mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-26 20:41:53 +08:00

Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
* Update serving_chat.py * Update serving_completion.py * Update serving_completion.py * mv connection_manager init * [BugFix] fix kv cache * fix format * [Feature] support clear data --------- Co-authored-by: Yuanle Liu <yuanlehome@163.com> Co-authored-by: RAM <gstian5555@outlook.com>
408 lines
15 KiB
Python
408 lines
15 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
import threading
|
|
import time
|
|
from multiprocessing.managers import (
|
|
AcquirerProxy,
|
|
BaseManager,
|
|
ListProxy,
|
|
Value,
|
|
ValueProxy,
|
|
)
|
|
from queue import Queue
|
|
from typing import Any, List, Tuple
|
|
|
|
import numpy as np
|
|
|
|
from fastdeploy.utils import llm_logger
|
|
|
|
|
|
class EngineWorkerQueue:
|
|
"""
|
|
Cross-machine and cross-process communication queue between Engine and Worker.
|
|
Manages shared resources using multiprocessing managers for inter-process communication.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
address: Tuple[str, int] = ("0.0.0.0", 5000),
|
|
authkey: bytes = b"secret_key",
|
|
is_server: bool = False,
|
|
num_client: int = 1, # tensor parallel size
|
|
client_id: int = -1, # tensor parallel id
|
|
local_data_parallel_size: int = 1, # data parallel size
|
|
local_data_parallel_id: int = 0, # local data parallel id
|
|
) -> None:
|
|
"""
|
|
Initialize the communication queue.
|
|
|
|
Args:
|
|
address: Network address (IP, port) for the queue server
|
|
authkey: Authentication key for secure connection
|
|
is_server: Whether this instance acts as a server
|
|
num_client: Total number of expected clients
|
|
client_id: Unique identifier for client instances
|
|
"""
|
|
self.address: Tuple[str, int] = address
|
|
self.authkey: bytes = authkey
|
|
self.is_server: bool = is_server
|
|
self.num_client: int = num_client
|
|
self.client_id: int = client_id
|
|
self.local_data_parallel_size = local_data_parallel_size
|
|
self.local_data_parallel_id = local_data_parallel_id
|
|
|
|
class QueueManager(BaseManager):
|
|
"""
|
|
Custom QueueManager for proxy object registration.
|
|
"""
|
|
|
|
pass
|
|
|
|
if is_server:
|
|
# Server-side initialization for shared resources
|
|
self.tasks_init: List[List[Any]] = [list() for _ in range(self.local_data_parallel_size)]
|
|
self.client_read_flag_init: List[List[int]] = [
|
|
[1] * self.num_client for _ in range(self.local_data_parallel_size)
|
|
]
|
|
self.lock_init: List[threading.Lock] = [threading.Lock() for _ in range(self.local_data_parallel_size)]
|
|
self.read_finish_flag_init: List[Value] = [Value("i", 0) for _ in range(self.local_data_parallel_size)]
|
|
self.connected_client_counter_init: List[Value] = [
|
|
Value("i", 0) for _ in range(self.local_data_parallel_size)
|
|
]
|
|
self.finished_req_queue = [Queue() for _ in range(self.local_data_parallel_size)]
|
|
self.cache_infos_init: List[List[Any]] = [list() for _ in range(self.local_data_parallel_size)]
|
|
self.client_read_info_flag_init: List[List[int]] = [
|
|
[1] * self.num_client for _ in range(self.local_data_parallel_size)
|
|
]
|
|
self.lock_info_init: List[threading.Lock] = [
|
|
threading.Lock() for _ in range(self.local_data_parallel_size)
|
|
]
|
|
|
|
self.finish_request_barrier = [
|
|
threading.Barrier(self.num_client) for _ in range(self.local_data_parallel_size)
|
|
]
|
|
|
|
# Register shared objects with proxy types
|
|
QueueManager.register(
|
|
"get_tasks",
|
|
callable=lambda idx: self.tasks_init[idx],
|
|
proxytype=ListProxy,
|
|
)
|
|
QueueManager.register(
|
|
"get_client_read_flag",
|
|
callable=lambda idx: self.client_read_flag_init[idx],
|
|
proxytype=ListProxy,
|
|
)
|
|
QueueManager.register(
|
|
"get_lock",
|
|
callable=lambda idx: self.lock_init[idx],
|
|
proxytype=AcquirerProxy,
|
|
)
|
|
QueueManager.register(
|
|
"get_read_finish_flag",
|
|
callable=lambda idx: self.read_finish_flag_init[idx],
|
|
proxytype=ValueProxy,
|
|
)
|
|
QueueManager.register(
|
|
"get_connected_client_counter",
|
|
callable=lambda idx: self.connected_client_counter_init[idx],
|
|
proxytype=ValueProxy,
|
|
)
|
|
|
|
QueueManager.register(
|
|
"get_finish_request_queue",
|
|
callable=lambda idx: self.finished_req_queue[idx],
|
|
)
|
|
|
|
QueueManager.register(
|
|
"get_cache_infos",
|
|
callable=lambda idx: self.cache_infos_init[idx],
|
|
proxytype=ListProxy,
|
|
)
|
|
|
|
QueueManager.register(
|
|
"get_client_read_info_flag",
|
|
callable=lambda idx: self.client_read_info_flag_init[idx],
|
|
proxytype=ListProxy,
|
|
)
|
|
QueueManager.register(
|
|
"get_lock_info",
|
|
callable=lambda idx: self.lock_info_init[idx],
|
|
proxytype=AcquirerProxy,
|
|
)
|
|
|
|
self.disaggregate_requests = [Queue() for _ in range(self.local_data_parallel_size)]
|
|
QueueManager.register(
|
|
"get_disaggregate_requests",
|
|
callable=lambda idx: self.disaggregate_requests[idx],
|
|
)
|
|
|
|
self.available_prefill_instances = Queue()
|
|
QueueManager.register(
|
|
"get_available_prefill_instances",
|
|
callable=lambda: self.available_prefill_instances,
|
|
)
|
|
|
|
QueueManager.register(
|
|
"get_finish_request_barrier",
|
|
callable=lambda idx: self.finish_request_barrier[idx],
|
|
)
|
|
self.manager: BaseManager = QueueManager(address=self.address, authkey=self.authkey)
|
|
self.manager.start()
|
|
else:
|
|
# Client-side connection setup
|
|
assert (
|
|
self.client_id >= 0 and self.client_id < self.num_client
|
|
), f"self.client_id={self.client_id}, self.num_client={self.num_client}"
|
|
QueueManager.register("get_tasks")
|
|
QueueManager.register("get_client_read_flag")
|
|
QueueManager.register("get_lock")
|
|
QueueManager.register("get_read_finish_flag")
|
|
QueueManager.register("get_connected_client_counter")
|
|
QueueManager.register("get_finish_request_queue")
|
|
QueueManager.register("get_cache_infos")
|
|
QueueManager.register("get_client_read_info_flag")
|
|
QueueManager.register("get_lock_info")
|
|
QueueManager.register("get_disaggregate_requests")
|
|
QueueManager.register("get_available_prefill_instances")
|
|
QueueManager.register("get_finish_request_barrier")
|
|
self.manager = QueueManager(address=self.address, authkey=self.authkey)
|
|
self._connect_with_retry()
|
|
|
|
# Get proxy objects for shared resources
|
|
self.tasks: ListProxy = self.manager.get_tasks(self.local_data_parallel_id)
|
|
self.client_read_flag: ListProxy = self.manager.get_client_read_flag(self.local_data_parallel_id)
|
|
self.lock: AcquirerProxy = self.manager.get_lock(self.local_data_parallel_id)
|
|
self.read_finish_flag: ValueProxy = self.manager.get_read_finish_flag(self.local_data_parallel_id)
|
|
self.connected_client_counter: ValueProxy = self.manager.get_connected_client_counter(
|
|
self.local_data_parallel_id
|
|
)
|
|
self.cache_infos: ListProxy = self.manager.get_cache_infos(self.local_data_parallel_id)
|
|
self.client_read_info_flag: ListProxy = self.manager.get_client_read_info_flag(self.local_data_parallel_id)
|
|
self.lock_info: AcquirerProxy = self.manager.get_lock_info(self.local_data_parallel_id)
|
|
|
|
# p/d 分离获取
|
|
self.disaggregate_requests = self.manager.get_disaggregate_requests(self.local_data_parallel_id)
|
|
self.available_prefill_instances = self.manager.get_available_prefill_instances()
|
|
self.finish_request_barrier = self.manager.get_finish_request_barrier(self.local_data_parallel_id)
|
|
self.finished_req_queue = self.manager.get_finish_request_queue(self.local_data_parallel_id)
|
|
assert self.num_client == len(self.client_read_flag)
|
|
|
|
if is_server:
|
|
llm_logger.info("EngineWorkerQueue server started.")
|
|
else:
|
|
# Update client connection counter
|
|
self.lock.acquire()
|
|
self.connected_client_counter.set(self.connected_client_counter.get() + 1)
|
|
self.lock.release()
|
|
llm_logger.info(
|
|
f"Connected EngineWorkerQueue client_id: {self.client_id}, number "
|
|
f"of connected clients: {self.connected_client_counter.get()}"
|
|
)
|
|
|
|
def _connect_with_retry(self, max_retries: int = 5, interval: int = 3) -> None:
|
|
"""
|
|
Connect to the server with retry mechanism.
|
|
|
|
Args:
|
|
max_retries: Maximum connection attempts
|
|
interval: Retry interval in seconds
|
|
|
|
Raises:
|
|
ConnectionError: If all connection attempts fail
|
|
"""
|
|
for _ in range(max_retries):
|
|
try:
|
|
self.manager.connect()
|
|
return
|
|
except ConnectionRefusedError:
|
|
time.sleep(interval)
|
|
raise ConnectionError(f"TaskQueue cannot connect {self.address}")
|
|
|
|
def put_tasks(self, tasks: List[Any]) -> None:
|
|
"""
|
|
Add tasks to the shared queue in a thread-safe manner.
|
|
Waits until all clients have read previous tasks before adding new ones.
|
|
|
|
Args:
|
|
tasks: Tasks to be added to the queue
|
|
"""
|
|
self.lock.acquire()
|
|
while sum(self.client_read_flag) < self.num_client:
|
|
self.lock.release()
|
|
time.sleep(0.001)
|
|
self.lock.acquire()
|
|
|
|
self.tasks[:] = list()
|
|
self.client_read_flag[:] = [0] * self.num_client
|
|
self.tasks.append(tasks)
|
|
self.lock.release()
|
|
|
|
def get_tasks(self) -> Tuple[List[Any], bool]:
|
|
"""
|
|
Retrieve tasks from the shared queue and update read status.
|
|
|
|
Returns:
|
|
tuple: (list of tasks, bool indicating if all clients have read)
|
|
"""
|
|
tasks: List[Any] = list()
|
|
self.lock.acquire()
|
|
tasks.extend(self.tasks)
|
|
self.client_read_flag[self.client_id] = 1
|
|
all_client_read: bool = np.sum(self.client_read_flag) == self.num_client
|
|
if all_client_read:
|
|
self.tasks[:] = list()
|
|
self.lock.release()
|
|
return tasks, all_client_read
|
|
|
|
def num_tasks(self) -> int:
|
|
"""
|
|
Get current number of tasks in the queue.
|
|
|
|
Returns:
|
|
int: Total number of tasks
|
|
"""
|
|
self.lock.acquire()
|
|
total_num: int = len(self.tasks)
|
|
self.lock.release()
|
|
return total_num
|
|
|
|
def get_prefill_instances(self):
|
|
"""
|
|
check if the prefill queue is empty
|
|
"""
|
|
if self.available_prefill_instances.qsize() == 0:
|
|
return 0
|
|
else:
|
|
return self.available_prefill_instances.get()
|
|
|
|
def put_cache_info(self, cache_info) -> None:
|
|
"""
|
|
Args:
|
|
tasks: Tasks to be added to the queue
|
|
"""
|
|
self.lock_info.acquire()
|
|
while sum(self.client_read_info_flag) < self.num_client:
|
|
self.lock_info.release()
|
|
time.sleep(0.001)
|
|
self.lock_info.acquire()
|
|
|
|
self.cache_infos[:] = list()
|
|
self.client_read_info_flag[:] = [0] * self.num_client
|
|
|
|
self.cache_infos.extend(cache_info)
|
|
llm_logger.debug(f"cache_infos: {self.cache_infos} local_data_parallel_id:{self.local_data_parallel_id}")
|
|
self.lock_info.release()
|
|
|
|
def get_cache_info(self) -> List[Any]:
|
|
"""
|
|
Retrieve tasks from the shared queue and update read status.
|
|
|
|
Returns:
|
|
tuple: (list of tasks, bool indicating if all clients have read)
|
|
"""
|
|
cache_infos: List[Any] = list()
|
|
self.lock_info.acquire()
|
|
if self.client_read_info_flag[self.client_id] == 1:
|
|
self.lock_info.release()
|
|
return cache_infos
|
|
cache_infos.extend(self.cache_infos)
|
|
self.client_read_info_flag[self.client_id] = 1
|
|
all_client_read: bool = np.sum(self.client_read_info_flag) == self.num_client
|
|
if all_client_read:
|
|
self.cache_infos[:] = list()
|
|
self.lock_info.release()
|
|
if len(cache_infos) != 0:
|
|
llm_logger.debug(f"get cache infos: {cache_infos} local_data_parallel_id:{self.local_data_parallel_id}")
|
|
return cache_infos
|
|
|
|
def num_cache_infos(self) -> int:
|
|
"""
|
|
Get current number of tasks in the queue.
|
|
|
|
Returns:
|
|
int: Total number of tasks
|
|
"""
|
|
self.lock_info.acquire()
|
|
total_num: int = len(self.cache_infos)
|
|
self.lock_info.release()
|
|
return total_num
|
|
|
|
def put_finished_req(self, req_ids) -> None:
|
|
"""
|
|
Put finished request ID into the queue.
|
|
|
|
Args:
|
|
req_ids: Request ID to be added to the queue
|
|
"""
|
|
self.finished_req_queue.put(req_ids)
|
|
|
|
def get_finished_req(self) -> str:
|
|
"""
|
|
Get finished request ID from the queue.
|
|
|
|
Returns:
|
|
str: Finished request ID
|
|
"""
|
|
ans = []
|
|
if self.finished_req_queue.empty():
|
|
return ans
|
|
ans = self.finished_req_queue.get()
|
|
llm_logger.debug(f"get finished req: {ans}")
|
|
return ans
|
|
|
|
def disaggregate_queue_empty(self):
|
|
"""
|
|
Check if the disaggregated task queue is empty.
|
|
"""
|
|
return self.disaggregate_requests.qsize() == 0
|
|
|
|
def put_disaggregated_tasks(self, item):
|
|
"""
|
|
put disaggregated tasks to the queue
|
|
"""
|
|
llm_logger.debug("put item to queue")
|
|
self.disaggregate_requests.put(item)
|
|
llm_logger.debug("put item to queue success")
|
|
|
|
def get_disaggregated_tasks(self):
|
|
"""
|
|
get disaggregated tasks from the queue
|
|
"""
|
|
llm_logger.debug("get tasks from queue")
|
|
if self.disaggregate_requests.qsize() == 0:
|
|
return None
|
|
item = []
|
|
while not self.disaggregate_requests.empty():
|
|
item.append(self.disaggregate_requests.get())
|
|
llm_logger.debug("get tasks from queue success")
|
|
return item
|
|
|
|
def clear_data(self):
|
|
self.lock.acquire()
|
|
self.tasks[:] = list()
|
|
self.client_read_flag[:] = [1] * self.num_client
|
|
self.lock.release()
|
|
llm_logger.info("clear data for engine worker queue")
|
|
|
|
def cleanup(self):
|
|
"""
|
|
Exit the worker queue gracefully.
|
|
"""
|
|
if self.manager is not None and self.is_server:
|
|
self.manager.shutdown()
|