mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-26 20:41:53 +08:00

Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
* Update serving_chat.py * Update serving_completion.py * Update serving_completion.py * mv connection_manager init * [BugFix] fix kv cache * fix format * [Feature] support clear data --------- Co-authored-by: Yuanle Liu <yuanlehome@163.com> Co-authored-by: RAM <gstian5555@outlook.com>
626 lines
28 KiB
Python
626 lines
28 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
import asyncio
|
|
import time
|
|
import traceback
|
|
import uuid
|
|
from typing import List, Optional
|
|
|
|
import numpy as np
|
|
|
|
from fastdeploy.entrypoints.openai.protocol import (
|
|
ChatCompletionRequest,
|
|
ChatCompletionResponse,
|
|
ChatCompletionResponseChoice,
|
|
ChatCompletionResponseStreamChoice,
|
|
ChatCompletionStreamResponse,
|
|
ChatMessage,
|
|
DeltaMessage,
|
|
ErrorResponse,
|
|
LogProbEntry,
|
|
LogProbs,
|
|
PromptTokenUsageInfo,
|
|
UsageInfo,
|
|
)
|
|
from fastdeploy.entrypoints.openai.response_processors import ChatResponseProcessor
|
|
from fastdeploy.metrics.work_metrics import work_process_metrics
|
|
from fastdeploy.utils import api_server_logger
|
|
from fastdeploy.worker.output import LogprobsLists
|
|
|
|
|
|
class OpenAIServingChat:
|
|
"""
|
|
OpenAI-style chat completions serving
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
engine_client,
|
|
models,
|
|
pid,
|
|
ips,
|
|
max_waiting_time,
|
|
chat_template,
|
|
enable_mm_output: Optional[bool] = False,
|
|
tokenizer_base_url: Optional[str] = None,
|
|
):
|
|
self.engine_client = engine_client
|
|
self.models = models
|
|
self.pid = pid
|
|
self.max_waiting_time = max_waiting_time
|
|
self.chat_template = chat_template
|
|
self.enable_mm_output = enable_mm_output
|
|
self.tokenizer_base_url = tokenizer_base_url
|
|
if ips is not None:
|
|
if isinstance(ips, list):
|
|
self.master_ip = ips[0]
|
|
else:
|
|
self.master_ip = ips.split(",")[0]
|
|
else:
|
|
self.master_ip = "0.0.0.0"
|
|
api_server_logger.info(f"master ip: {self.master_ip}")
|
|
|
|
def _check_master(self):
|
|
return self.engine_client.is_master
|
|
|
|
async def create_chat_completion(self, request: ChatCompletionRequest):
|
|
"""
|
|
Create a new chat completion using the specified parameters.
|
|
"""
|
|
if not self._check_master():
|
|
err_msg = (
|
|
f"Only master node can accept completion request, please send request to master node: {self.master_ip}"
|
|
)
|
|
api_server_logger.error(err_msg)
|
|
return ErrorResponse(message=err_msg, code=400)
|
|
|
|
if self.models:
|
|
is_supported, request.model = self.models.is_supported_model(request.model)
|
|
if not is_supported:
|
|
err_msg = f"Unsupported model: [{request.model}], support [{', '.join([x.name for x in self.models.model_paths])}] or default"
|
|
api_server_logger.error(err_msg)
|
|
return ErrorResponse(message=err_msg, code=400)
|
|
|
|
try:
|
|
if self.max_waiting_time < 0:
|
|
await self.engine_client.semaphore.acquire()
|
|
else:
|
|
await asyncio.wait_for(self.engine_client.semaphore.acquire(), timeout=self.max_waiting_time)
|
|
api_server_logger.info(f"current {self.engine_client.semaphore.status()}")
|
|
|
|
if request.user is not None:
|
|
request_id = f"chatcmpl-{request.user}-{uuid.uuid4()}"
|
|
else:
|
|
request_id = f"chatcmpl-{uuid.uuid4()}"
|
|
api_server_logger.info(f"create chat completion request: {request_id}")
|
|
text_after_process = None
|
|
try:
|
|
current_req_dict = request.to_dict_for_infer(request_id)
|
|
if "chat_template" not in current_req_dict:
|
|
current_req_dict["chat_template"] = self.chat_template
|
|
current_req_dict["arrival_time"] = time.time()
|
|
prompt_token_ids = await self.engine_client.format_and_add_data(current_req_dict)
|
|
text_after_process = current_req_dict.get("text_after_process")
|
|
if isinstance(prompt_token_ids, np.ndarray):
|
|
prompt_token_ids = prompt_token_ids.tolist()
|
|
except Exception as e:
|
|
error_msg = f"request[{request_id}] generator error: {str(e)}, {str(traceback.format_exc())}"
|
|
api_server_logger.error(error_msg)
|
|
self.engine_client.semaphore.release()
|
|
return ErrorResponse(code=400, message=error_msg)
|
|
del current_req_dict
|
|
|
|
if request.stream:
|
|
return self.chat_completion_stream_generator(
|
|
request, request_id, request.model, prompt_token_ids, text_after_process
|
|
)
|
|
else:
|
|
try:
|
|
return await self.chat_completion_full_generator(
|
|
request, request_id, request.model, prompt_token_ids, text_after_process
|
|
)
|
|
except Exception as e:
|
|
error_msg = f"request[{request_id}]full generator error: {str(e)}, {str(traceback.format_exc())}"
|
|
api_server_logger.error(error_msg)
|
|
return ErrorResponse(code=408, message=error_msg)
|
|
except Exception as e:
|
|
error_msg = (
|
|
f"request[{request_id}] waiting error: {str(e)}, {str(traceback.format_exc())}, "
|
|
f"max waiting time: {self.max_waiting_time}"
|
|
)
|
|
api_server_logger.error(error_msg)
|
|
return ErrorResponse(code=408, message=error_msg)
|
|
|
|
def _create_streaming_error_response(self, message: str) -> str:
|
|
api_server_logger.error(message)
|
|
error_response = ErrorResponse(
|
|
code=400,
|
|
message=message,
|
|
)
|
|
return error_response.model_dump_json()
|
|
|
|
async def chat_completion_stream_generator(
|
|
self,
|
|
request: ChatCompletionRequest,
|
|
request_id: str,
|
|
model_name: str,
|
|
prompt_token_ids: list(),
|
|
text_after_process: str,
|
|
):
|
|
"""
|
|
Streaming chat completion generator.
|
|
"""
|
|
created_time = int(time.time())
|
|
chunk_object_type: str = "chat.completion.chunk"
|
|
first_iteration = True
|
|
previous_num_tokens = 0
|
|
num_prompt_tokens = 0
|
|
num_choices = 1
|
|
tool_called = False
|
|
max_streaming_response_tokens = (
|
|
request.max_streaming_response_tokens
|
|
if request.max_streaming_response_tokens is not None
|
|
else (request.metadata or {}).get("max_streaming_response_tokens", 1)
|
|
) # dierctly passed & passed in metadata
|
|
max_streaming_response_tokens = max(max_streaming_response_tokens, 1)
|
|
enable_thinking = request.chat_template_kwargs.get("enable_thinking") if request.chat_template_kwargs else None
|
|
if enable_thinking is None:
|
|
enable_thinking = request.metadata.get("enable_thinking") if request.metadata else None
|
|
|
|
include_stop_str_in_output = request.include_stop_str_in_output
|
|
|
|
stream_options = request.stream_options
|
|
if stream_options is None:
|
|
include_usage = False
|
|
include_continuous_usage = False
|
|
else:
|
|
include_usage = stream_options.include_usage
|
|
include_continuous_usage = stream_options.continuous_usage_stats
|
|
chunk = ChatCompletionStreamResponse(
|
|
id=request_id,
|
|
object=chunk_object_type,
|
|
created=created_time,
|
|
choices=[],
|
|
model=model_name,
|
|
)
|
|
api_server_logger.info(f"create chat completion request: {request_id}")
|
|
|
|
try:
|
|
dealer, response_queue = await self.engine_client.connection_manager.get_connection(request_id)
|
|
dealer.write([b"", request_id.encode("utf-8")])
|
|
choices = []
|
|
current_waiting_time = 0
|
|
response_processor = ChatResponseProcessor(
|
|
data_processor=self.engine_client.data_processor,
|
|
enable_mm_output=self.enable_mm_output,
|
|
decoder_base_url=self.tokenizer_base_url,
|
|
)
|
|
while num_choices > 0:
|
|
if self.engine_client.check_model_weight_status():
|
|
raise ValueError("Engine is clearing model weight")
|
|
try:
|
|
response = await asyncio.wait_for(response_queue.get(), timeout=10)
|
|
current_waiting_time = 0
|
|
except asyncio.TimeoutError:
|
|
current_waiting_time += 10
|
|
if current_waiting_time == 300:
|
|
status, msg = self.engine_client.check_health()
|
|
if not status:
|
|
if choices:
|
|
chunk.choices = choices
|
|
yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
|
|
raise ValueError(f"Engine is not healthy: {msg}")
|
|
else:
|
|
current_waiting_time = 0
|
|
await asyncio.sleep(0.01)
|
|
continue
|
|
|
|
generator = response_processor.process_response_chat(
|
|
response,
|
|
stream=True,
|
|
enable_thinking=enable_thinking,
|
|
include_stop_str_in_output=include_stop_str_in_output,
|
|
)
|
|
|
|
async for res in generator:
|
|
if res.get("error_code", 200) != 200:
|
|
raise ValueError("{}".format(res["error_msg"]))
|
|
|
|
if res["metrics"]["first_token_time"] is not None:
|
|
arrival_time = res["metrics"]["first_token_time"]
|
|
inference_start_time = res["metrics"]["inference_start_time"]
|
|
else:
|
|
arrival_time = res["metrics"]["arrival_time"] - inference_start_time
|
|
if first_iteration:
|
|
num_prompt_tokens = len(prompt_token_ids)
|
|
num_cached_tokens = res.get("num_cached_tokens", 0)
|
|
for i in range(num_choices):
|
|
choice = ChatCompletionResponseStreamChoice(
|
|
index=i,
|
|
delta=DeltaMessage(
|
|
role="assistant",
|
|
reasoning_content="",
|
|
tool_calls=None,
|
|
prompt_token_ids=None,
|
|
completion_token_ids=None,
|
|
),
|
|
)
|
|
if response_processor.enable_multimodal_content():
|
|
choice.delta.multimodal_content = [
|
|
{
|
|
"type": "text",
|
|
"text": "",
|
|
}
|
|
]
|
|
else:
|
|
choice.delta.content = ""
|
|
|
|
if request.return_token_ids:
|
|
choice.delta.prompt_token_ids = list(prompt_token_ids)
|
|
choice.delta.text_after_process = text_after_process
|
|
choice.delta.prompt_tokens = text_after_process
|
|
chunk = ChatCompletionStreamResponse(
|
|
id=request_id,
|
|
object=chunk_object_type,
|
|
created=created_time,
|
|
choices=[choice],
|
|
model=model_name,
|
|
)
|
|
if include_continuous_usage:
|
|
chunk.usage = UsageInfo(
|
|
prompt_tokens=num_prompt_tokens,
|
|
completion_tokens=0,
|
|
total_tokens=num_prompt_tokens,
|
|
prompt_tokens_details=PromptTokenUsageInfo(cached_tokens=num_cached_tokens),
|
|
)
|
|
yield f"data: {chunk.model_dump_json(exclude_unset=True)} \n\n"
|
|
api_server_logger.info(f"Chat Streaming response send_idx 0: {chunk.model_dump_json()}")
|
|
first_iteration = False
|
|
|
|
output = res["outputs"]
|
|
output_top_logprobs = output["top_logprobs"]
|
|
previous_num_tokens += len(output["token_ids"])
|
|
logprobs_res: Optional[LogProbs] = None
|
|
if request.logprobs and output_top_logprobs is not None:
|
|
logprobs_res = self._create_chat_logprobs(
|
|
output_top_logprobs, request.logprobs, request.top_logprobs
|
|
)
|
|
|
|
delta_message = DeltaMessage(
|
|
reasoning_content="",
|
|
prompt_token_ids=None,
|
|
tool_calls=None,
|
|
completion_token_ids=None,
|
|
)
|
|
|
|
if response_processor.enable_multimodal_content():
|
|
delta_message.multimodal_content = output["multipart"]
|
|
else:
|
|
delta_message.content = output["text"]
|
|
|
|
if not res["finished"] and "delta_message" in output:
|
|
delta_message_output = output["delta_message"]
|
|
if delta_message_output is None:
|
|
continue
|
|
delta_message.content = delta_message_output.content or ""
|
|
delta_message.reasoning_content = delta_message_output.reasoning_content or ""
|
|
if delta_message_output.tool_calls:
|
|
delta_message.tool_calls = delta_message_output.tool_calls
|
|
tool_called = True
|
|
|
|
choice = ChatCompletionResponseStreamChoice(
|
|
index=0,
|
|
delta=delta_message,
|
|
logprobs=logprobs_res,
|
|
arrival_time=arrival_time,
|
|
)
|
|
if res["finished"]:
|
|
num_choices -= 1
|
|
work_process_metrics.e2e_request_latency.observe(
|
|
time.time() - res["metrics"]["request_start_time"]
|
|
)
|
|
has_no_token_limit = request.max_tokens is None and request.max_completion_tokens is None
|
|
max_tokens = request.max_completion_tokens or request.max_tokens
|
|
if has_no_token_limit or previous_num_tokens != max_tokens:
|
|
choice.finish_reason = "stop"
|
|
if tool_called:
|
|
choice.finish_reason = "tool_calls"
|
|
else:
|
|
choice.finish_reason = "length"
|
|
|
|
if res.get("error_msg") is not None and "Recover" in res["error_msg"]:
|
|
choice.finish_reason = "recover_stop"
|
|
|
|
if request.return_token_ids:
|
|
if response_processor.enable_multimodal_content():
|
|
choice.delta.multimodal_content[0]["completion_token_ids"] = list(output["token_ids"])
|
|
else:
|
|
choice.delta.completion_token_ids = list(output["token_ids"])
|
|
choice.delta.raw_prediction = output.get("raw_prediction")
|
|
choice.delta.completion_tokens = output.get("raw_prediction")
|
|
if include_continuous_usage:
|
|
chunk.usage = UsageInfo(
|
|
prompt_tokens=num_prompt_tokens,
|
|
completion_tokens=previous_num_tokens,
|
|
total_tokens=num_prompt_tokens + previous_num_tokens,
|
|
)
|
|
choices.append(choice)
|
|
|
|
if len(choices) == max_streaming_response_tokens or res["finished"]:
|
|
chunk.choices = choices
|
|
yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
|
|
if res["finished"]:
|
|
api_server_logger.info(f"Chat Streaming response last send: {chunk.model_dump_json()}")
|
|
choices = []
|
|
|
|
if include_usage:
|
|
completion_tokens = previous_num_tokens
|
|
usage = UsageInfo(
|
|
prompt_tokens=num_prompt_tokens,
|
|
completion_tokens=completion_tokens,
|
|
total_tokens=num_prompt_tokens + completion_tokens,
|
|
)
|
|
chunk = ChatCompletionStreamResponse(
|
|
id=request_id,
|
|
object=chunk_object_type,
|
|
created=created_time,
|
|
choices=[],
|
|
model=model_name,
|
|
usage=usage,
|
|
)
|
|
yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
|
|
|
|
except Exception as e:
|
|
error_data = self._create_streaming_error_response(
|
|
f"request[{request_id}] generate stream error: {str(e)}, {str(traceback.format_exc())}"
|
|
)
|
|
yield f"data: {error_data}\n\n"
|
|
finally:
|
|
await self.engine_client.connection_manager.cleanup_request(request_id)
|
|
self.engine_client.semaphore.release()
|
|
api_server_logger.info(f"release {request_id} {self.engine_client.semaphore.status()}")
|
|
yield "data: [DONE]\n\n"
|
|
|
|
async def chat_completion_full_generator(
|
|
self,
|
|
request: ChatCompletionRequest,
|
|
request_id: str,
|
|
model_name: str,
|
|
prompt_token_ids: list(),
|
|
text_after_process: str,
|
|
):
|
|
"""
|
|
Full chat completion generator.
|
|
"""
|
|
created_time = int(time.time())
|
|
final_res = None
|
|
enable_thinking = request.chat_template_kwargs.get("enable_thinking") if request.chat_template_kwargs else None
|
|
if enable_thinking is None:
|
|
enable_thinking = request.metadata.get("enable_thinking") if request.metadata else None
|
|
|
|
include_stop_str_in_output = request.include_stop_str_in_output
|
|
try:
|
|
dealer, response_queue = await self.engine_client.connection_manager.get_connection(request_id)
|
|
dealer.write([b"", request_id.encode("utf-8")])
|
|
final_res = None
|
|
previous_num_tokens = 0
|
|
current_waiting_time = 0
|
|
logprob_contents = []
|
|
completion_token_ids = []
|
|
response_processor = ChatResponseProcessor(
|
|
data_processor=self.engine_client.data_processor,
|
|
enable_mm_output=self.enable_mm_output,
|
|
decoder_base_url=self.tokenizer_base_url,
|
|
)
|
|
while True:
|
|
if self.engine_client.check_model_weight_status():
|
|
raise ValueError("Engine is clearing model weight")
|
|
try:
|
|
response = await asyncio.wait_for(response_queue.get(), timeout=10)
|
|
current_waiting_time = 0
|
|
except asyncio.TimeoutError:
|
|
current_waiting_time += 10
|
|
if current_waiting_time == 300:
|
|
status, msg = self.engine_client.check_health()
|
|
if not status:
|
|
raise ValueError(f"Engine is not healthy: {msg}")
|
|
else:
|
|
current_waiting_time = 0
|
|
await asyncio.sleep(0.1)
|
|
continue
|
|
|
|
task_is_finished = False
|
|
|
|
generator = response_processor.process_response_chat(
|
|
response,
|
|
stream=False,
|
|
enable_thinking=enable_thinking,
|
|
include_stop_str_in_output=include_stop_str_in_output,
|
|
)
|
|
async for data in generator:
|
|
if data.get("error_code", 200) != 200:
|
|
raise ValueError("{}".format(data["error_msg"]))
|
|
# api_server_logger.debug(f"Client {request_id} received: {data}")
|
|
previous_num_tokens += len(data["outputs"]["token_ids"])
|
|
completion_token_ids.extend(data["outputs"]["token_ids"])
|
|
# The logprob for handling the response
|
|
output = data["outputs"]
|
|
output_top_logprobs = output["top_logprobs"]
|
|
if output_top_logprobs is not None:
|
|
logprobs_res = self._create_chat_logprobs(
|
|
output_top_logprobs, request.logprobs, request.top_logprobs
|
|
)
|
|
if logprobs_res and logprobs_res.content is not None:
|
|
logprob_contents.extend(logprobs_res.content)
|
|
if data["finished"]:
|
|
final_res = data
|
|
task_is_finished = True
|
|
break
|
|
if task_is_finished:
|
|
break
|
|
finally:
|
|
await self.engine_client.connection_manager.cleanup_request(request_id)
|
|
self.engine_client.semaphore.release()
|
|
api_server_logger.info(f"release {self.engine_client.semaphore.status()}")
|
|
|
|
choices = []
|
|
output = final_res["outputs"]
|
|
message = ChatMessage(
|
|
role="assistant",
|
|
reasoning_content=output.get("reasoning_content"),
|
|
tool_calls=output.get("tool_call"),
|
|
prompt_token_ids=prompt_token_ids if request.return_token_ids else None,
|
|
completion_token_ids=completion_token_ids if request.return_token_ids else None,
|
|
text_after_process=text_after_process if request.return_token_ids else None,
|
|
prompt_tokens=text_after_process if request.return_token_ids else None,
|
|
raw_prediction=output.get("raw_prediction") if request.return_token_ids else None,
|
|
completion_tokens=output.get("raw_prediction") if request.return_token_ids else None,
|
|
)
|
|
|
|
if response_processor.enable_multimodal_content():
|
|
message.multimodal_content = output.get("multipart")
|
|
else:
|
|
message.content = output["text"]
|
|
|
|
logprobs_full_res = None
|
|
if logprob_contents:
|
|
logprobs_full_res = LogProbs(content=logprob_contents)
|
|
|
|
choice = ChatCompletionResponseChoice(
|
|
index=0,
|
|
message=message,
|
|
logprobs=logprobs_full_res,
|
|
finish_reason=None,
|
|
)
|
|
has_no_token_limit = request.max_tokens is None and request.max_completion_tokens is None
|
|
max_tokens = request.max_completion_tokens or request.max_tokens
|
|
if has_no_token_limit or previous_num_tokens != max_tokens:
|
|
choice.finish_reason = "stop"
|
|
if output.get("tool_call"):
|
|
choice.finish_reason = "tool_calls"
|
|
else:
|
|
choice.finish_reason = "length"
|
|
|
|
if final_res.get("error_msg") is not None and "Recover" in final_res["error_msg"]:
|
|
choice.finish_reason = "recover_stop"
|
|
choices.append(choice)
|
|
|
|
num_prompt_tokens = len(prompt_token_ids)
|
|
num_generated_tokens = previous_num_tokens
|
|
usage = UsageInfo(
|
|
prompt_tokens=num_prompt_tokens,
|
|
completion_tokens=num_generated_tokens,
|
|
total_tokens=num_prompt_tokens + num_generated_tokens,
|
|
prompt_tokens_details=PromptTokenUsageInfo(cached_tokens=final_res.get("num_cached_tokens", 0)),
|
|
)
|
|
work_process_metrics.e2e_request_latency.observe(time.time() - final_res["metrics"]["request_start_time"])
|
|
res = ChatCompletionResponse(
|
|
id=request_id,
|
|
created=created_time,
|
|
model=model_name,
|
|
choices=choices,
|
|
usage=usage,
|
|
)
|
|
api_server_logger.info(f"Chat response: {res.model_dump_json()}")
|
|
return res
|
|
|
|
def _create_chat_logprobs(
|
|
self,
|
|
output_top_logprobs,
|
|
request_logprobs: Optional[bool] = None,
|
|
request_top_logprobs: Optional[int] = None,
|
|
) -> Optional[LogProbs]:
|
|
"""Create OpenAI-style logprobs for chat completions."""
|
|
if output_top_logprobs is None or len(output_top_logprobs) < 3 or any(not lst for lst in output_top_logprobs):
|
|
return None
|
|
logprobs_res: Optional[LogProbs] = None
|
|
for logprob_token_ids, logprobs, sampled_token_ranks in zip(
|
|
output_top_logprobs[0], output_top_logprobs[1], output_top_logprobs[2]
|
|
):
|
|
top_logprobs = LogprobsLists(
|
|
logprob_token_ids=[logprob_token_ids],
|
|
logprobs=[logprobs],
|
|
sampled_token_ranks=[sampled_token_ranks],
|
|
)
|
|
step_logprobs_res = self._build_logprobs_response(
|
|
request_logprobs=request_logprobs,
|
|
response_logprobs=top_logprobs,
|
|
request_top_logprobs=request_top_logprobs,
|
|
)
|
|
if logprobs_res is None:
|
|
logprobs_res = step_logprobs_res
|
|
else:
|
|
logprobs_res.content.extend(step_logprobs_res.content)
|
|
return logprobs_res
|
|
|
|
def _build_logprobs_response(
|
|
self,
|
|
request_logprobs: bool,
|
|
response_logprobs: Optional[LogprobsLists],
|
|
request_top_logprobs: int,
|
|
) -> Optional[LogProbs]:
|
|
"""
|
|
Construct a logprobs response object in line with the OpenAI style.
|
|
Retain the complete top-k candidates and avoid circular references.
|
|
"""
|
|
|
|
# Parameter validation
|
|
if (
|
|
response_logprobs is None
|
|
or not request_logprobs
|
|
or request_top_logprobs is None
|
|
or request_top_logprobs < 0
|
|
):
|
|
return None
|
|
|
|
try:
|
|
# The top-k candidates for the current token
|
|
topk_token_ids = []
|
|
topk_logprobs = []
|
|
|
|
if response_logprobs.logprob_token_ids and len(response_logprobs.logprob_token_ids) > 0:
|
|
topk_token_ids = response_logprobs.logprob_token_ids[0][: request_top_logprobs + 1]
|
|
|
|
if response_logprobs.logprobs and len(response_logprobs.logprobs) > 0:
|
|
topk_logprobs = response_logprobs.logprobs[0][: request_top_logprobs + 1]
|
|
|
|
# Construct the candidate token structure (LogProbEntry) of topk
|
|
top_logprob_entries: List[LogProbEntry] = []
|
|
for tid, lp in zip(topk_token_ids, topk_logprobs):
|
|
token_str = self.engine_client.data_processor.process_logprob_response(
|
|
[tid], clean_up_tokenization_spaces=False
|
|
)
|
|
token_bytes = token_str.encode("utf-8", errors="replace")
|
|
if "\ufffd" in token_str:
|
|
token_str = "bytes:" + "".join(f"\\x{byte:02x}" for byte in token_bytes)
|
|
entry = LogProbEntry(token=token_str, logprob=lp, bytes=list(token_bytes))
|
|
top_logprob_entries.append(entry)
|
|
# Construct the sampled token object (avoid sharing references with top_logprob_entries)
|
|
sampled_entry = LogProbEntry(
|
|
token=top_logprob_entries[0].token,
|
|
logprob=top_logprob_entries[0].logprob,
|
|
bytes=top_logprob_entries[0].bytes,
|
|
top_logprobs=top_logprob_entries[1:], # Here are the complete topk candidates
|
|
)
|
|
|
|
return LogProbs(content=[sampled_entry])
|
|
|
|
except Exception as e:
|
|
error_msg = f"Error in _build_logprobs_response: {e}, {str(traceback.format_exc())}"
|
|
api_server_logger.error(error_msg)
|
|
return None
|