mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 16:22:57 +08:00

* model done, CLA fix * remove letter_box and ConvertAndPermute, use resize hwc2chw and convert in preprocess * remove useless values in preprocess * remove useless values in preprocess * fix reviewed problem * fix reviewed problem pybind * fix reviewed problem pybind * postprocess fix * add test_fastestdet.py, coco_val2017_500 fixed done, ready to review * fix reviewed problem * python/.../fastestdet.py * fix infer.cc, preprocess, python/fastestdet.py * fix examples/python/infer.py
FastestDet Python部署示例
在部署前,需确认以下两个步骤
-
- 软硬件环境满足要求,参考FastDeploy环境要求
-
- FastDeploy Python whl包安装,参考FastDeploy Python安装
本目录下提供infer.py
快速完成FastestDet在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
#下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd examples/vision/detection/fastestdet/python/
#下载fastestdet模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/FastestDet.onnx
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
# CPU推理
python infer.py --model FastestDet.onnx --image 000000014439.jpg --device cpu
# GPU推理
python infer.py --model FastestDet.onnx --image 000000014439.jpg --device gpu
# GPU上使用TensorRT推理
python infer.py --model FastestDet.onnx --image 000000014439.jpg --device gpu --use_trt True
运行完成可视化结果如下图所示

FastestDet Python接口
fastdeploy.vision.detection.FastestDet(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
FastestDet模型加载和初始化,其中model_file为导出的ONNX模型格式
参数
- model_file(str): 模型文件路径
- params_file(str): 参数文件路径,当模型格式为ONNX格式时,此参数无需设定
- runtime_option(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
- model_format(ModelFormat): 模型格式,默认为ONNX
predict函数
FastestDet.predict(image_data)
模型预测接口,输入图像直接输出检测结果。
参数
- image_data(np.ndarray): 输入数据,注意需为HWC,BGR格式
返回
返回
fastdeploy.vision.DetectionResult
结构体,结构体说明参考文档视觉模型预测结果
类成员属性
预处理参数
用户可按照自己的实际需求,修改下列预处理参数,从而影响最终的推理和部署效果
- size(list[int]): 通过此参数修改预处理过程中resize的大小,包含两个整型元素,表示[width, height], 默认值为[352, 352]