mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-26 20:41:53 +08:00

Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
* Update serving_chat.py * Update serving_completion.py * Update serving_completion.py * mv connection_manager init * [BugFix] fix kv cache * fix format * [Feature] support clear data --------- Co-authored-by: Yuanle Liu <yuanlehome@163.com> Co-authored-by: RAM <gstian5555@outlook.com>
837 lines
36 KiB
Python
837 lines
36 KiB
Python
"""
|
||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
"""
|
||
|
||
from __future__ import annotations
|
||
|
||
import copy
|
||
import os
|
||
import threading
|
||
import time
|
||
import traceback
|
||
import weakref
|
||
from concurrent.futures import ThreadPoolExecutor
|
||
from typing import Dict, List, Optional, Tuple
|
||
|
||
import numpy as np
|
||
import paddle
|
||
import zmq
|
||
from opentelemetry import trace
|
||
|
||
from fastdeploy.engine.request import Request, RequestOutput
|
||
from fastdeploy.engine.resource_manager import ResourceManager
|
||
from fastdeploy.engine.sched.resource_manager_v1 import ResourceManagerV1
|
||
from fastdeploy.inter_communicator import (
|
||
EngineCacheQueue,
|
||
EngineWorkerQueue,
|
||
IPCSignal,
|
||
ZmqIpcServer,
|
||
ZmqTcpServer,
|
||
)
|
||
from fastdeploy.metrics.metrics import main_process_metrics
|
||
from fastdeploy.metrics.trace_util import start_span, start_span_request
|
||
from fastdeploy.model_executor.guided_decoding import schema_checker
|
||
from fastdeploy.output.token_processor import TokenProcessor
|
||
from fastdeploy.splitwise.internal_adapter_utils import InternalAdapter
|
||
from fastdeploy.splitwise.splitwise_connector import SplitwiseConnector
|
||
from fastdeploy.utils import EngineError, envs, llm_logger
|
||
|
||
|
||
class EngineSevice:
|
||
"""
|
||
Base class containing common engine functionality
|
||
"""
|
||
|
||
def __init__(self, cfg, start_queue=True):
|
||
"""
|
||
Initializes the LLMEngine with the provided configuration.
|
||
|
||
Args:
|
||
cfg (Config): Config object containing all the configuration parameters.
|
||
"""
|
||
self.cfg = cfg
|
||
|
||
self.scheduler = cfg.scheduler_config.scheduler()
|
||
|
||
if envs.ENABLE_V1_KVCACHE_SCHEDULER:
|
||
self.resource_manager = ResourceManagerV1(
|
||
cfg.max_num_seqs,
|
||
cfg,
|
||
cfg.parallel_config.tensor_parallel_size,
|
||
cfg.splitwise_role,
|
||
cfg.parallel_config.local_data_parallel_id,
|
||
)
|
||
if cfg.splitwise_role != "mixed":
|
||
raise NotImplementedError(
|
||
"Currently ENABLE_V1_KVCACHE_SCHEDULER=1 only supported in mixed sampling now."
|
||
)
|
||
else:
|
||
self.resource_manager = ResourceManager(
|
||
cfg.max_num_seqs,
|
||
cfg,
|
||
cfg.parallel_config.tensor_parallel_size,
|
||
cfg.splitwise_role,
|
||
cfg.parallel_config.local_data_parallel_id,
|
||
)
|
||
|
||
self.start_worker_queue_service(start_queue)
|
||
|
||
os.environ["INFERENCE_MSG_QUEUE_ID"] = self.cfg.engine_worker_queue_port[
|
||
self.cfg.parallel_config.local_data_parallel_id
|
||
]
|
||
|
||
self.split_connector = SplitwiseConnector(cfg, self.engine_worker_queue, self.resource_manager)
|
||
self.waiting_requests = []
|
||
self.token_processor = TokenProcessor(
|
||
cfg=cfg,
|
||
cached_generated_tokens=self.scheduler,
|
||
engine_worker_queue=self.engine_worker_queue,
|
||
split_connector=self.split_connector,
|
||
)
|
||
self.token_processor.set_resource_manager(self.resource_manager)
|
||
|
||
self.partial_chunked_tokens = [0] * (self.cfg.max_num_partial_prefills + 1)
|
||
for idx in range(1, self.cfg.max_num_partial_prefills + 1):
|
||
self.partial_chunked_tokens[idx] = (
|
||
(self.cfg.max_num_batched_tokens // idx)
|
||
// self.cfg.cache_config.block_size
|
||
* self.cfg.cache_config.block_size
|
||
)
|
||
|
||
self.guided_decoding_checker = None
|
||
if self.cfg.guided_decoding_backend != "off":
|
||
self.guided_decoding_checker = schema_checker(
|
||
self.cfg.guided_decoding_backend,
|
||
disable_any_whitespace=self.cfg.disable_any_whitespace,
|
||
)
|
||
self._init_worker_monitor_signals()
|
||
|
||
self._finalizer = weakref.finalize(self, self._exit_sub_services)
|
||
|
||
def start(self):
|
||
self.running = True
|
||
if envs.ENABLE_V1_KVCACHE_SCHEDULER:
|
||
self.insert_task_to_worker_thread = threading.Thread(target=self._scheduler_task_to_worker_v1, daemon=True)
|
||
else:
|
||
self.insert_task_to_worker_thread = threading.Thread(target=self._insert_task_to_worker, daemon=True)
|
||
self.insert_task_to_worker_thread.start()
|
||
self.token_processor.tasks_queue = self.engine_worker_queue
|
||
self.token_processor.run()
|
||
|
||
def _init_worker_monitor_signals(self): # exist_task_signal 用于各worker进程感知是否有新Task需要处理
|
||
current_suffix = int(self.cfg.engine_worker_queue_port[self.cfg.parallel_config.local_data_parallel_id])
|
||
llm_logger.info(f"current_suffix: {current_suffix}")
|
||
exist_task_signal_data = np.zeros([1], dtype=np.int32)
|
||
self.exist_task_signal = IPCSignal(
|
||
name="exist_task_signal",
|
||
array=exist_task_signal_data,
|
||
dtype=np.int32,
|
||
suffix=current_suffix,
|
||
create=True,
|
||
)
|
||
|
||
# exist_swapped_task_signal 用于engine感知worker中是否存在swapped task
|
||
exist_swapped_task_signal_data = np.zeros([1], dtype=np.int32)
|
||
self.exist_swapped_task_signal = IPCSignal(
|
||
name="exist_swapped_task_signal",
|
||
array=exist_swapped_task_signal_data,
|
||
dtype=np.int32,
|
||
suffix=current_suffix,
|
||
create=True,
|
||
)
|
||
|
||
# exist_prefill_task_signal 用于各worker进程感知是否进行prefill
|
||
exist_prefill_task_signal_data = np.zeros([1], dtype=np.int32)
|
||
self.exist_prefill_task_signal = IPCSignal(
|
||
name="exist_prefill_task_signal",
|
||
array=exist_prefill_task_signal_data,
|
||
dtype=np.int32,
|
||
suffix=current_suffix,
|
||
create=True,
|
||
)
|
||
|
||
# worker_live_signal 用于engine感知各worker进程是否存活,记录每个step 时间
|
||
worker_healthy_live_recorded_time_array = np.zeros(
|
||
shape=[min(self.cfg.worker_num_per_node, self.cfg.parallel_config.tensor_parallel_size)], dtype=np.int32
|
||
)
|
||
self.worker_healthy_live_signal = IPCSignal(
|
||
name="worker_healthy_live_signal",
|
||
array=worker_healthy_live_recorded_time_array,
|
||
dtype=np.int32,
|
||
suffix=current_suffix,
|
||
create=True,
|
||
)
|
||
|
||
cache_ready_signal_data = np.zeros(shape=[self.cfg.parallel_config.tensor_parallel_size], dtype=np.int32)
|
||
self.cache_ready_signal = IPCSignal(
|
||
name="cache_ready_signal",
|
||
array=cache_ready_signal_data,
|
||
dtype=np.int32,
|
||
suffix=current_suffix,
|
||
create=True,
|
||
)
|
||
|
||
swap_space_ready_signal_data = np.zeros(shape=[self.cfg.parallel_config.tensor_parallel_size], dtype=np.int32)
|
||
self.swap_space_ready_signal = IPCSignal(
|
||
name="swap_space_ready_signal",
|
||
array=swap_space_ready_signal_data,
|
||
dtype=np.int32,
|
||
suffix=current_suffix,
|
||
create=True,
|
||
)
|
||
|
||
model_weights_status = np.zeros([1], dtype=np.int32)
|
||
self.model_weights_status_signal = IPCSignal(
|
||
name="model_weights_status",
|
||
array=model_weights_status,
|
||
dtype=np.int32,
|
||
suffix=current_suffix,
|
||
create=True,
|
||
)
|
||
|
||
prefix_tree_status = np.zeros([1], dtype=np.int32)
|
||
self.prefix_tree_status_signal = IPCSignal(
|
||
name="prefix_tree_status",
|
||
array=prefix_tree_status,
|
||
dtype=np.int32,
|
||
suffix=current_suffix,
|
||
create=True,
|
||
)
|
||
|
||
kv_cache_status = np.zeros([1], dtype=np.int32)
|
||
self.kv_cache_status_signal = IPCSignal(
|
||
name="kv_cache_status",
|
||
array=kv_cache_status,
|
||
dtype=np.int32,
|
||
suffix=current_suffix,
|
||
create=True,
|
||
)
|
||
|
||
def start_worker_queue_service(self, start_queue):
|
||
"""
|
||
start queue service for engine worker communication
|
||
"""
|
||
address = (
|
||
self.cfg.master_ip,
|
||
int(self.cfg.engine_worker_queue_port[self.cfg.parallel_config.local_data_parallel_id]),
|
||
)
|
||
|
||
if start_queue and (self.cfg.host_ip == self.cfg.master_ip or self.cfg.master_ip == "0.0.0.0"):
|
||
llm_logger.info(f"Starting engine worker queue server service at {address}")
|
||
self.engine_worker_queue_server = EngineWorkerQueue(
|
||
address=address,
|
||
is_server=True,
|
||
num_client=self.cfg.parallel_config.tensor_parallel_size,
|
||
local_data_parallel_size=self.cfg.parallel_config.data_parallel_size,
|
||
)
|
||
|
||
if (
|
||
self.cfg.cache_config.enable_prefix_caching
|
||
or self.cfg.splitwise_role != "mixed"
|
||
and self.cfg.parallel_config.local_data_parallel_id == 0
|
||
):
|
||
self.cache_task_queue = EngineCacheQueue(
|
||
address=(
|
||
self.cfg.master_ip,
|
||
self.cfg.cache_config.cache_queue_port,
|
||
),
|
||
authkey=b"cache_queue_service",
|
||
is_server=True,
|
||
num_client=self.cfg.parallel_config.tensor_parallel_size,
|
||
client_id=-1,
|
||
local_data_parallel_size=self.cfg.parallel_config.data_parallel_size,
|
||
)
|
||
llm_logger.info(
|
||
f"local {min(self.cfg.worker_num_per_node * self.cfg.node_rank + self.cfg.parallel_config.local_data_parallel_id,self.cfg.parallel_config.data_parallel_size - 1)}"
|
||
)
|
||
self.engine_worker_queue = EngineWorkerQueue(
|
||
address=address,
|
||
is_server=False,
|
||
num_client=self.cfg.parallel_config.tensor_parallel_size,
|
||
client_id=0,
|
||
local_data_parallel_size=self.cfg.parallel_config.data_parallel_size,
|
||
local_data_parallel_id=min(
|
||
self.cfg.worker_num_per_node // self.cfg.parallel_config.tensor_parallel_size * self.cfg.node_rank
|
||
+ self.cfg.parallel_config.local_data_parallel_id,
|
||
self.cfg.parallel_config.data_parallel_size - 1,
|
||
),
|
||
)
|
||
|
||
def insert_tasks(self, tasks, current_id=-1, allocated=False):
|
||
"""
|
||
Insert tasks to engine.
|
||
"""
|
||
for task in tasks:
|
||
start_span_request("DEQUEUE", task, trace.SpanKind.CONSUMER)
|
||
|
||
# TODO 返回至 scheduler
|
||
if allocated:
|
||
current_tasks = []
|
||
for task in tasks:
|
||
cur_task_idx = self.resource_manager.req_dict[task.request_id]
|
||
del self.resource_manager.req_dict[task.request_id]
|
||
cur_task = self.resource_manager.tasks_list[cur_task_idx]
|
||
cur_task.prompt_token_ids[0] = task.outputs.token_ids[0]
|
||
if self.cfg.speculative_config.method in ["mtp"] and self.cfg.splitwise_role == "decode":
|
||
cur_task.draft_token_ids = copy.deepcopy(task.outputs.draft_token_ids)
|
||
if task.error_code != 200:
|
||
self.resource_manager.stop_flags[cur_task_idx] = True
|
||
self.resource_manager.tasks_list[cur_task_idx] = None
|
||
self.resource_manager._recycle_block_tables(cur_task)
|
||
if task.request_id in self.token_processor.tokens_counter:
|
||
del self.token_processor.tokens_counter[task.request_id]
|
||
self.scheduler.put_results([task])
|
||
llm_logger.warning(
|
||
f"{task.request_id} prefill failed with msg:{task.error_msg}, recycle resource."
|
||
)
|
||
continue
|
||
self.token_processor.tokens_counter[task.request_id] = 1
|
||
current_tasks.append(cur_task)
|
||
self.engine_worker_queue.put_tasks((current_tasks, self.resource_manager.real_bsz))
|
||
return True
|
||
|
||
self.resource_manager.check_and_free_block_tables()
|
||
|
||
if not isinstance(tasks, list):
|
||
tasks = [tasks]
|
||
|
||
for item in tasks:
|
||
item.schedule_start_time = time.time()
|
||
|
||
available_batch = np.sum(self.resource_manager.stop_flags)
|
||
if len(tasks) > available_batch:
|
||
llm_logger.error(f"Inserting batch:{len(tasks)} exceeds the available batch:{available_batch}.")
|
||
llm_logger.error("The exceeded part will be ignored!")
|
||
tasks = tasks[:available_batch]
|
||
|
||
req_ids = [t.request_id for t in tasks]
|
||
|
||
tasks = self.resource_manager.allocate_resources_for_new_tasks(tasks)
|
||
|
||
if not tasks:
|
||
error_msg = f"The request required resources is exceed the limit, request id={req_ids}."
|
||
llm_logger.error(error_msg)
|
||
raise EngineError(error_msg, error_code=500)
|
||
return False
|
||
|
||
self.token_processor.number_of_tasks += len(tasks)
|
||
|
||
is_decode = False
|
||
is_prefill = False
|
||
for i in range(len(tasks)):
|
||
if tasks[i].disaggregate_info is not None:
|
||
if tasks[i].disaggregate_info["role"] == "decode":
|
||
is_decode = True
|
||
else:
|
||
is_prefill = True
|
||
self.token_processor.number_of_input_tokens += tasks[i].prompt_token_ids_len
|
||
|
||
self.split_connector.send_cache_infos(tasks, current_id)
|
||
if not is_decode:
|
||
llm_logger.info(f"Tasks are sent to engine, req_ids={req_ids}")
|
||
for task in tasks:
|
||
task.inference_start_time = time.time()
|
||
if not is_prefill:
|
||
if not self.cfg.model_config.enable_mm:
|
||
self.update_requests_chunk_size(tasks)
|
||
else:
|
||
self.update_mm_requests_chunk_size(tasks)
|
||
self.engine_worker_queue.put_tasks((tasks, self.resource_manager.real_bsz))
|
||
if is_prefill and self.cfg.scheduler_config.name != "splitwise":
|
||
self.engine_worker_queue.available_prefill_instances.put(1)
|
||
return True
|
||
|
||
def task_is_finished(self, index):
|
||
"""
|
||
judge if the task is finished
|
||
"""
|
||
assert index < len(self.resource_manager.stop_flags)
|
||
return self.resource_manager.stop_flags[index]
|
||
|
||
def all_tasks_finished(self):
|
||
"""
|
||
judge if all tasks are finished
|
||
"""
|
||
return np.sum(self.resource_manager.stop_flags) == len(self.resource_manager.stop_flags)
|
||
|
||
def update_requests_chunk_size(self, requests):
|
||
"""
|
||
update each request's chunk size info
|
||
"""
|
||
|
||
def update_tokens(idx, chunk_size, update_chunk=False):
|
||
nonlocal remain_batched_tokens, chunk_request_num
|
||
if update_chunk:
|
||
requests_chunk[idx][-1] += chunk_size
|
||
else:
|
||
requests_chunk[idx].append(chunk_size)
|
||
remain_batched_tokens -= chunk_size
|
||
current_request_size[idx] -= chunk_size
|
||
if current_request_size[idx] <= 0:
|
||
chunk_request_num -= 1
|
||
|
||
if not self.cfg.cache_config.enable_chunked_prefill or len(requests) == 0:
|
||
return
|
||
|
||
current_request_size = [request.prompt_token_ids_len for request in requests]
|
||
requests_chunk = [[] for _ in range(len(requests))]
|
||
chunk_request_num = len(current_request_size)
|
||
while chunk_request_num >= 1:
|
||
remain_batched_tokens = self.cfg.max_num_batched_tokens
|
||
for idx in range(len(current_request_size)):
|
||
if current_request_size[idx] <= 0:
|
||
continue
|
||
chunk_size = min(
|
||
current_request_size[idx],
|
||
self.partial_chunked_tokens[chunk_request_num],
|
||
)
|
||
update_tokens(idx, chunk_size)
|
||
|
||
while remain_batched_tokens >= self.cfg.cache_config.block_size:
|
||
# 当前 max_num_batched_tokens 还有剩余时,优先分配给较短的请求
|
||
waiting_requests = [input_lens for input_lens in current_request_size if input_lens > 0]
|
||
if len(waiting_requests) == 0:
|
||
break
|
||
|
||
available_tokens = (
|
||
remain_batched_tokens // self.cfg.cache_config.block_size * self.cfg.cache_config.block_size
|
||
)
|
||
append_idx = current_request_size.index(min(waiting_requests))
|
||
chunk_size = min(
|
||
current_request_size[append_idx],
|
||
self.partial_chunked_tokens[chunk_request_num],
|
||
available_tokens,
|
||
)
|
||
update_tokens(append_idx, chunk_size, update_chunk=True)
|
||
|
||
for idx in range(len(requests)):
|
||
requests[idx].set("prefill_chunk_info", requests_chunk[idx])
|
||
|
||
def update_mm_requests_chunk_size(self, requests):
|
||
"""
|
||
update each multimodal request's chunk size info
|
||
"""
|
||
if not self.cfg.cache_config.enable_chunked_prefill or len(requests) == 0:
|
||
return
|
||
|
||
for request in requests:
|
||
inputs = request.multimodal_inputs
|
||
# 兼容没有图片和视频的情况
|
||
if inputs["images"] is None:
|
||
inputs["image_type_ids"] = np.array([], dtype="int32")
|
||
inputs["grid_thw"] = np.array([], dtype="int64")
|
||
inputs["images"] = np.array([], dtype="uint8")
|
||
input_ids = paddle.to_tensor(inputs["input_ids"], dtype="int64")
|
||
image_type_ids = paddle.to_tensor(inputs["image_type_ids"], dtype="int32")
|
||
image_mask = input_ids == self.data_processor.image_patch_id
|
||
image_token_sum = paddle.full(shape=[len(input_ids) + 1], fill_value=0, dtype="int32")
|
||
image_token_sum[1:] = paddle.cumsum(image_mask.cast("int32"), dtype="int32")
|
||
grid_thw = []
|
||
for one in inputs["grid_thw"]:
|
||
if one[0] == 1:
|
||
grid_thw.append(one)
|
||
else:
|
||
grid_thw.extend([[2, one[1], one[2]]] * (one[0] // 2))
|
||
grid_thw = paddle.to_tensor(grid_thw, dtype="int64")
|
||
|
||
from fastdeploy.model_executor.ops.gpu import get_mm_split_fuse
|
||
|
||
chunk_image_num, chunk_seq_len = get_mm_split_fuse(
|
||
input_ids,
|
||
image_type_ids,
|
||
image_token_sum,
|
||
grid_thw,
|
||
self.data_processor.image_patch_id,
|
||
len(grid_thw),
|
||
0,
|
||
len(input_ids),
|
||
0,
|
||
self.partial_chunked_tokens[1],
|
||
2048,
|
||
)
|
||
|
||
grid_thw = grid_thw.numpy().reshape([-1, 3])
|
||
num_chunks = len(chunk_image_num)
|
||
chunks_info = []
|
||
input_ids_st, image_type_ids_st, grid_thw_st, patch_st = 0, 0, 0, 0
|
||
for idx in range(num_chunks):
|
||
chunk_input_ids = inputs["input_ids"][input_ids_st : input_ids_st + chunk_seq_len[idx]]
|
||
chunk_token_type_ids = inputs["token_type_ids"][input_ids_st : input_ids_st + chunk_seq_len[idx]]
|
||
actual_image_num = np.sum(grid_thw[grid_thw_st : grid_thw_st + chunk_image_num[idx], 0])
|
||
chunk_image_type_ids = inputs["image_type_ids"][
|
||
image_type_ids_st : image_type_ids_st + actual_image_num
|
||
]
|
||
chunk_grid_thw = grid_thw[grid_thw_st : grid_thw_st + chunk_image_num[idx]]
|
||
chunk_patch_num = np.sum(np.prod(chunk_grid_thw, axis=1))
|
||
chunk_images = inputs["images"][patch_st : patch_st + chunk_patch_num]
|
||
|
||
chunks_info.append(
|
||
{
|
||
"input_ids": chunk_input_ids,
|
||
"token_type_ids": chunk_token_type_ids,
|
||
"image_type_ids": (chunk_image_type_ids if chunk_image_type_ids.shape[0] else None),
|
||
"grid_thw": (chunk_grid_thw if chunk_grid_thw.shape[0] else None),
|
||
"images": (chunk_images if chunk_images.shape[0] else None),
|
||
"position_ids": None,
|
||
}
|
||
)
|
||
|
||
input_ids_st += chunk_seq_len[idx]
|
||
image_type_ids_st += actual_image_num
|
||
grid_thw_st += chunk_image_num[idx]
|
||
patch_st += chunk_patch_num
|
||
request.set("prefill_chunk_info", chunks_info)
|
||
|
||
def _insert_task_to_worker(self):
|
||
"""
|
||
Insert task to engine thread, monitor scheduler request queue.
|
||
if the engine has resource, insert task to engine
|
||
"""
|
||
current_id = -1
|
||
while getattr(self, "running", True):
|
||
try:
|
||
if self.resource_manager.available_batch() == 0:
|
||
time.sleep(0.001)
|
||
continue
|
||
if self.engine_worker_queue.num_tasks() > 0:
|
||
time.sleep(0.001)
|
||
continue
|
||
if hasattr(self, "exist_prefill_task_signal") and self.exist_prefill_task_signal.value[0] > 0:
|
||
if self.cfg.splitwise_role == "mixed" or self.split_connector.has_splitwise_tasks():
|
||
time.sleep(0.005)
|
||
continue
|
||
if self.engine_worker_queue.num_cache_infos() > 0:
|
||
time.sleep(0.001)
|
||
continue
|
||
if len(self.split_connector.current_request_ids) > 0:
|
||
time.sleep(0.001)
|
||
continue
|
||
|
||
num_prefill_batch = min(
|
||
int(self.resource_manager.available_batch()),
|
||
self.cfg.max_prefill_batch,
|
||
)
|
||
|
||
self.resource_manager.check_and_free_block_tables()
|
||
tasks = self.scheduler.get_requests(
|
||
available_blocks=self.resource_manager.available_block_num(),
|
||
block_size=self.cfg.cache_config.block_size,
|
||
reserved_output_blocks=self.cfg.cache_config.enc_dec_block_num,
|
||
max_num_batched_tokens=self.cfg.max_num_batched_tokens,
|
||
batch=num_prefill_batch,
|
||
)
|
||
|
||
if len(tasks) == 0:
|
||
time.sleep(0.001)
|
||
continue
|
||
|
||
current_id = (current_id + 1) % 100003
|
||
if self.cfg.splitwise_role != "mixed":
|
||
llm_logger.info("Inserting splitwise tasks")
|
||
self.split_connector.send_splitwise_tasks(tasks, current_id)
|
||
|
||
self.insert_tasks(tasks, current_id)
|
||
|
||
main_process_metrics.num_requests_waiting.dec(len(tasks))
|
||
main_process_metrics.num_requests_running.inc(len(tasks))
|
||
except Exception as e:
|
||
err_msg = f"Error happend while insert task to engine: {e}, {traceback.format_exc()!s}."
|
||
llm_logger.error(err_msg)
|
||
|
||
def _scheduler_task_to_worker_v1(self):
|
||
"""
|
||
Insert tasks to worker with scheduler v1 (ENABLE_V1_KVCACHE_SCHEDULER=1).
|
||
"""
|
||
get_request_pool = ThreadPoolExecutor(max_workers=1)
|
||
is_fetching = False
|
||
|
||
def _fetch_request():
|
||
nonlocal is_fetching
|
||
is_fetching = True
|
||
num_prefill_batch = min(
|
||
int(self.resource_manager.available_batch()),
|
||
self.cfg.max_prefill_batch,
|
||
)
|
||
|
||
if self.cfg.model_config.enable_mm:
|
||
self.resource_manager.check_and_free_block_tables()
|
||
available_blocks = self.resource_manager.available_block_num()
|
||
else:
|
||
available_blocks = self.cfg.cache_config.max_block_num_per_seq
|
||
|
||
tasks = self.scheduler.get_requests(
|
||
available_blocks=available_blocks,
|
||
block_size=self.cfg.cache_config.block_size,
|
||
reserved_output_blocks=self.cfg.cache_config.enc_dec_block_num,
|
||
max_num_batched_tokens=self.cfg.max_model_len,
|
||
batch=num_prefill_batch,
|
||
)
|
||
# Fetch requests and add them to the scheduling queue
|
||
for task in tasks:
|
||
self.resource_manager.add_request(task)
|
||
is_fetching = False
|
||
|
||
while self.running:
|
||
try:
|
||
if self.engine_worker_queue.num_tasks() > 0:
|
||
time.sleep(0.001)
|
||
continue
|
||
if (
|
||
len(self.resource_manager.waiting) == 0
|
||
and (not is_fetching)
|
||
and self.exist_prefill_task_signal.value[0] == 0
|
||
):
|
||
get_request_pool.submit(_fetch_request)
|
||
# 2. Schedule requests
|
||
tasks = self.resource_manager.schedule()
|
||
# 3. Send to engine
|
||
if tasks:
|
||
self.resource_manager.get_real_bsz()
|
||
self.engine_worker_queue.put_tasks((tasks, self.resource_manager.real_bsz))
|
||
else:
|
||
time.sleep(0.005)
|
||
|
||
except Exception as e:
|
||
err_msg = "Error happend while insert task to engine: {}, {}.".format(e, str(traceback.format_exc()))
|
||
llm_logger.error(err_msg)
|
||
|
||
def start_zmq_service(self, api_server_pid=None):
|
||
if api_server_pid is None:
|
||
return
|
||
self.api_server_pid = api_server_pid
|
||
if envs.FD_ENABLE_INTERNAL_ADAPTER:
|
||
self.recv_request_server = ZmqTcpServer(port=envs.FD_ZMQ_RECV_REQUEST_SERVER_PORT, mode=zmq.PULL)
|
||
self.send_response_server = ZmqTcpServer(port=envs.FD_ZMQ_SEND_RESPONSE_SERVER_PORT, mode=zmq.ROUTER)
|
||
self.internal_adapter = InternalAdapter(
|
||
cfg=self.cfg, engine=self, dp_rank=self.cfg.node_rank * self.cfg.worker_num_per_node
|
||
)
|
||
else:
|
||
self.recv_request_server = ZmqIpcServer(name=api_server_pid, mode=zmq.PULL)
|
||
self.send_response_server = ZmqIpcServer(name=api_server_pid, mode=zmq.ROUTER)
|
||
self.recv_result_handle_thread = threading.Thread(
|
||
target=self.send_response_server.recv_result_handle, daemon=True
|
||
)
|
||
self.recv_result_handle_thread.start()
|
||
time.sleep(3)
|
||
self.insert_task_to_scheduler_thread = threading.Thread(target=self._insert_zmq_task_to_scheduler, daemon=True)
|
||
self.insert_task_to_scheduler_thread.start()
|
||
|
||
self.receive_output_thread = threading.Thread(target=self._zmq_send_generated_tokens, daemon=True)
|
||
self.receive_output_thread.start()
|
||
|
||
def _insert_zmq_task_to_scheduler(self):
|
||
added_requests: Dict[str, int] = dict()
|
||
while self.running:
|
||
try:
|
||
block = True if len(added_requests) == 0 else False
|
||
if not self.cfg.model_config.enable_mm:
|
||
err, data = self.recv_request_server.receive_json_once(block)
|
||
else:
|
||
err, data = self.recv_request_server.receive_pyobj_once(block)
|
||
if err is not None:
|
||
llm_logger.error(f"Engine stops inserting zmq task into scheduler, err:{err}")
|
||
break
|
||
|
||
request, insert_task = None, []
|
||
results: List[Tuple[str, Optional[str]]] = list()
|
||
if data:
|
||
err_msg = None
|
||
try:
|
||
request = Request.from_dict(data)
|
||
start_span("ENQUEUE_ZMQ", data, trace.SpanKind.PRODUCER)
|
||
main_process_metrics.requests_number.inc()
|
||
llm_logger.debug(f"Receive request: {request}")
|
||
except Exception as e:
|
||
llm_logger.error(f"Receive request error: {e}, {traceback.format_exc()!s}")
|
||
err_msg = str(e)
|
||
results.append((data["request_id"], err_msg))
|
||
|
||
if self.guided_decoding_checker is not None and err_msg is None:
|
||
request, err_msg = self.guided_decoding_checker.schema_format(request)
|
||
if err_msg is not None:
|
||
llm_logger.error(f"Receive request error: {err_msg}")
|
||
results.append((request.request_id, err_msg))
|
||
|
||
if err_msg is None:
|
||
insert_task.append(request)
|
||
|
||
response = self.scheduler.put_requests(insert_task)
|
||
results.extend(response)
|
||
|
||
if request:
|
||
if request.request_id not in added_requests:
|
||
added_requests[request.request_id] = 0
|
||
added_requests[request.request_id] += 1
|
||
|
||
for request_id, failed in results:
|
||
if request_id in added_requests:
|
||
added_requests[request_id] -= 1
|
||
if added_requests[request_id] == 0:
|
||
added_requests.pop(request_id)
|
||
|
||
if failed is None:
|
||
main_process_metrics.num_requests_waiting.inc(1)
|
||
continue
|
||
|
||
error_result = RequestOutput(
|
||
request_id=request_id,
|
||
finished=True,
|
||
error_code=500,
|
||
error_msg=failed,
|
||
)
|
||
# Since the request is not in scheduler
|
||
# Send result by zmq directly
|
||
self.send_response_server.send_response(request_id, [error_result])
|
||
except Exception as e:
|
||
llm_logger.error(
|
||
f"Error happend while receving new request from zmq, details={e}, "
|
||
f"traceback={traceback.format_exc()}"
|
||
)
|
||
|
||
def _zmq_send_generated_tokens(self):
|
||
"""
|
||
Recieve output for zmq
|
||
"""
|
||
while self.running:
|
||
try:
|
||
results = self.scheduler.get_results()
|
||
if len(results) == 0:
|
||
time.sleep(0.005)
|
||
continue
|
||
for request_id, contents in results.items():
|
||
self.send_response_server.send_response(request_id, contents)
|
||
|
||
except Exception as e:
|
||
llm_logger.error(f"Unexcepted error happend: {e}, {traceback.format_exc()!s}")
|
||
|
||
def split_mode_get_tasks(self):
|
||
"""
|
||
Split mode get tasks
|
||
"""
|
||
|
||
def receiver_loop():
|
||
while self.running:
|
||
try:
|
||
|
||
processed_indices = []
|
||
for idx, task in enumerate(self.waiting_requests):
|
||
if self.resource_manager.is_resource_sufficient(task.prompt_token_ids_len):
|
||
self.insert_tasks([task])
|
||
llm_logger.info(f"Resource available, processing task {task.request_id}")
|
||
processed_indices.append(idx)
|
||
else:
|
||
llm_logger.debug(f"Still waiting for resources {task.request_id}")
|
||
break
|
||
|
||
for idx in sorted(processed_indices, reverse=True):
|
||
self.waiting_requests.pop(idx)
|
||
|
||
if not self.engine_worker_queue.disaggregate_queue_empty():
|
||
items = self.engine_worker_queue.get_disaggregated_tasks()
|
||
for item in items:
|
||
role = item[0]
|
||
tasks = item[1]
|
||
|
||
if role == "prefill":
|
||
for task in tasks:
|
||
task.max_tokens = task.min_tokens = 2
|
||
self.insert_tasks(tasks)
|
||
|
||
elif role == "decode":
|
||
if hasattr(tasks[0], "finished"):
|
||
if not isinstance(tasks, list):
|
||
tasks = [tasks]
|
||
for task in tasks:
|
||
task.finished = False
|
||
self.insert_tasks(tasks, allocated=True)
|
||
|
||
if self.cfg.innode_prefill_ports is not None:
|
||
self.scheduler.put_results(tasks)
|
||
|
||
else:
|
||
if len(self.waiting_requests):
|
||
llm_logger.info(f"Waiting for resource for task {tasks[0].request_id}")
|
||
self.waiting_requests.extend(tasks)
|
||
else:
|
||
new_waiting = []
|
||
for task in tasks:
|
||
if self.resource_manager.is_resource_sufficient(task.prompt_token_ids_len):
|
||
self.insert_tasks([task])
|
||
else:
|
||
new_waiting.append(task)
|
||
|
||
if new_waiting:
|
||
self.waiting_requests.extend(new_waiting)
|
||
llm_logger.info(f"Added {len(new_waiting)} tasks to waiting queue")
|
||
|
||
else:
|
||
time.sleep(0.001)
|
||
|
||
except Exception as e:
|
||
llm_logger.error(f"Error in main loop: {e}")
|
||
time.sleep(0.1)
|
||
|
||
threading.Thread(target=receiver_loop, daemon=True).start()
|
||
|
||
def start_cache_service(self, device_ids, ipc_signal_suffix, create_cache_tensor):
|
||
return self.resource_manager.cache_manager.launch_cache_manager(
|
||
cache_config=self.cfg.cache_config,
|
||
tensor_parallel_size=self.cfg.parallel_config.tensor_parallel_size,
|
||
device_ids=device_ids,
|
||
pod_ip=self.cfg.master_ip,
|
||
engine_worker_queue_port=int(
|
||
self.cfg.engine_worker_queue_port[self.cfg.parallel_config.local_data_parallel_id]
|
||
),
|
||
pid_suffix=ipc_signal_suffix,
|
||
create_cache_tensor=create_cache_tensor,
|
||
)
|
||
|
||
def check_and_free_block_tables(self):
|
||
self.resource_manager.check_and_free_block_tables()
|
||
|
||
def clear_data(self):
|
||
try:
|
||
llm_logger.info("Clear Data: Start")
|
||
self.token_processor.clear_data()
|
||
self.engine_worker_queue.clear_data()
|
||
self.zmq_server.req_dict.clear()
|
||
llm_logger.info("Clear Data: Successfully")
|
||
return True
|
||
except Exception as e:
|
||
llm_logger.error(f"Clear data error: {e}")
|
||
return False
|
||
|
||
def _exit_sub_services(self):
|
||
"""
|
||
exit sub services
|
||
"""
|
||
self.running = False
|
||
self.engine_worker_queue_server.cleanup()
|
||
self.exist_task_signal.clear()
|
||
self.exist_swapped_task_signal.clear()
|
||
self.worker_healthy_live_signal.clear()
|
||
self.cache_ready_signal.clear()
|
||
self.swap_space_ready_signal.clear()
|
||
self.exist_prefill_task_signal.clear()
|
||
self.model_weights_status_signal.clear()
|
||
self.prefix_tree_status_signal.clear()
|
||
self.kv_cache_status_signal.clear()
|
||
if hasattr(self, "send_response_server") and self.send_response_server is not None:
|
||
self.send_response_server.close()
|
||
if hasattr(self, "recv_request_server") and self.recv_request_server is not None:
|
||
self.recv_request_server.close()
|
||
if hasattr(self, "recv_control_cmd_server") and self.recv_control_cmd_server is not None:
|
||
self.recv_control_cmd_server.close()
|