice.delta.prompt_tokens = text_after_process
chunk = ChatCompletionStreamResponse(
id=request_id,
object=chunk_object_type,
created=created_time,
choices=[choice],
model=model_name,
)
if include_continuous_usage:
chunk.usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
completion_tokens=0,
total_tokens=num_prompt_tokens,
prompt_tokens_details=PromptTokenUsageInfo(cached_tokens=num_cached_tokens),
)
yield f"data: {chunk.model_dump_json(exclude_unset=True)} \n\n"
api_server_logger.info(f"Chat Streaming response send_idx 0: {chunk.model_dump_json()}")
first_iteration = False
output = res["outputs"]
output_top_logprobs = output["top_logprobs"]
previous_num_tokens += len(output["token_ids"])
logprobs_res: Optional[LogProbs] = None
if request.logprobs and output_top_logprobs is not None:
logprobs_res = self._create_chat_logprobs(
output_top_logprobs, request.logprobs, request.top_logprobs
)
delta_message = DeltaMessage(
reasoning_content="",
prompt_token_ids=None,
tool_calls=None,
completion_token_ids=None,
)
if response_processor.enable_multimodal_content():
delta_message.multimodal_content = output["multipart"]
else:
delta_message.content = output["text"]
if not res["finished"] and "delta_message" in output:
delta_message_output = output["delta_message"]
if delta_message_output is None:
continue
delta_message.content = delta_message_output.content or ""
delta_message.reasoning_content = delta_message_output.reasoning_content or ""
if delta_message_output.tool_calls:
delta_message.tool_calls = delta_message_output.tool_calls
tool_called = True
choice = ChatCompletionResponseStreamChoice(
index=0,
delta=delta_message,
logprobs=logprobs_res,
arrival_time=arrival_time,
)
if res["finished"]:
num_choices -= 1
work_process_metrics.e2e_request_latency.observe(
time.time() - res["metrics"]["request_start_time"]
)
has_no_token_limit = request.max_tokens is None and request.max_completion_tokens is None
max_tokens = request.max_completion_tokens or request.max_tokens
if has_no_token_limit or previous_num_tokens != max_tokens:
choice.finish_reason = "stop"
if tool_called:
choice.finish_reason = "tool_calls"
else:
choice.finish_reason = "length"
if res.get("error_msg") is not None and "Recover" in res["error_msg"]:
choice.finish_reason = "recover_stop"
if request.return_token_ids:
if response_processor.enable_multimodal_content():
choice.delta.multimodal_content[0]["completion_token_ids"] = list(output["token_ids"])
else:
choice.delta.completion_token_ids = list(output["token_ids"])
choice.delta.raw_prediction = output.get("raw_prediction")
choice.delta.completion_tokens = output.get("raw_prediction")
if include_continuous_usage:
chunk.usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
completion_tokens=previous_num_tokens,
total_tokens=num_prompt_tokens + previous_num_tokens,
)
choices.append(choice)
if len(choices) == max_streaming_response_tokens or res["finished"]:
chunk.choices = choices
yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
if res["finished"]:
api_server_logger.info(f"Chat Streaming response last send: {chunk.model_dump_json()}")
choices = []
if include_usage:
completion_tokens = previous_num_tokens
usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=num_prompt_tokens + completion_tokens,
)
chunk = ChatCompletionStreamResponse(
id=request_id,
object=chunk_object_type,
created=created_time,
choices=[],
model=model_name,
usage=usage,
)
yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
except Exception as e:
error_data = self._create_streaming_error_response(
f"request[{request_id}] generate stream error: {str(e)}, {str(traceback.format_exc())}"
)
yield f"data: {error_data}\n\n"
finally:
await self.engine_client.connection_manager.cleanup_request(request_id)
self.engine_client.semaphore.release()
api_server_logger.info(f"release {request_id} {self.engine_client.semaphore.status()}")
yield "data: [DONE]\n\n"
async def chat_completion_full_generator(
self,
request: ChatCompletionRequest,
request_id: str,
model_name: str,
prompt_token_ids: list(),
text_after_process: str,
):
"""
Full chat completion generator.
"""
created_time = int(time.time())
final_res = None
enable_thinking = request.chat_template_kwargs.get("enable_thinking") if request.chat_template_kwargs else None
if enable_thinking is None:
enable_thinking = request.metadata.get("enable_thinking") if request.metadata else None
include_stop_str_in_output = request.include_stop_str_in_output
try:
dealer, response_queue = await self.engine_client.connection_manager.get_connection(request_id)
dealer.write([b"", request_id.encode("utf-8")])
final_res = None
previous_num_tokens = 0
current_waiting_time = 0
logprob_contents = []
completion_token_ids = []
response_processor = ChatResponseProcessor(
data_processor=self.engine_client.data_processor,
enable_mm_output=self.enable_mm_output,
decoder_base_url=self.tokenizer_base_url,
)
while True:
if self.engine_client.check_model_weight_status():
raise ValueError("Engine is clearing model weight")
try:
response = await asyncio.wait_for(response_queue.get(), timeout=10)
current_waiting_time = 0
except asyncio.TimeoutError:
current_waiting_time += 10
if current_waiting_time == 300:
status, msg = self.engine_client.check_health()
if not status:
raise ValueError(f"Engine is not healthy: {msg}")
else:
current_waiting_time = 0
await asyncio.sleep(0.1)
continue
task_is_finished = False
generator = response_processor.process_response_chat(
response,
stream=False,
enable_thinking=enable_thinking,
include_stop_str_in_output=include_stop_str_in_output,
)
async for data in generator:
if data.get("error_code", 200) != 200:
raise ValueError("{}".format(data["error_msg"]))
# api_server_logger.debug(f"Client {request_id} received: {data}")
previous_num_tokens += len(data["outputs"]["token_ids"])
completion_token_ids.extend(data["outputs"]["token_ids"])
# The logprob for handling the response
output = data["outputs"]
output_top_logprobs = output["top_logprobs"]
if output_top_logprobs is not None:
logprobs_res = self._create_chat_logprobs(
output_top_logprobs, request.logprobs, request.top_logprobs
)
if logprobs_res and logprobs_res.content is not None:
logprob_contents.extend(logprobs_res.content)
if data["finished"]:
final_res = data
task_is_finished = True
break
if task_is_finished:
break
finally:
await self.engine_client.connection_manager.cleanup_request(request_id)
self.engine_client.semaphore.release()
api_server_logger.info(f"release {self.engine_client.semaphore.status()}")
choices = []
output = final_res["outputs"]
message = ChatMessage(
role="assistant",
reasoning_content=output.get("reasoning_content"),
tool_calls=output.get("tool_call"),
prompt_token_ids=prompt_token_ids if request.return_token_ids else None,
completion_token_ids=completion_token_ids if request.return_token_ids else None,
text_after_process=text_after_process if request.return_token_ids else None,
prompt_tokens=text_after_process if request.return_token_ids else None,
raw_prediction=output.get("raw_prediction") if request.return_token_ids else None,
completion_tokens=output.get("raw_prediction") if request.return_token_ids else None,
)
if response_processor.enable_multimodal_content():
message.multimodal_content = output.get("multipart")
else:
message.content = output["text"]
logprobs_full_res = None
if logprob_contents:
logprobs_full_res = LogProbs(content=logprob_contents)
choice = ChatCompletionResponseChoice(
index=0,
message=message,
logprobs=logprobs_full_res,
finish_reason=None,
)
has_no_token_limit = request.max_tokens is None and request.max_completion_tokens is None
max_tokens = request.max_completion_tokens or request.max_tokens
if has_no_token_limit or previous_num_tokens != max_tokens:
choice.finish_reason = "stop"
if output.get("tool_call"):
choice.finish_reason = "tool_calls"
else:
choice.finish_reason = "length"
if final_res.get("error_msg") is not None and "Recover" in final_res["error_msg"]:
choice.finish_reason = "recover_stop"
choices.append(choice)
num_prompt_tokens = len(prompt_token_ids)
num_generated_tokens = previous_num_tokens
usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
completion_tokens=num_generated_tokens,
total_tokens=num_prompt_tokens + num_generated_tokens,
prompt_tokens_details=PromptTokenUsageInfo(cached_tokens=final_res.get("num_cached_tokens", 0)),
)
work_process_metrics.e2e_request_latency.observe(time.time() - final_res["metrics"]["request_start_time"])
res = ChatCompletionResponse(
id=request_id,
created=created_time,
model=model_name,
choices=choices,
usage=usage,
)
api_server_logger.info(f"Chat response: {res.model_dump_json()}")
return res
def _create_chat_logprobs(
self,
output_top_logprobs,
request_logprobs: Optional[bool] = None,
request_top_logprobs: Optional[int] = None,
) -> Optional[LogProbs]:
"""Create OpenAI-style logprobs for chat completions."""
if output_top_logprobs is None or len(output_top_logprobs) < 3 or any(not lst for lst in output_top_logprobs):
return None
logprobs_res: Optional[LogProbs] = None
for logprob_token_ids, logprobs, sampled_token_ranks in zip(
output_top_logprobs[0], output_top_logprobs[1], output_top_logprobs[2]
):
top_logprobs = LogprobsLists(
logprob_token_ids=[logprob_token_ids],
logprobs=[logprobs],
sampled_token_ranks=[sampled_token_ranks],
)
step_logprobs_res = self._build_logprobs_response(
request_logprobs=request_logprobs,
response_logprobs=top_logprobs,
request_top_logprobs=request_top_logprobs,
)
if logprobs_res is None:
logprobs_res = step_logprobs_res
else:
logprobs_res.content.extend(step_logprobs_res.content)
return logprobs_res
def _build_logprobs_response(
self,
request_logprobs: bool,
response_logprobs: Optional[LogprobsLists],
request_top_logprobs: int,
) -> Optional[LogProbs]:
"""
Construct a logprobs response object in line with the OpenAI style.
Retain the complete top-k candidates and avoid circular references.
"""
# Parameter validation
if (
response_logprobs is None
or not request_logprobs
or request_top_logprobs is None
or request_top_logprobs < 0
):
return None
try:
# The top-k candidates for the current token
topk_token_ids = []
topk_logprobs = []
if response_logprobs.logprob_token_ids and len(response_logprobs.logprob_token_ids) > 0:
topk_token_ids = response_logprobs.logprob_token_ids[0][: request_top_logprobs + 1]
if response_logprobs.logprobs and len(response_logprobs.logprobs) > 0:
topk_logprobs = response_logprobs.logprobs[0][: request_top_logprobs + 1]
# Construct the candidate token structure (LogProbEntry) of topk
top_logprob_entries: List[LogProbEntry] = []
for tid, lp in zip(topk_token_ids, topk_logprobs):
token_str = self.engine_client.data_processor.process_logprob_response(
[tid], clean_up_tokenization_spaces=False
)
token_bytes = token_str.encode("utf-8", errors="replace")
if "\ufffd" in token_str:
token_str = "bytes:" + "".join(f"\\x{byte:02x}" for byte in token_bytes)
entry = LogProbEntry(token=token_str, logprob=lp, bytes=list(token_bytes))
top_logprob_entries.append(entry)
# Construct the sampled token object (avoid sharing references with top_logprob_entries)
sampled_entry = LogProbEntry(
token=top_logprob_entries[0].token,
logprob=top_logprob_entries[0].logprob,
bytes=top_logprob_entries[0].bytes,
top_logprobs=top_logprob_entries[1:], # Here are the complete topk candidates
)
return LogProbs(content=[sampled_entry])
except Exception as e:
error_msg = f"Error in _build_logprobs_response: {e}, {str(traceback.format_exc())}"
api_server_logger.error(error_msg)
return None