[Model] add detection model : FastestDet (#842)

* model done, CLA fix

* remove letter_box and ConvertAndPermute, use resize hwc2chw and convert in preprocess

* remove useless values in preprocess

* remove useless values in preprocess

* fix reviewed problem

* fix reviewed problem pybind

* fix reviewed problem pybind

* postprocess fix

* add test_fastestdet.py, coco_val2017_500 fixed done, ready to review

* fix reviewed problem

* python/.../fastestdet.py

* fix infer.cc, preprocess, python/fastestdet.py

* fix examples/python/infer.py
This commit is contained in:
guxukai
2022-12-28 10:49:17 +08:00
committed by GitHub
parent 4f2879af81
commit 866d044898
17 changed files with 1172 additions and 0 deletions

View File

@@ -0,0 +1,14 @@
PROJECT(infer_demo C CXX)
CMAKE_MINIMUM_REQUIRED (VERSION 3.10)
# Specifies the path to the fastdeploy library after you have downloaded it
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
# Include the FastDeploy dependency header file
include_directories(${FASTDEPLOY_INCS})
add_executable(infer_demo ${PROJECT_SOURCE_DIR}/infer.cc)
# Add the FastDeploy library dependency
target_link_libraries(infer_demo ${FASTDEPLOY_LIBS})

View File

@@ -0,0 +1,87 @@
# FastestDet C++部署示例
本目录下提供`infer.cc`快速完成FastestDet在CPU/GPU以及GPU上通过TensorRT加速部署的示例。
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. 根据开发环境下载预编译部署库和samples代码参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
以Linux上CPU推理为例在本目录执行如下命令即可完成编译测试
```bash
mkdir build
cd build
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-1.0.3.tgz
tar xvf fastdeploy-linux-x64-1.0.3.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-1.0.3
make -j
#下载官方转换好的FastestDet模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/FastestDet.onnx
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
# CPU推理
./infer_demo FastestDet.onnx 000000014439.jpg 0
# GPU推理
./infer_demo FastestDet.onnx 000000014439.jpg 1
# GPU上TensorRT推理
./infer_demo FastestDet.onnx 000000014439.jpg 2
```
运行完成可视化结果如下图所示
<img width="640" src="https://user-images.githubusercontent.com/44280887/206176291-61eb118b-391b-4431-b79e-a393b9452138.jpg">
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
## FastestDet C++接口
### FastestDet类
```c++
fastdeploy::vision::detection::FastestDet(
const string& model_file,
const string& params_file = "",
const RuntimeOption& runtime_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::ONNX)
```
FastestDet模型加载和初始化其中model_file为导出的ONNX模型格式。
**参数**
> * **model_file**(str): 模型文件路径
> * **params_file**(str): 参数文件路径当模型格式为ONNX时此参数传入空字符串即可
> * **runtime_option**(RuntimeOption): 后端推理配置默认为None即采用默认配置
> * **model_format**(ModelFormat): 模型格式默认为ONNX格式
#### Predict函数
> ```c++
> FastestDet::Predict(cv::Mat* im, DetectionResult* result,
> float conf_threshold = 0.65,
> float nms_iou_threshold = 0.45)
> ```
>
> 模型预测接口,输入图像直接输出检测结果。
>
> **参数**
>
> > * **im**: 输入图像注意需为HWCBGR格式
> > * **result**: 检测结果,包括检测框,各个框的置信度, DetectionResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
> > * **conf_threshold**: 检测框置信度过滤阈值
> > * **nms_iou_threshold**: NMS处理过程中iou阈值
### 类成员变量
#### 预处理参数
用户可按照自己的实际需求,修改下列预处理参数,从而影响最终的推理和部署效果
> > * **size**(vector&lt;int&gt;): 通过此参数修改预处理过程中resize的大小包含两个整型元素表示[width, height], 默认值为[352, 352]
- [模型介绍](../../)
- [Python部署](../python)
- [视觉模型预测结果](../../../../../docs/api/vision_results/)
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)

View File

@@ -0,0 +1,105 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision.h"
void CpuInfer(const std::string& model_file, const std::string& image_file) {
auto model = fastdeploy::vision::detection::FastestDet(model_file);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
auto im = cv::imread(image_file);
fastdeploy::vision::DetectionResult res;
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::VisDetection(im, res);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
void GpuInfer(const std::string& model_file, const std::string& image_file) {
auto option = fastdeploy::RuntimeOption();
option.UseGpu();
auto model = fastdeploy::vision::detection::FastestDet(model_file, "", option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
auto im = cv::imread(image_file);
fastdeploy::vision::DetectionResult res;
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::VisDetection(im, res);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
void TrtInfer(const std::string& model_file, const std::string& image_file) {
auto option = fastdeploy::RuntimeOption();
option.UseGpu();
option.UseTrtBackend();
option.SetTrtInputShape("images", {1, 3, 352, 352});
auto model = fastdeploy::vision::detection::FastestDet(model_file, "", option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
auto im = cv::imread(image_file);
fastdeploy::vision::DetectionResult res;
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::VisDetection(im, res);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
int main(int argc, char* argv[]) {
if (argc < 4) {
std::cout << "Usage: infer_demo path/to/model path/to/image run_option, "
"e.g ./infer_model ./FastestDet.onnx ./test.jpeg 0"
<< std::endl;
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
"with gpu; 2: run with gpu and use tensorrt backend."
<< std::endl;
return -1;
}
if (std::atoi(argv[3]) == 0) {
CpuInfer(argv[1], argv[2]);
} else if (std::atoi(argv[3]) == 1) {
GpuInfer(argv[1], argv[2]);
} else if (std::atoi(argv[3]) == 2) {
TrtInfer(argv[1], argv[2]);
}
return 0;
}

View File

@@ -0,0 +1,74 @@
# FastestDet Python部署示例
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. FastDeploy Python whl包安装参考[FastDeploy Python安装](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
本目录下提供`infer.py`快速完成FastestDet在CPU/GPU以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
```bash
#下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd examples/vision/detection/fastestdet/python/
#下载fastestdet模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/FastestDet.onnx
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
# CPU推理
python infer.py --model FastestDet.onnx --image 000000014439.jpg --device cpu
# GPU推理
python infer.py --model FastestDet.onnx --image 000000014439.jpg --device gpu
# GPU上使用TensorRT推理
python infer.py --model FastestDet.onnx --image 000000014439.jpg --device gpu --use_trt True
```
运行完成可视化结果如下图所示
<img width="640" src="https://user-images.githubusercontent.com/44280887/206176291-61eb118b-391b-4431-b79e-a393b9452138.jpg">
## FastestDet Python接口
```python
fastdeploy.vision.detection.FastestDet(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
```
FastestDet模型加载和初始化其中model_file为导出的ONNX模型格式
**参数**
> * **model_file**(str): 模型文件路径
> * **params_file**(str): 参数文件路径当模型格式为ONNX格式时此参数无需设定
> * **runtime_option**(RuntimeOption): 后端推理配置默认为None即采用默认配置
> * **model_format**(ModelFormat): 模型格式默认为ONNX
### predict函数
> ```python
> FastestDet.predict(image_data)
> ```
>
> 模型预测接口,输入图像直接输出检测结果。
>
> **参数**
>
> > * **image_data**(np.ndarray): 输入数据注意需为HWCBGR格式
> **返回**
>
> > 返回`fastdeploy.vision.DetectionResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
### 类成员属性
#### 预处理参数
用户可按照自己的实际需求,修改下列预处理参数,从而影响最终的推理和部署效果
> > * **size**(list[int]): 通过此参数修改预处理过程中resize的大小包含两个整型元素表示[width, height], 默认值为[352, 352]
## 其它文档
- [FastestDet 模型介绍](..)
- [FastestDet C++部署](../cpp)
- [模型预测结果说明](../../../../../docs/api/vision_results/)
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)

View File

@@ -0,0 +1,51 @@
import fastdeploy as fd
import cv2
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--model", required=True, help="Path of FastestDet onnx model.")
parser.add_argument(
"--image", required=True, help="Path of test image file.")
parser.add_argument(
"--device",
type=str,
default='cpu',
help="Type of inference device, support 'cpu' or 'gpu'.")
parser.add_argument(
"--use_trt",
type=ast.literal_eval,
default=False,
help="Wether to use tensorrt.")
return parser.parse_args()
def build_option(args):
option = fd.RuntimeOption()
if args.device.lower() == "gpu":
option.use_gpu()
if args.use_trt:
option.use_trt_backend()
option.set_trt_input_shape("images", [1, 3, 352, 352])
return option
args = parse_arguments()
# Configure runtime and load model
runtime_option = build_option(args)
model = fd.vision.detection.FastestDet(args.model, runtime_option=runtime_option)
# Predict picture detection results
im = cv2.imread(args.image)
result = model.predict(im)
# Visualization of prediction results
vis_im = fd.vision.vis_detection(im, result)
cv2.imwrite("visualized_result.jpg", vis_im)
print("Visualized result save in ./visualized_result.jpg")

View File

@@ -22,6 +22,7 @@
#include "fastdeploy/vision/detection/contrib/scaledyolov4.h" #include "fastdeploy/vision/detection/contrib/scaledyolov4.h"
#include "fastdeploy/vision/detection/contrib/yolor.h" #include "fastdeploy/vision/detection/contrib/yolor.h"
#include "fastdeploy/vision/detection/contrib/yolov5/yolov5.h" #include "fastdeploy/vision/detection/contrib/yolov5/yolov5.h"
#include "fastdeploy/vision/detection/contrib/fastestdet/fastestdet.h"
#include "fastdeploy/vision/detection/contrib/yolov5lite.h" #include "fastdeploy/vision/detection/contrib/yolov5lite.h"
#include "fastdeploy/vision/detection/contrib/yolov6.h" #include "fastdeploy/vision/detection/contrib/yolov6.h"
#include "fastdeploy/vision/detection/contrib/yolov7/yolov7.h" #include "fastdeploy/vision/detection/contrib/yolov7/yolov7.h"

View File

@@ -0,0 +1,79 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/detection/contrib/fastestdet/fastestdet.h"
namespace fastdeploy {
namespace vision {
namespace detection {
FastestDet::FastestDet(const std::string& model_file, const std::string& params_file,
const RuntimeOption& custom_option,
const ModelFormat& model_format) {
if (model_format == ModelFormat::ONNX) {
valid_cpu_backends = {Backend::OPENVINO, Backend::ORT};
valid_gpu_backends = {Backend::ORT, Backend::TRT};
} else {
valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::LITE};
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
}
runtime_option = custom_option;
runtime_option.model_format = model_format;
runtime_option.model_file = model_file;
runtime_option.params_file = params_file;
initialized = Initialize();
}
bool FastestDet::Initialize() {
if (!InitRuntime()) {
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
return false;
}
return true;
}
bool FastestDet::Predict(const cv::Mat& im, DetectionResult* result) {
std::vector<DetectionResult> results;
if (!BatchPredict({im}, &results)) {
return false;
}
*result = std::move(results[0]);
return true;
}
bool FastestDet::BatchPredict(const std::vector<cv::Mat>& images, std::vector<DetectionResult>* results) {
std::vector<std::map<std::string, std::array<float, 2>>> ims_info;
std::vector<FDMat> fd_images = WrapMat(images);
if (!preprocessor_.Run(&fd_images, &reused_input_tensors_, &ims_info)) {
FDERROR << "Failed to preprocess the input image." << std::endl;
return false;
}
reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
if (!Infer(reused_input_tensors_, &reused_output_tensors_)) {
FDERROR << "Failed to inference by runtime." << std::endl;
return false;
}
if (!postprocessor_.Run(reused_output_tensors_, results, ims_info)) {
FDERROR << "Failed to postprocess the inference results by runtime." << std::endl;
return false;
}
return true;
}
} // namespace detection
} // namespace vision
} // namespace fastdeploy

View File

@@ -0,0 +1,76 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. //NOLINT
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/fastdeploy_model.h"
#include "fastdeploy/vision/detection/contrib/fastestdet/preprocessor.h"
#include "fastdeploy/vision/detection/contrib/fastestdet/postprocessor.h"
namespace fastdeploy {
namespace vision {
namespace detection {
/*! @brief FastestDet model object used when to load a FastestDet model exported by FastestDet.
*/
class FASTDEPLOY_DECL FastestDet : public FastDeployModel {
public:
/** \brief Set path of model file and the configuration of runtime.
*
* \param[in] model_file Path of model file, e.g ./fastestdet.onnx
* \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, if the model format is ONNX, this parameter will be ignored
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in "valid_cpu_backends"
* \param[in] model_format Model format of the loaded model, default is ONNX format
*/
FastestDet(const std::string& model_file, const std::string& params_file = "",
const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::ONNX);
std::string ModelName() const { return "fastestdet"; }
/** \brief Predict the detection result for an input image
*
* \param[in] img The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] result The output detection result will be writen to this structure
* \return true if the prediction successed, otherwise false
*/
virtual bool Predict(const cv::Mat& img, DetectionResult* result);
/** \brief Predict the detection results for a batch of input images
*
* \param[in] imgs, The input image list, each element comes from cv::imread()
* \param[in] results The output detection result list
* \return true if the prediction successed, otherwise false
*/
virtual bool BatchPredict(const std::vector<cv::Mat>& imgs,
std::vector<DetectionResult>* results);
/// Get preprocessor reference of FastestDet
virtual FastestDetPreprocessor& GetPreprocessor() {
return preprocessor_;
}
/// Get postprocessor reference of FastestDet
virtual FastestDetPostprocessor& GetPostprocessor() {
return postprocessor_;
}
protected:
bool Initialize();
FastestDetPreprocessor preprocessor_;
FastestDetPostprocessor postprocessor_;
};
} // namespace detection
} // namespace vision
} // namespace fastdeploy

View File

@@ -0,0 +1,85 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/pybind/main.h"
namespace fastdeploy {
void BindFastestDet(pybind11::module& m) {
pybind11::class_<vision::detection::FastestDetPreprocessor>(
m, "FastestDetPreprocessor")
.def(pybind11::init<>())
.def("run", [](vision::detection::FastestDetPreprocessor& self, std::vector<pybind11::array>& im_list) {
std::vector<vision::FDMat> images;
for (size_t i = 0; i < im_list.size(); ++i) {
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
}
std::vector<FDTensor> outputs;
std::vector<std::map<std::string, std::array<float, 2>>> ims_info;
if (!self.Run(&images, &outputs, &ims_info)) {
throw std::runtime_error("raise Exception('Failed to preprocess the input data in FastestDetPreprocessor.')");
}
for (size_t i = 0; i < outputs.size(); ++i) {
outputs[i].StopSharing();
}
return make_pair(outputs, ims_info);
})
.def_property("size", &vision::detection::FastestDetPreprocessor::GetSize, &vision::detection::FastestDetPreprocessor::SetSize);
pybind11::class_<vision::detection::FastestDetPostprocessor>(
m, "FastestDetPostprocessor")
.def(pybind11::init<>())
.def("run", [](vision::detection::FastestDetPostprocessor& self, std::vector<FDTensor>& inputs,
const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info) {
std::vector<vision::DetectionResult> results;
if (!self.Run(inputs, &results, ims_info)) {
throw std::runtime_error("raise Exception('Failed to postprocess the runtime result in FastestDetPostprocessor.')");
}
return results;
})
.def("run", [](vision::detection::FastestDetPostprocessor& self, std::vector<pybind11::array>& input_array,
const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info) {
std::vector<vision::DetectionResult> results;
std::vector<FDTensor> inputs;
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
if (!self.Run(inputs, &results, ims_info)) {
throw std::runtime_error("raise Exception('Failed to postprocess the runtime result in FastestDetPostprocessor.')");
}
return results;
})
.def_property("conf_threshold", &vision::detection::FastestDetPostprocessor::GetConfThreshold, &vision::detection::FastestDetPostprocessor::SetConfThreshold)
.def_property("nms_threshold", &vision::detection::FastestDetPostprocessor::GetNMSThreshold, &vision::detection::FastestDetPostprocessor::SetNMSThreshold);
pybind11::class_<vision::detection::FastestDet, FastDeployModel>(m, "FastestDet")
.def(pybind11::init<std::string, std::string, RuntimeOption,
ModelFormat>())
.def("predict",
[](vision::detection::FastestDet& self, pybind11::array& data) {
auto mat = PyArrayToCvMat(data);
vision::DetectionResult res;
self.Predict(mat, &res);
return res;
})
.def("batch_predict", [](vision::detection::FastestDet& self, std::vector<pybind11::array>& data) {
std::vector<cv::Mat> images;
for (size_t i = 0; i < data.size(); ++i) {
images.push_back(PyArrayToCvMat(data[i]));
}
std::vector<vision::DetectionResult> results;
self.BatchPredict(images, &results);
return results;
})
.def_property_readonly("preprocessor", &vision::detection::FastestDet::GetPreprocessor)
.def_property_readonly("postprocessor", &vision::detection::FastestDet::GetPostprocessor);
}
} // namespace fastdeploy

View File

@@ -0,0 +1,132 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/detection/contrib/fastestdet/postprocessor.h"
#include "fastdeploy/vision/utils/utils.h"
namespace fastdeploy {
namespace vision {
namespace detection {
FastestDetPostprocessor::FastestDetPostprocessor() {
conf_threshold_ = 0.65;
nms_threshold_ = 0.45;
}
float FastestDetPostprocessor::Sigmoid(float x) {
return 1.0f / (1.0f + exp(-x));
}
float FastestDetPostprocessor::Tanh(float x) {
return 2.0f / (1.0f + exp(-2 * x)) - 1;
}
bool FastestDetPostprocessor::Run(
const std::vector<FDTensor> &tensors, std::vector<DetectionResult> *results,
const std::vector<std::map<std::string, std::array<float, 2>>> &ims_info) {
int batch = 1;
results->resize(batch);
for (size_t bs = 0; bs < batch; ++bs) {
(*results)[bs].Clear();
// output (1,85,22,22) CHW
const float* output = reinterpret_cast<const float*>(tensors[0].Data()) + bs * tensors[0].shape[1] * tensors[0].shape[2] * tensors[0].shape[3];
int output_h = tensors[0].shape[2]; // out map height
int output_w = tensors[0].shape[3]; // out map weight
auto iter_out = ims_info[bs].find("output_shape");
auto iter_ipt = ims_info[bs].find("input_shape");
FDASSERT(iter_out != ims_info[bs].end() && iter_ipt != ims_info[bs].end(),
"Cannot find input_shape or output_shape from im_info.");
float ipt_h = iter_ipt->second[0];
float ipt_w = iter_ipt->second[1];
// handle output boxes from out map
for (int h = 0; h < output_h; h++) {
for (int w = 0; w < output_w; w++) {
// object score
int obj_score_index = (h * output_w) + w;
float obj_score = output[obj_score_index];
// find max class
int category = 0;
float max_score = 0.0f;
int class_num = tensors[0].shape[1]-5;
for (size_t i = 0; i < class_num; i++) {
obj_score_index =((5 + i) * output_h * output_w) + (h * output_w) + w;
float cls_score = output[obj_score_index];
if (cls_score > max_score) {
max_score = cls_score;
category = i;
}
}
float score = pow(max_score, 0.4) * pow(obj_score, 0.6);
// score threshold
if (score <= conf_threshold_) {
continue;
}
if (score > conf_threshold_) {
// handle box x y w h
int x_offset_index = (1 * output_h * output_w) + (h * output_w) + w;
int y_offset_index = (2 * output_h * output_w) + (h * output_w) + w;
int box_width_index = (3 * output_h * output_w) + (h * output_w) + w;
int box_height_index = (4 * output_h * output_w) + (h * output_w) + w;
float x_offset = Tanh(output[x_offset_index]);
float y_offset = Tanh(output[y_offset_index]);
float box_width = Sigmoid(output[box_width_index]);
float box_height = Sigmoid(output[box_height_index]);
float cx = (w + x_offset) / output_w;
float cy = (h + y_offset) / output_h;
// convert from [x, y, w, h] to [x1, y1, x2, y2]
(*results)[bs].boxes.emplace_back(std::array<float, 4>{
cx - box_width / 2.0f,
cy - box_height / 2.0f,
cx + box_width / 2.0f,
cy + box_height / 2.0f});
(*results)[bs].label_ids.push_back(category);
(*results)[bs].scores.push_back(score);
}
}
}
if ((*results)[bs].boxes.size() == 0) {
return true;
}
// scale boxes to origin shape
for (size_t i = 0; i < (*results)[bs].boxes.size(); ++i) {
(*results)[bs].boxes[i][0] = ((*results)[bs].boxes[i][0]) * ipt_w;
(*results)[bs].boxes[i][1] = ((*results)[bs].boxes[i][1]) * ipt_h;
(*results)[bs].boxes[i][2] = ((*results)[bs].boxes[i][2]) * ipt_w;
(*results)[bs].boxes[i][3] = ((*results)[bs].boxes[i][3]) * ipt_h;
}
//NMS
utils::NMS(&((*results)[bs]), nms_threshold_);
//clip box
for (size_t i = 0; i < (*results)[bs].boxes.size(); ++i) {
(*results)[bs].boxes[i][0] = std::max((*results)[bs].boxes[i][0], 0.0f);
(*results)[bs].boxes[i][1] = std::max((*results)[bs].boxes[i][1], 0.0f);
(*results)[bs].boxes[i][2] = std::min((*results)[bs].boxes[i][2], ipt_w);
(*results)[bs].boxes[i][3] = std::min((*results)[bs].boxes[i][3], ipt_h);
}
}
return true;
}
} // namespace detection
} // namespace vision
} // namespace fastdeploy

View File

@@ -0,0 +1,67 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
namespace fastdeploy {
namespace vision {
namespace detection {
/*! @brief Postprocessor object for FastestDet serials model.
*/
class FASTDEPLOY_DECL FastestDetPostprocessor {
public:
/** \brief Create a postprocessor instance for FastestDet serials model
*/
FastestDetPostprocessor();
/** \brief Process the result of runtime and fill to DetectionResult structure
*
* \param[in] tensors The inference result from runtime
* \param[in] result The output result of detection
* \param[in] ims_info The shape info list, record input_shape and output_shape
* \return true if the postprocess successed, otherwise false
*/
bool Run(const std::vector<FDTensor>& tensors,
std::vector<DetectionResult>* results,
const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info);
/// Set conf_threshold, default 0.65
void SetConfThreshold(const float& conf_threshold) {
conf_threshold_ = conf_threshold;
}
/// Get conf_threshold, default 0.65
float GetConfThreshold() const { return conf_threshold_; }
/// Set nms_threshold, default 0.45
void SetNMSThreshold(const float& nms_threshold) {
nms_threshold_ = nms_threshold;
}
/// Get nms_threshold, default 0.45
float GetNMSThreshold() const { return nms_threshold_; }
protected:
float conf_threshold_;
float nms_threshold_;
float Sigmoid(float x);
float Tanh(float x);
};
} // namespace detection
} // namespace vision
} // namespace fastdeploy

View File

@@ -0,0 +1,81 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/detection/contrib/fastestdet/preprocessor.h"
#include "fastdeploy/function/concat.h"
namespace fastdeploy {
namespace vision {
namespace detection {
FastestDetPreprocessor::FastestDetPreprocessor() {
size_ = {352, 352}; //{h,w}
}
bool FastestDetPreprocessor::Preprocess(FDMat* mat, FDTensor* output,
std::map<std::string, std::array<float, 2>>* im_info) {
// Record the shape of image and the shape of preprocessed image
(*im_info)["input_shape"] = {static_cast<float>(mat->Height()),
static_cast<float>(mat->Width())};
// process after image load
double ratio = (size_[0] * 1.0) / std::max(static_cast<float>(mat->Height()),
static_cast<float>(mat->Width()));
// fastestdet's preprocess steps
// 1. resize
// 2. convert_and_permute(swap_rb=false)
Resize::Run(mat, size_[0], size_[1]); //resize
std::vector<float> alpha = {1.0f / 255.0f, 1.0f / 255.0f, 1.0f / 255.0f};
std::vector<float> beta = {0.0f, 0.0f, 0.0f};
//convert to float and HWC2CHW
ConvertAndPermute::Run(mat, alpha, beta, false);
// Record output shape of preprocessed image
(*im_info)["output_shape"] = {static_cast<float>(mat->Height()),
static_cast<float>(mat->Width())};
mat->ShareWithTensor(output);
output->ExpandDim(0); // reshape to n, h, w, c
return true;
}
bool FastestDetPreprocessor::Run(std::vector<FDMat>* images, std::vector<FDTensor>* outputs,
std::vector<std::map<std::string, std::array<float, 2>>>* ims_info) {
if (images->size() == 0) {
FDERROR << "The size of input images should be greater than 0." << std::endl;
return false;
}
ims_info->resize(images->size());
outputs->resize(1);
// Concat all the preprocessed data to a batch tensor
std::vector<FDTensor> tensors(images->size());
for (size_t i = 0; i < images->size(); ++i) {
if (!Preprocess(&(*images)[i], &tensors[i], &(*ims_info)[i])) {
FDERROR << "Failed to preprocess input image." << std::endl;
return false;
}
}
if (tensors.size() == 1) {
(*outputs)[0] = std::move(tensors[0]);
} else {
function::Concat(tensors, &((*outputs)[0]), 0);
}
return true;
}
} // namespace detection
} // namespace vision
} // namespace fastdeploy

View File

@@ -0,0 +1,57 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
namespace fastdeploy {
namespace vision {
namespace detection {
/*! @brief Preprocessor object for FastestDet serials model.
*/
class FASTDEPLOY_DECL FastestDetPreprocessor {
public:
/** \brief Create a preprocessor instance for FastestDet serials model
*/
FastestDetPreprocessor();
/** \brief Process the input image and prepare input tensors for runtime
*
* \param[in] images The input image data list, all the elements are returned by cv::imread()
* \param[in] outputs The output tensors which will feed in runtime
* \param[in] ims_info The shape info list, record input_shape and output_shape
* \return true if the preprocess successed, otherwise false
*/
bool Run(std::vector<FDMat>* images, std::vector<FDTensor>* outputs,
std::vector<std::map<std::string, std::array<float, 2>>>* ims_info);
/// Set target size, tuple of (width, height), default size = {352, 352}
void SetSize(const std::vector<int>& size) { size_ = size; }
/// Get target size, tuple of (width, height), default size = {352, 352}
std::vector<int> GetSize() const { return size_; }
protected:
bool Preprocess(FDMat* mat, FDTensor* output,
std::map<std::string, std::array<float, 2>>* im_info);
// target size, tuple of (width, height), default size = {352, 352}
std::vector<int> size_;
};
} // namespace detection
} // namespace vision
} // namespace fastdeploy

View File

@@ -22,6 +22,7 @@ void BindYOLOR(pybind11::module& m);
void BindYOLOv6(pybind11::module& m); void BindYOLOv6(pybind11::module& m);
void BindYOLOv5Lite(pybind11::module& m); void BindYOLOv5Lite(pybind11::module& m);
void BindYOLOv5(pybind11::module& m); void BindYOLOv5(pybind11::module& m);
void BindFastestDet(pybind11::module& m);
void BindYOLOX(pybind11::module& m); void BindYOLOX(pybind11::module& m);
void BindNanoDetPlus(pybind11::module& m); void BindNanoDetPlus(pybind11::module& m);
void BindPPDet(pybind11::module& m); void BindPPDet(pybind11::module& m);
@@ -39,6 +40,7 @@ void BindDetection(pybind11::module& m) {
BindYOLOv6(detection_module); BindYOLOv6(detection_module);
BindYOLOv5Lite(detection_module); BindYOLOv5Lite(detection_module);
BindYOLOv5(detection_module); BindYOLOv5(detection_module);
BindFastestDet(detection_module);
BindYOLOX(detection_module); BindYOLOX(detection_module);
BindNanoDetPlus(detection_module); BindNanoDetPlus(detection_module);
BindYOLOv7End2EndTRT(detection_module); BindYOLOv7End2EndTRT(detection_module);

View File

@@ -19,6 +19,7 @@ from .contrib.scaled_yolov4 import ScaledYOLOv4
from .contrib.nanodet_plus import NanoDetPlus from .contrib.nanodet_plus import NanoDetPlus
from .contrib.yolox import YOLOX from .contrib.yolox import YOLOX
from .contrib.yolov5 import * from .contrib.yolov5 import *
from .contrib.fastestdet import *
from .contrib.yolov5lite import YOLOv5Lite from .contrib.yolov5lite import YOLOv5Lite
from .contrib.yolov6 import YOLOv6 from .contrib.yolov6 import YOLOv6
from .contrib.yolov7end2end_trt import YOLOv7End2EndTRT from .contrib.yolov7end2end_trt import YOLOv7End2EndTRT

View File

@@ -0,0 +1,149 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
import logging
from .... import FastDeployModel, ModelFormat
from .... import c_lib_wrap as C
class FastestDetPreprocessor:
def __init__(self):
"""Create a preprocessor for FastestDet
"""
self._preprocessor = C.vision.detection.FastestDetPreprocessor()
def run(self, input_ims):
"""Preprocess input images for FastestDet
:param: input_ims: (list of numpy.ndarray)The input image
:return: list of FDTensor
"""
return self._preprocessor.run(input_ims)
@property
def size(self):
"""
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default size = [352, 352]
"""
return self._preprocessor.size
@size.setter
def size(self, wh):
assert isinstance(wh, (list, tuple)),\
"The value to set `size` must be type of tuple or list."
assert len(wh) == 2,\
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
len(wh))
self._preprocessor.size = wh
class FastestDetPostprocessor:
def __init__(self):
"""Create a postprocessor for FastestDet
"""
self._postprocessor = C.vision.detection.FastestDetPostprocessor()
def run(self, runtime_results, ims_info):
"""Postprocess the runtime results for FastestDet
:param: runtime_results: (list of FDTensor)The output FDTensor results from runtime
:param: ims_info: (list of dict)Record input_shape and output_shape
:return: list of DetectionResult(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
"""
return self._postprocessor.run(runtime_results, ims_info)
@property
def conf_threshold(self):
"""
confidence threshold for postprocessing, default is 0.65
"""
return self._postprocessor.conf_threshold
@property
def nms_threshold(self):
"""
nms threshold for postprocessing, default is 0.45
"""
return self._postprocessor.nms_threshold
@conf_threshold.setter
def conf_threshold(self, conf_threshold):
assert isinstance(conf_threshold, float),\
"The value to set `conf_threshold` must be type of float."
self._postprocessor.conf_threshold = conf_threshold
@nms_threshold.setter
def nms_threshold(self, nms_threshold):
assert isinstance(nms_threshold, float),\
"The value to set `nms_threshold` must be type of float."
self._postprocessor.nms_threshold = nms_threshold
class FastestDet(FastDeployModel):
def __init__(self,
model_file,
params_file="",
runtime_option=None,
model_format=ModelFormat.ONNX):
"""Load a FastestDet model exported by FastestDet.
:param model_file: (str)Path of model file, e.g ./FastestDet.onnx
:param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
"""
super(FastestDet, self).__init__(runtime_option)
assert model_format == ModelFormat.ONNX, "FastestDet only support model format of ModelFormat.ONNX now."
self._model = C.vision.detection.FastestDet(
model_file, params_file, self._runtime_option, model_format)
assert self.initialized, "FastestDet initialize failed."
def predict(self, input_image):
"""Detect an input image
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
:return: DetectionResult
"""
assert input_image is not None, "Input image is None."
return self._model.predict(input_image)
def batch_predict(self, images):
assert len(images) == 1,"FastestDet is only support 1 image in batch_predict"
"""Classify a batch of input image
:param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
:return list of DetectionResult
"""
return self._model.batch_predict(images)
@property
def preprocessor(self):
"""Get FastestDetPreprocessor object of the loaded model
:return FastestDetPreprocessor
"""
return self._model.preprocessor
@property
def postprocessor(self):
"""Get FastestDetPostprocessor object of the loaded model
:return FastestDetPostprocessor
"""
return self._model.postprocessor

View File

@@ -0,0 +1,111 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from fastdeploy import ModelFormat
import fastdeploy as fd
import cv2
import os
import pickle
import numpy as np
import runtime_config as rc
def test_detection_fastestdet():
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/FastestDet.onnx"
input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg"
input_url2 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000570688.jpg"
result_url1 = "https://bj.bcebos.com/paddlehub/fastdeploy/fastestdet_result1.pkl"
fd.download(model_url, "resources")
fd.download(input_url1, "resources")
fd.download(input_url2, "resources")
fd.download(result_url1, "resources")
model_file = "resources/FastestDet.onnx"
model = fd.vision.detection.FastestDet(
model_file, runtime_option=rc.test_option)
with open("resources/fastestdet_result1.pkl", "rb") as f:
expect1 = pickle.load(f)
# compare diff
im1 = cv2.imread("./resources/000000014439.jpg")
print(expect1)
for i in range(3):
# test single predict
result1 = model.predict(im1)
diff_boxes_1 = np.fabs(
np.array(result1.boxes) - np.array(expect1["boxes"]))
diff_label_1 = np.fabs(
np.array(result1.label_ids) - np.array(expect1["label_ids"]))
diff_scores_1 = np.fabs(
np.array(result1.scores) - np.array(expect1["scores"]))
print(diff_boxes_1.max(), diff_boxes_1.mean())
assert diff_boxes_1.max(
) < 1e-04, "There's difference in detection boxes 1."
assert diff_label_1.max(
) < 1e-04, "There's difference in detection label 1."
assert diff_scores_1.max(
) < 1e-05, "There's difference in detection score 1."
def test_detection_fastestdet_runtime():
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/FastestDet.onnx"
input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg"
result_url1 = "https://bj.bcebos.com/paddlehub/fastdeploy/fastestdet_result1.pkl"
fd.download(model_url, "resources")
fd.download(input_url1, "resources")
fd.download(result_url1, "resources")
model_file = "resources/FastestDet.onnx"
preprocessor = fd.vision.detection.FastestDetPreprocessor()
postprocessor = fd.vision.detection.FastestDetPostprocessor()
rc.test_option.set_model_path(model_file, model_format=ModelFormat.ONNX)
rc.test_option.use_openvino_backend()
runtime = fd.Runtime(rc.test_option)
with open("resources/fastestdet_result1.pkl", "rb") as f:
expect1 = pickle.load(f)
# compare diff
im1 = cv2.imread("./resources/000000014439.jpg")
for i in range(3):
# test runtime
input_tensors, ims_info = preprocessor.run([im1.copy()])
output_tensors = runtime.infer({"input.1": input_tensors[0]})
results = postprocessor.run(output_tensors, ims_info)
result1 = results[0]
diff_boxes_1 = np.fabs(
np.array(result1.boxes) - np.array(expect1["boxes"]))
diff_label_1 = np.fabs(
np.array(result1.label_ids) - np.array(expect1["label_ids"]))
diff_scores_1 = np.fabs(
np.array(result1.scores) - np.array(expect1["scores"]))
assert diff_boxes_1.max(
) < 1e-04, "There's difference in detection boxes 1."
assert diff_label_1.max(
) < 1e-04, "There's difference in detection label 1."
assert diff_scores_1.max(
) < 1e-05, "There's difference in detection score 1."
if __name__ == "__main__":
test_detection_fastestdet()
test_detection_fastestdet_runtime()