mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00

* model done, CLA fix * remove letter_box and ConvertAndPermute, use resize hwc2chw and convert in preprocess * remove useless values in preprocess * remove useless values in preprocess * fix reviewed problem * fix reviewed problem pybind * fix reviewed problem pybind * postprocess fix * add test_fastestdet.py, coco_val2017_500 fixed done, ready to review * fix reviewed problem * python/.../fastestdet.py * fix infer.cc, preprocess, python/fastestdet.py * fix examples/python/infer.py
52 lines
1.3 KiB
Python
52 lines
1.3 KiB
Python
import fastdeploy as fd
|
|
import cv2
|
|
|
|
|
|
def parse_arguments():
|
|
import argparse
|
|
import ast
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--model", required=True, help="Path of FastestDet onnx model.")
|
|
parser.add_argument(
|
|
"--image", required=True, help="Path of test image file.")
|
|
parser.add_argument(
|
|
"--device",
|
|
type=str,
|
|
default='cpu',
|
|
help="Type of inference device, support 'cpu' or 'gpu'.")
|
|
parser.add_argument(
|
|
"--use_trt",
|
|
type=ast.literal_eval,
|
|
default=False,
|
|
help="Wether to use tensorrt.")
|
|
return parser.parse_args()
|
|
|
|
|
|
def build_option(args):
|
|
option = fd.RuntimeOption()
|
|
|
|
if args.device.lower() == "gpu":
|
|
option.use_gpu()
|
|
|
|
if args.use_trt:
|
|
option.use_trt_backend()
|
|
option.set_trt_input_shape("images", [1, 3, 352, 352])
|
|
return option
|
|
|
|
|
|
args = parse_arguments()
|
|
|
|
# Configure runtime and load model
|
|
runtime_option = build_option(args)
|
|
model = fd.vision.detection.FastestDet(args.model, runtime_option=runtime_option)
|
|
|
|
# Predict picture detection results
|
|
im = cv2.imread(args.image)
|
|
result = model.predict(im)
|
|
|
|
# Visualization of prediction results
|
|
vis_im = fd.vision.vis_detection(im, result)
|
|
cv2.imwrite("visualized_result.jpg", vis_im)
|
|
print("Visualized result save in ./visualized_result.jpg")
|