diff --git a/examples/vision/detection/fastestdet/cpp/CMakeLists.txt b/examples/vision/detection/fastestdet/cpp/CMakeLists.txt
new file mode 100644
index 000000000..9ba668762
--- /dev/null
+++ b/examples/vision/detection/fastestdet/cpp/CMakeLists.txt
@@ -0,0 +1,14 @@
+PROJECT(infer_demo C CXX)
+CMAKE_MINIMUM_REQUIRED (VERSION 3.10)
+
+# Specifies the path to the fastdeploy library after you have downloaded it
+option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
+
+include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
+
+# Include the FastDeploy dependency header file
+include_directories(${FASTDEPLOY_INCS})
+
+add_executable(infer_demo ${PROJECT_SOURCE_DIR}/infer.cc)
+# Add the FastDeploy library dependency
+target_link_libraries(infer_demo ${FASTDEPLOY_LIBS})
diff --git a/examples/vision/detection/fastestdet/cpp/README.md b/examples/vision/detection/fastestdet/cpp/README.md
new file mode 100644
index 000000000..bf2d01394
--- /dev/null
+++ b/examples/vision/detection/fastestdet/cpp/README.md
@@ -0,0 +1,87 @@
+# FastestDet C++部署示例
+
+本目录下提供`infer.cc`快速完成FastestDet在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。
+
+在部署前,需确认以下两个步骤
+
+- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
+- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
+
+以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
+
+```bash
+mkdir build
+cd build
+wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-1.0.3.tgz
+tar xvf fastdeploy-linux-x64-1.0.3.tgz
+cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-1.0.3
+make -j
+
+#下载官方转换好的FastestDet模型文件和测试图片
+wget https://bj.bcebos.com/paddlehub/fastdeploy/FastestDet.onnx
+wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
+
+
+# CPU推理
+./infer_demo FastestDet.onnx 000000014439.jpg 0
+# GPU推理
+./infer_demo FastestDet.onnx 000000014439.jpg 1
+# GPU上TensorRT推理
+./infer_demo FastestDet.onnx 000000014439.jpg 2
+```
+
+运行完成可视化结果如下图所示
+
+
+
+以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
+- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
+
+## FastestDet C++接口
+
+### FastestDet类
+
+```c++
+fastdeploy::vision::detection::FastestDet(
+ const string& model_file,
+ const string& params_file = "",
+ const RuntimeOption& runtime_option = RuntimeOption(),
+ const ModelFormat& model_format = ModelFormat::ONNX)
+```
+
+FastestDet模型加载和初始化,其中model_file为导出的ONNX模型格式。
+
+**参数**
+
+> * **model_file**(str): 模型文件路径
+> * **params_file**(str): 参数文件路径,当模型格式为ONNX时,此参数传入空字符串即可
+> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
+> * **model_format**(ModelFormat): 模型格式,默认为ONNX格式
+
+#### Predict函数
+
+> ```c++
+> FastestDet::Predict(cv::Mat* im, DetectionResult* result,
+> float conf_threshold = 0.65,
+> float nms_iou_threshold = 0.45)
+> ```
+>
+> 模型预测接口,输入图像直接输出检测结果。
+>
+> **参数**
+>
+> > * **im**: 输入图像,注意需为HWC,BGR格式
+> > * **result**: 检测结果,包括检测框,各个框的置信度, DetectionResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
+> > * **conf_threshold**: 检测框置信度过滤阈值
+> > * **nms_iou_threshold**: NMS处理过程中iou阈值
+
+### 类成员变量
+#### 预处理参数
+用户可按照自己的实际需求,修改下列预处理参数,从而影响最终的推理和部署效果
+
+> > * **size**(vector<int>): 通过此参数修改预处理过程中resize的大小,包含两个整型元素,表示[width, height], 默认值为[352, 352]
+
+- [模型介绍](../../)
+- [Python部署](../python)
+- [视觉模型预测结果](../../../../../docs/api/vision_results/)
+- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)
diff --git a/examples/vision/detection/fastestdet/cpp/infer.cc b/examples/vision/detection/fastestdet/cpp/infer.cc
new file mode 100644
index 000000000..71dd862a2
--- /dev/null
+++ b/examples/vision/detection/fastestdet/cpp/infer.cc
@@ -0,0 +1,105 @@
+// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "fastdeploy/vision.h"
+
+void CpuInfer(const std::string& model_file, const std::string& image_file) {
+ auto model = fastdeploy::vision::detection::FastestDet(model_file);
+ if (!model.Initialized()) {
+ std::cerr << "Failed to initialize." << std::endl;
+ return;
+ }
+
+ auto im = cv::imread(image_file);
+
+ fastdeploy::vision::DetectionResult res;
+ if (!model.Predict(im, &res)) {
+ std::cerr << "Failed to predict." << std::endl;
+ return;
+ }
+ std::cout << res.Str() << std::endl;
+
+ auto vis_im = fastdeploy::vision::VisDetection(im, res);
+ cv::imwrite("vis_result.jpg", vis_im);
+ std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
+}
+
+void GpuInfer(const std::string& model_file, const std::string& image_file) {
+ auto option = fastdeploy::RuntimeOption();
+ option.UseGpu();
+ auto model = fastdeploy::vision::detection::FastestDet(model_file, "", option);
+ if (!model.Initialized()) {
+ std::cerr << "Failed to initialize." << std::endl;
+ return;
+ }
+
+ auto im = cv::imread(image_file);
+
+ fastdeploy::vision::DetectionResult res;
+ if (!model.Predict(im, &res)) {
+ std::cerr << "Failed to predict." << std::endl;
+ return;
+ }
+ std::cout << res.Str() << std::endl;
+
+ auto vis_im = fastdeploy::vision::VisDetection(im, res);
+ cv::imwrite("vis_result.jpg", vis_im);
+ std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
+}
+
+void TrtInfer(const std::string& model_file, const std::string& image_file) {
+ auto option = fastdeploy::RuntimeOption();
+ option.UseGpu();
+ option.UseTrtBackend();
+ option.SetTrtInputShape("images", {1, 3, 352, 352});
+ auto model = fastdeploy::vision::detection::FastestDet(model_file, "", option);
+ if (!model.Initialized()) {
+ std::cerr << "Failed to initialize." << std::endl;
+ return;
+ }
+
+ auto im = cv::imread(image_file);
+
+ fastdeploy::vision::DetectionResult res;
+ if (!model.Predict(im, &res)) {
+ std::cerr << "Failed to predict." << std::endl;
+ return;
+ }
+ std::cout << res.Str() << std::endl;
+
+ auto vis_im = fastdeploy::vision::VisDetection(im, res);
+ cv::imwrite("vis_result.jpg", vis_im);
+ std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
+}
+
+int main(int argc, char* argv[]) {
+ if (argc < 4) {
+ std::cout << "Usage: infer_demo path/to/model path/to/image run_option, "
+ "e.g ./infer_model ./FastestDet.onnx ./test.jpeg 0"
+ << std::endl;
+ std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
+ "with gpu; 2: run with gpu and use tensorrt backend."
+ << std::endl;
+ return -1;
+ }
+
+ if (std::atoi(argv[3]) == 0) {
+ CpuInfer(argv[1], argv[2]);
+ } else if (std::atoi(argv[3]) == 1) {
+ GpuInfer(argv[1], argv[2]);
+ } else if (std::atoi(argv[3]) == 2) {
+ TrtInfer(argv[1], argv[2]);
+ }
+ return 0;
+}
diff --git a/examples/vision/detection/fastestdet/python/README.md b/examples/vision/detection/fastestdet/python/README.md
new file mode 100644
index 000000000..000bf05cc
--- /dev/null
+++ b/examples/vision/detection/fastestdet/python/README.md
@@ -0,0 +1,74 @@
+# FastestDet Python部署示例
+
+在部署前,需确认以下两个步骤
+
+- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
+- 2. FastDeploy Python whl包安装,参考[FastDeploy Python安装](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
+
+本目录下提供`infer.py`快速完成FastestDet在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
+
+```bash
+#下载部署示例代码
+git clone https://github.com/PaddlePaddle/FastDeploy.git
+cd examples/vision/detection/fastestdet/python/
+
+#下载fastestdet模型文件和测试图片
+wget https://bj.bcebos.com/paddlehub/fastdeploy/FastestDet.onnx
+wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
+
+# CPU推理
+python infer.py --model FastestDet.onnx --image 000000014439.jpg --device cpu
+# GPU推理
+python infer.py --model FastestDet.onnx --image 000000014439.jpg --device gpu
+# GPU上使用TensorRT推理
+python infer.py --model FastestDet.onnx --image 000000014439.jpg --device gpu --use_trt True
+```
+
+运行完成可视化结果如下图所示
+
+
+
+## FastestDet Python接口
+
+```python
+fastdeploy.vision.detection.FastestDet(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
+```
+
+FastestDet模型加载和初始化,其中model_file为导出的ONNX模型格式
+
+**参数**
+
+> * **model_file**(str): 模型文件路径
+> * **params_file**(str): 参数文件路径,当模型格式为ONNX格式时,此参数无需设定
+> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
+> * **model_format**(ModelFormat): 模型格式,默认为ONNX
+
+### predict函数
+
+> ```python
+> FastestDet.predict(image_data)
+> ```
+>
+> 模型预测接口,输入图像直接输出检测结果。
+>
+> **参数**
+>
+> > * **image_data**(np.ndarray): 输入数据,注意需为HWC,BGR格式
+
+> **返回**
+>
+> > 返回`fastdeploy.vision.DetectionResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
+
+### 类成员属性
+#### 预处理参数
+用户可按照自己的实际需求,修改下列预处理参数,从而影响最终的推理和部署效果
+
+> > * **size**(list[int]): 通过此参数修改预处理过程中resize的大小,包含两个整型元素,表示[width, height], 默认值为[352, 352]
+
+
+## 其它文档
+
+- [FastestDet 模型介绍](..)
+- [FastestDet C++部署](../cpp)
+- [模型预测结果说明](../../../../../docs/api/vision_results/)
+- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)
diff --git a/examples/vision/detection/fastestdet/python/infer.py b/examples/vision/detection/fastestdet/python/infer.py
new file mode 100644
index 000000000..ad734b4d7
--- /dev/null
+++ b/examples/vision/detection/fastestdet/python/infer.py
@@ -0,0 +1,51 @@
+import fastdeploy as fd
+import cv2
+
+
+def parse_arguments():
+ import argparse
+ import ast
+ parser = argparse.ArgumentParser()
+ parser.add_argument(
+ "--model", required=True, help="Path of FastestDet onnx model.")
+ parser.add_argument(
+ "--image", required=True, help="Path of test image file.")
+ parser.add_argument(
+ "--device",
+ type=str,
+ default='cpu',
+ help="Type of inference device, support 'cpu' or 'gpu'.")
+ parser.add_argument(
+ "--use_trt",
+ type=ast.literal_eval,
+ default=False,
+ help="Wether to use tensorrt.")
+ return parser.parse_args()
+
+
+def build_option(args):
+ option = fd.RuntimeOption()
+
+ if args.device.lower() == "gpu":
+ option.use_gpu()
+
+ if args.use_trt:
+ option.use_trt_backend()
+ option.set_trt_input_shape("images", [1, 3, 352, 352])
+ return option
+
+
+args = parse_arguments()
+
+# Configure runtime and load model
+runtime_option = build_option(args)
+model = fd.vision.detection.FastestDet(args.model, runtime_option=runtime_option)
+
+# Predict picture detection results
+im = cv2.imread(args.image)
+result = model.predict(im)
+
+# Visualization of prediction results
+vis_im = fd.vision.vis_detection(im, result)
+cv2.imwrite("visualized_result.jpg", vis_im)
+print("Visualized result save in ./visualized_result.jpg")
diff --git a/fastdeploy/vision.h b/fastdeploy/vision.h
index f5e4d0624..ef2fc90a6 100644
--- a/fastdeploy/vision.h
+++ b/fastdeploy/vision.h
@@ -22,6 +22,7 @@
#include "fastdeploy/vision/detection/contrib/scaledyolov4.h"
#include "fastdeploy/vision/detection/contrib/yolor.h"
#include "fastdeploy/vision/detection/contrib/yolov5/yolov5.h"
+#include "fastdeploy/vision/detection/contrib/fastestdet/fastestdet.h"
#include "fastdeploy/vision/detection/contrib/yolov5lite.h"
#include "fastdeploy/vision/detection/contrib/yolov6.h"
#include "fastdeploy/vision/detection/contrib/yolov7/yolov7.h"
diff --git a/fastdeploy/vision/detection/contrib/fastestdet/fastestdet.cc b/fastdeploy/vision/detection/contrib/fastestdet/fastestdet.cc
new file mode 100644
index 000000000..2bef9f38b
--- /dev/null
+++ b/fastdeploy/vision/detection/contrib/fastestdet/fastestdet.cc
@@ -0,0 +1,79 @@
+// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "fastdeploy/vision/detection/contrib/fastestdet/fastestdet.h"
+
+namespace fastdeploy {
+namespace vision {
+namespace detection {
+
+FastestDet::FastestDet(const std::string& model_file, const std::string& params_file,
+ const RuntimeOption& custom_option,
+ const ModelFormat& model_format) {
+ if (model_format == ModelFormat::ONNX) {
+ valid_cpu_backends = {Backend::OPENVINO, Backend::ORT};
+ valid_gpu_backends = {Backend::ORT, Backend::TRT};
+ } else {
+ valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::LITE};
+ valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
+ }
+ runtime_option = custom_option;
+ runtime_option.model_format = model_format;
+ runtime_option.model_file = model_file;
+ runtime_option.params_file = params_file;
+ initialized = Initialize();
+}
+
+bool FastestDet::Initialize() {
+ if (!InitRuntime()) {
+ FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
+ return false;
+ }
+ return true;
+}
+
+bool FastestDet::Predict(const cv::Mat& im, DetectionResult* result) {
+ std::vector results;
+ if (!BatchPredict({im}, &results)) {
+ return false;
+ }
+ *result = std::move(results[0]);
+ return true;
+}
+
+bool FastestDet::BatchPredict(const std::vector& images, std::vector* results) {
+ std::vector>> ims_info;
+ std::vector fd_images = WrapMat(images);
+
+ if (!preprocessor_.Run(&fd_images, &reused_input_tensors_, &ims_info)) {
+ FDERROR << "Failed to preprocess the input image." << std::endl;
+ return false;
+ }
+
+ reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
+ if (!Infer(reused_input_tensors_, &reused_output_tensors_)) {
+ FDERROR << "Failed to inference by runtime." << std::endl;
+ return false;
+ }
+
+ if (!postprocessor_.Run(reused_output_tensors_, results, ims_info)) {
+ FDERROR << "Failed to postprocess the inference results by runtime." << std::endl;
+ return false;
+ }
+ return true;
+}
+
+} // namespace detection
+} // namespace vision
+} // namespace fastdeploy
diff --git a/fastdeploy/vision/detection/contrib/fastestdet/fastestdet.h b/fastdeploy/vision/detection/contrib/fastestdet/fastestdet.h
new file mode 100644
index 000000000..9bd6e07df
--- /dev/null
+++ b/fastdeploy/vision/detection/contrib/fastestdet/fastestdet.h
@@ -0,0 +1,76 @@
+// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. //NOLINT
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#pragma once
+
+#include "fastdeploy/fastdeploy_model.h"
+#include "fastdeploy/vision/detection/contrib/fastestdet/preprocessor.h"
+#include "fastdeploy/vision/detection/contrib/fastestdet/postprocessor.h"
+
+namespace fastdeploy {
+namespace vision {
+namespace detection {
+/*! @brief FastestDet model object used when to load a FastestDet model exported by FastestDet.
+ */
+class FASTDEPLOY_DECL FastestDet : public FastDeployModel {
+ public:
+ /** \brief Set path of model file and the configuration of runtime.
+ *
+ * \param[in] model_file Path of model file, e.g ./fastestdet.onnx
+ * \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, if the model format is ONNX, this parameter will be ignored
+ * \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in "valid_cpu_backends"
+ * \param[in] model_format Model format of the loaded model, default is ONNX format
+ */
+ FastestDet(const std::string& model_file, const std::string& params_file = "",
+ const RuntimeOption& custom_option = RuntimeOption(),
+ const ModelFormat& model_format = ModelFormat::ONNX);
+
+ std::string ModelName() const { return "fastestdet"; }
+
+ /** \brief Predict the detection result for an input image
+ *
+ * \param[in] img The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
+ * \param[in] result The output detection result will be writen to this structure
+ * \return true if the prediction successed, otherwise false
+ */
+ virtual bool Predict(const cv::Mat& img, DetectionResult* result);
+
+ /** \brief Predict the detection results for a batch of input images
+ *
+ * \param[in] imgs, The input image list, each element comes from cv::imread()
+ * \param[in] results The output detection result list
+ * \return true if the prediction successed, otherwise false
+ */
+ virtual bool BatchPredict(const std::vector& imgs,
+ std::vector* results);
+
+ /// Get preprocessor reference of FastestDet
+ virtual FastestDetPreprocessor& GetPreprocessor() {
+ return preprocessor_;
+ }
+
+ /// Get postprocessor reference of FastestDet
+ virtual FastestDetPostprocessor& GetPostprocessor() {
+ return postprocessor_;
+ }
+
+ protected:
+ bool Initialize();
+ FastestDetPreprocessor preprocessor_;
+ FastestDetPostprocessor postprocessor_;
+};
+
+} // namespace detection
+} // namespace vision
+} // namespace fastdeploy
diff --git a/fastdeploy/vision/detection/contrib/fastestdet/fastestdet_pybind.cc b/fastdeploy/vision/detection/contrib/fastestdet/fastestdet_pybind.cc
new file mode 100644
index 000000000..4ed494134
--- /dev/null
+++ b/fastdeploy/vision/detection/contrib/fastestdet/fastestdet_pybind.cc
@@ -0,0 +1,85 @@
+// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "fastdeploy/pybind/main.h"
+
+namespace fastdeploy {
+void BindFastestDet(pybind11::module& m) {
+ pybind11::class_(
+ m, "FastestDetPreprocessor")
+ .def(pybind11::init<>())
+ .def("run", [](vision::detection::FastestDetPreprocessor& self, std::vector& im_list) {
+ std::vector images;
+ for (size_t i = 0; i < im_list.size(); ++i) {
+ images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
+ }
+ std::vector outputs;
+ std::vector>> ims_info;
+ if (!self.Run(&images, &outputs, &ims_info)) {
+ throw std::runtime_error("raise Exception('Failed to preprocess the input data in FastestDetPreprocessor.')");
+ }
+ for (size_t i = 0; i < outputs.size(); ++i) {
+ outputs[i].StopSharing();
+ }
+ return make_pair(outputs, ims_info);
+ })
+ .def_property("size", &vision::detection::FastestDetPreprocessor::GetSize, &vision::detection::FastestDetPreprocessor::SetSize);
+
+ pybind11::class_(
+ m, "FastestDetPostprocessor")
+ .def(pybind11::init<>())
+ .def("run", [](vision::detection::FastestDetPostprocessor& self, std::vector& inputs,
+ const std::vector>>& ims_info) {
+ std::vector results;
+ if (!self.Run(inputs, &results, ims_info)) {
+ throw std::runtime_error("raise Exception('Failed to postprocess the runtime result in FastestDetPostprocessor.')");
+ }
+ return results;
+ })
+ .def("run", [](vision::detection::FastestDetPostprocessor& self, std::vector& input_array,
+ const std::vector>>& ims_info) {
+ std::vector results;
+ std::vector inputs;
+ PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
+ if (!self.Run(inputs, &results, ims_info)) {
+ throw std::runtime_error("raise Exception('Failed to postprocess the runtime result in FastestDetPostprocessor.')");
+ }
+ return results;
+ })
+ .def_property("conf_threshold", &vision::detection::FastestDetPostprocessor::GetConfThreshold, &vision::detection::FastestDetPostprocessor::SetConfThreshold)
+ .def_property("nms_threshold", &vision::detection::FastestDetPostprocessor::GetNMSThreshold, &vision::detection::FastestDetPostprocessor::SetNMSThreshold);
+
+ pybind11::class_(m, "FastestDet")
+ .def(pybind11::init())
+ .def("predict",
+ [](vision::detection::FastestDet& self, pybind11::array& data) {
+ auto mat = PyArrayToCvMat(data);
+ vision::DetectionResult res;
+ self.Predict(mat, &res);
+ return res;
+ })
+ .def("batch_predict", [](vision::detection::FastestDet& self, std::vector& data) {
+ std::vector images;
+ for (size_t i = 0; i < data.size(); ++i) {
+ images.push_back(PyArrayToCvMat(data[i]));
+ }
+ std::vector results;
+ self.BatchPredict(images, &results);
+ return results;
+ })
+ .def_property_readonly("preprocessor", &vision::detection::FastestDet::GetPreprocessor)
+ .def_property_readonly("postprocessor", &vision::detection::FastestDet::GetPostprocessor);
+}
+} // namespace fastdeploy
diff --git a/fastdeploy/vision/detection/contrib/fastestdet/postprocessor.cc b/fastdeploy/vision/detection/contrib/fastestdet/postprocessor.cc
new file mode 100644
index 000000000..447a16c8a
--- /dev/null
+++ b/fastdeploy/vision/detection/contrib/fastestdet/postprocessor.cc
@@ -0,0 +1,132 @@
+// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "fastdeploy/vision/detection/contrib/fastestdet/postprocessor.h"
+#include "fastdeploy/vision/utils/utils.h"
+
+namespace fastdeploy {
+namespace vision {
+namespace detection {
+
+FastestDetPostprocessor::FastestDetPostprocessor() {
+ conf_threshold_ = 0.65;
+ nms_threshold_ = 0.45;
+}
+float FastestDetPostprocessor::Sigmoid(float x) {
+ return 1.0f / (1.0f + exp(-x));
+}
+
+float FastestDetPostprocessor::Tanh(float x) {
+ return 2.0f / (1.0f + exp(-2 * x)) - 1;
+}
+
+bool FastestDetPostprocessor::Run(
+ const std::vector &tensors, std::vector *results,
+ const std::vector>> &ims_info) {
+ int batch = 1;
+
+ results->resize(batch);
+
+ for (size_t bs = 0; bs < batch; ++bs) {
+
+ (*results)[bs].Clear();
+ // output (1,85,22,22) CHW
+ const float* output = reinterpret_cast(tensors[0].Data()) + bs * tensors[0].shape[1] * tensors[0].shape[2] * tensors[0].shape[3];
+ int output_h = tensors[0].shape[2]; // out map height
+ int output_w = tensors[0].shape[3]; // out map weight
+ auto iter_out = ims_info[bs].find("output_shape");
+ auto iter_ipt = ims_info[bs].find("input_shape");
+ FDASSERT(iter_out != ims_info[bs].end() && iter_ipt != ims_info[bs].end(),
+ "Cannot find input_shape or output_shape from im_info.");
+ float ipt_h = iter_ipt->second[0];
+ float ipt_w = iter_ipt->second[1];
+
+ // handle output boxes from out map
+ for (int h = 0; h < output_h; h++) {
+ for (int w = 0; w < output_w; w++) {
+ // object score
+ int obj_score_index = (h * output_w) + w;
+ float obj_score = output[obj_score_index];
+
+ // find max class
+ int category = 0;
+ float max_score = 0.0f;
+ int class_num = tensors[0].shape[1]-5;
+ for (size_t i = 0; i < class_num; i++) {
+ obj_score_index =((5 + i) * output_h * output_w) + (h * output_w) + w;
+ float cls_score = output[obj_score_index];
+ if (cls_score > max_score) {
+ max_score = cls_score;
+ category = i;
+ }
+ }
+ float score = pow(max_score, 0.4) * pow(obj_score, 0.6);
+
+ // score threshold
+ if (score <= conf_threshold_) {
+ continue;
+ }
+ if (score > conf_threshold_) {
+ // handle box x y w h
+ int x_offset_index = (1 * output_h * output_w) + (h * output_w) + w;
+ int y_offset_index = (2 * output_h * output_w) + (h * output_w) + w;
+ int box_width_index = (3 * output_h * output_w) + (h * output_w) + w;
+ int box_height_index = (4 * output_h * output_w) + (h * output_w) + w;
+
+ float x_offset = Tanh(output[x_offset_index]);
+ float y_offset = Tanh(output[y_offset_index]);
+ float box_width = Sigmoid(output[box_width_index]);
+ float box_height = Sigmoid(output[box_height_index]);
+
+ float cx = (w + x_offset) / output_w;
+ float cy = (h + y_offset) / output_h;
+
+ // convert from [x, y, w, h] to [x1, y1, x2, y2]
+ (*results)[bs].boxes.emplace_back(std::array{
+ cx - box_width / 2.0f,
+ cy - box_height / 2.0f,
+ cx + box_width / 2.0f,
+ cy + box_height / 2.0f});
+ (*results)[bs].label_ids.push_back(category);
+ (*results)[bs].scores.push_back(score);
+ }
+ }
+ }
+ if ((*results)[bs].boxes.size() == 0) {
+ return true;
+ }
+
+ // scale boxes to origin shape
+ for (size_t i = 0; i < (*results)[bs].boxes.size(); ++i) {
+ (*results)[bs].boxes[i][0] = ((*results)[bs].boxes[i][0]) * ipt_w;
+ (*results)[bs].boxes[i][1] = ((*results)[bs].boxes[i][1]) * ipt_h;
+ (*results)[bs].boxes[i][2] = ((*results)[bs].boxes[i][2]) * ipt_w;
+ (*results)[bs].boxes[i][3] = ((*results)[bs].boxes[i][3]) * ipt_h;
+ }
+ //NMS
+ utils::NMS(&((*results)[bs]), nms_threshold_);
+ //clip box
+ for (size_t i = 0; i < (*results)[bs].boxes.size(); ++i) {
+ (*results)[bs].boxes[i][0] = std::max((*results)[bs].boxes[i][0], 0.0f);
+ (*results)[bs].boxes[i][1] = std::max((*results)[bs].boxes[i][1], 0.0f);
+ (*results)[bs].boxes[i][2] = std::min((*results)[bs].boxes[i][2], ipt_w);
+ (*results)[bs].boxes[i][3] = std::min((*results)[bs].boxes[i][3], ipt_h);
+ }
+ }
+ return true;
+}
+
+} // namespace detection
+} // namespace vision
+} // namespace fastdeploy
diff --git a/fastdeploy/vision/detection/contrib/fastestdet/postprocessor.h b/fastdeploy/vision/detection/contrib/fastestdet/postprocessor.h
new file mode 100644
index 000000000..c576aee20
--- /dev/null
+++ b/fastdeploy/vision/detection/contrib/fastestdet/postprocessor.h
@@ -0,0 +1,67 @@
+// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#pragma once
+#include "fastdeploy/vision/common/processors/transform.h"
+#include "fastdeploy/vision/common/result.h"
+
+namespace fastdeploy {
+namespace vision {
+
+namespace detection {
+/*! @brief Postprocessor object for FastestDet serials model.
+ */
+class FASTDEPLOY_DECL FastestDetPostprocessor {
+ public:
+ /** \brief Create a postprocessor instance for FastestDet serials model
+ */
+ FastestDetPostprocessor();
+
+ /** \brief Process the result of runtime and fill to DetectionResult structure
+ *
+ * \param[in] tensors The inference result from runtime
+ * \param[in] result The output result of detection
+ * \param[in] ims_info The shape info list, record input_shape and output_shape
+ * \return true if the postprocess successed, otherwise false
+ */
+ bool Run(const std::vector& tensors,
+ std::vector* results,
+ const std::vector>>& ims_info);
+
+ /// Set conf_threshold, default 0.65
+ void SetConfThreshold(const float& conf_threshold) {
+ conf_threshold_ = conf_threshold;
+ }
+
+ /// Get conf_threshold, default 0.65
+ float GetConfThreshold() const { return conf_threshold_; }
+
+ /// Set nms_threshold, default 0.45
+ void SetNMSThreshold(const float& nms_threshold) {
+ nms_threshold_ = nms_threshold;
+ }
+
+ /// Get nms_threshold, default 0.45
+ float GetNMSThreshold() const { return nms_threshold_; }
+
+ protected:
+ float conf_threshold_;
+ float nms_threshold_;
+ float Sigmoid(float x);
+ float Tanh(float x);
+};
+
+} // namespace detection
+} // namespace vision
+} // namespace fastdeploy
diff --git a/fastdeploy/vision/detection/contrib/fastestdet/preprocessor.cc b/fastdeploy/vision/detection/contrib/fastestdet/preprocessor.cc
new file mode 100644
index 000000000..f4ff11e8f
--- /dev/null
+++ b/fastdeploy/vision/detection/contrib/fastestdet/preprocessor.cc
@@ -0,0 +1,81 @@
+// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "fastdeploy/vision/detection/contrib/fastestdet/preprocessor.h"
+#include "fastdeploy/function/concat.h"
+
+namespace fastdeploy {
+namespace vision {
+namespace detection {
+
+FastestDetPreprocessor::FastestDetPreprocessor() {
+ size_ = {352, 352}; //{h,w}
+}
+
+bool FastestDetPreprocessor::Preprocess(FDMat* mat, FDTensor* output,
+ std::map>* im_info) {
+ // Record the shape of image and the shape of preprocessed image
+ (*im_info)["input_shape"] = {static_cast(mat->Height()),
+ static_cast(mat->Width())};
+
+ // process after image load
+ double ratio = (size_[0] * 1.0) / std::max(static_cast(mat->Height()),
+ static_cast(mat->Width()));
+
+ // fastestdet's preprocess steps
+ // 1. resize
+ // 2. convert_and_permute(swap_rb=false)
+ Resize::Run(mat, size_[0], size_[1]); //resize
+ std::vector alpha = {1.0f / 255.0f, 1.0f / 255.0f, 1.0f / 255.0f};
+ std::vector beta = {0.0f, 0.0f, 0.0f};
+ //convert to float and HWC2CHW
+ ConvertAndPermute::Run(mat, alpha, beta, false);
+
+ // Record output shape of preprocessed image
+ (*im_info)["output_shape"] = {static_cast(mat->Height()),
+ static_cast(mat->Width())};
+
+ mat->ShareWithTensor(output);
+ output->ExpandDim(0); // reshape to n, h, w, c
+ return true;
+}
+
+bool FastestDetPreprocessor::Run(std::vector* images, std::vector* outputs,
+ std::vector>>* ims_info) {
+ if (images->size() == 0) {
+ FDERROR << "The size of input images should be greater than 0." << std::endl;
+ return false;
+ }
+ ims_info->resize(images->size());
+ outputs->resize(1);
+ // Concat all the preprocessed data to a batch tensor
+ std::vector tensors(images->size());
+ for (size_t i = 0; i < images->size(); ++i) {
+ if (!Preprocess(&(*images)[i], &tensors[i], &(*ims_info)[i])) {
+ FDERROR << "Failed to preprocess input image." << std::endl;
+ return false;
+ }
+ }
+
+ if (tensors.size() == 1) {
+ (*outputs)[0] = std::move(tensors[0]);
+ } else {
+ function::Concat(tensors, &((*outputs)[0]), 0);
+ }
+ return true;
+}
+
+} // namespace detection
+} // namespace vision
+} // namespace fastdeploy
diff --git a/fastdeploy/vision/detection/contrib/fastestdet/preprocessor.h b/fastdeploy/vision/detection/contrib/fastestdet/preprocessor.h
new file mode 100644
index 000000000..8166f6198
--- /dev/null
+++ b/fastdeploy/vision/detection/contrib/fastestdet/preprocessor.h
@@ -0,0 +1,57 @@
+// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#pragma once
+#include "fastdeploy/vision/common/processors/transform.h"
+#include "fastdeploy/vision/common/result.h"
+
+namespace fastdeploy {
+namespace vision {
+
+namespace detection {
+/*! @brief Preprocessor object for FastestDet serials model.
+ */
+class FASTDEPLOY_DECL FastestDetPreprocessor {
+ public:
+ /** \brief Create a preprocessor instance for FastestDet serials model
+ */
+ FastestDetPreprocessor();
+
+ /** \brief Process the input image and prepare input tensors for runtime
+ *
+ * \param[in] images The input image data list, all the elements are returned by cv::imread()
+ * \param[in] outputs The output tensors which will feed in runtime
+ * \param[in] ims_info The shape info list, record input_shape and output_shape
+ * \return true if the preprocess successed, otherwise false
+ */
+ bool Run(std::vector* images, std::vector* outputs,
+ std::vector>>* ims_info);
+
+ /// Set target size, tuple of (width, height), default size = {352, 352}
+ void SetSize(const std::vector& size) { size_ = size; }
+
+ /// Get target size, tuple of (width, height), default size = {352, 352}
+ std::vector GetSize() const { return size_; }
+
+ protected:
+ bool Preprocess(FDMat* mat, FDTensor* output,
+ std::map>* im_info);
+
+ // target size, tuple of (width, height), default size = {352, 352}
+ std::vector size_;
+};
+
+} // namespace detection
+} // namespace vision
+} // namespace fastdeploy
diff --git a/fastdeploy/vision/detection/detection_pybind.cc b/fastdeploy/vision/detection/detection_pybind.cc
index 9d585e18c..80bdff859 100644
--- a/fastdeploy/vision/detection/detection_pybind.cc
+++ b/fastdeploy/vision/detection/detection_pybind.cc
@@ -22,6 +22,7 @@ void BindYOLOR(pybind11::module& m);
void BindYOLOv6(pybind11::module& m);
void BindYOLOv5Lite(pybind11::module& m);
void BindYOLOv5(pybind11::module& m);
+void BindFastestDet(pybind11::module& m);
void BindYOLOX(pybind11::module& m);
void BindNanoDetPlus(pybind11::module& m);
void BindPPDet(pybind11::module& m);
@@ -39,6 +40,7 @@ void BindDetection(pybind11::module& m) {
BindYOLOv6(detection_module);
BindYOLOv5Lite(detection_module);
BindYOLOv5(detection_module);
+ BindFastestDet(detection_module);
BindYOLOX(detection_module);
BindNanoDetPlus(detection_module);
BindYOLOv7End2EndTRT(detection_module);
diff --git a/python/fastdeploy/vision/detection/__init__.py b/python/fastdeploy/vision/detection/__init__.py
index afd1cd8ce..70d00bcdb 100755
--- a/python/fastdeploy/vision/detection/__init__.py
+++ b/python/fastdeploy/vision/detection/__init__.py
@@ -19,6 +19,7 @@ from .contrib.scaled_yolov4 import ScaledYOLOv4
from .contrib.nanodet_plus import NanoDetPlus
from .contrib.yolox import YOLOX
from .contrib.yolov5 import *
+from .contrib.fastestdet import *
from .contrib.yolov5lite import YOLOv5Lite
from .contrib.yolov6 import YOLOv6
from .contrib.yolov7end2end_trt import YOLOv7End2EndTRT
diff --git a/python/fastdeploy/vision/detection/contrib/fastestdet.py b/python/fastdeploy/vision/detection/contrib/fastestdet.py
new file mode 100644
index 000000000..2f11ed43d
--- /dev/null
+++ b/python/fastdeploy/vision/detection/contrib/fastestdet.py
@@ -0,0 +1,149 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from __future__ import absolute_import
+import logging
+from .... import FastDeployModel, ModelFormat
+from .... import c_lib_wrap as C
+
+
+class FastestDetPreprocessor:
+ def __init__(self):
+ """Create a preprocessor for FastestDet
+ """
+ self._preprocessor = C.vision.detection.FastestDetPreprocessor()
+
+ def run(self, input_ims):
+ """Preprocess input images for FastestDet
+
+ :param: input_ims: (list of numpy.ndarray)The input image
+ :return: list of FDTensor
+ """
+ return self._preprocessor.run(input_ims)
+
+ @property
+ def size(self):
+ """
+ Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default size = [352, 352]
+ """
+ return self._preprocessor.size
+
+ @size.setter
+ def size(self, wh):
+ assert isinstance(wh, (list, tuple)),\
+ "The value to set `size` must be type of tuple or list."
+ assert len(wh) == 2,\
+ "The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
+ len(wh))
+ self._preprocessor.size = wh
+
+
+class FastestDetPostprocessor:
+ def __init__(self):
+ """Create a postprocessor for FastestDet
+ """
+ self._postprocessor = C.vision.detection.FastestDetPostprocessor()
+
+ def run(self, runtime_results, ims_info):
+ """Postprocess the runtime results for FastestDet
+
+ :param: runtime_results: (list of FDTensor)The output FDTensor results from runtime
+ :param: ims_info: (list of dict)Record input_shape and output_shape
+ :return: list of DetectionResult(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
+ """
+ return self._postprocessor.run(runtime_results, ims_info)
+
+ @property
+ def conf_threshold(self):
+ """
+ confidence threshold for postprocessing, default is 0.65
+ """
+ return self._postprocessor.conf_threshold
+
+ @property
+ def nms_threshold(self):
+ """
+ nms threshold for postprocessing, default is 0.45
+ """
+ return self._postprocessor.nms_threshold
+
+ @conf_threshold.setter
+ def conf_threshold(self, conf_threshold):
+ assert isinstance(conf_threshold, float),\
+ "The value to set `conf_threshold` must be type of float."
+ self._postprocessor.conf_threshold = conf_threshold
+
+ @nms_threshold.setter
+ def nms_threshold(self, nms_threshold):
+ assert isinstance(nms_threshold, float),\
+ "The value to set `nms_threshold` must be type of float."
+ self._postprocessor.nms_threshold = nms_threshold
+
+
+class FastestDet(FastDeployModel):
+ def __init__(self,
+ model_file,
+ params_file="",
+ runtime_option=None,
+ model_format=ModelFormat.ONNX):
+ """Load a FastestDet model exported by FastestDet.
+
+ :param model_file: (str)Path of model file, e.g ./FastestDet.onnx
+ :param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
+ :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
+ :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
+ """
+
+ super(FastestDet, self).__init__(runtime_option)
+
+ assert model_format == ModelFormat.ONNX, "FastestDet only support model format of ModelFormat.ONNX now."
+ self._model = C.vision.detection.FastestDet(
+ model_file, params_file, self._runtime_option, model_format)
+
+ assert self.initialized, "FastestDet initialize failed."
+
+ def predict(self, input_image):
+ """Detect an input image
+
+ :param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
+ :return: DetectionResult
+ """
+ assert input_image is not None, "Input image is None."
+ return self._model.predict(input_image)
+
+ def batch_predict(self, images):
+ assert len(images) == 1,"FastestDet is only support 1 image in batch_predict"
+ """Classify a batch of input image
+
+ :param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
+ :return list of DetectionResult
+ """
+
+ return self._model.batch_predict(images)
+
+ @property
+ def preprocessor(self):
+ """Get FastestDetPreprocessor object of the loaded model
+
+ :return FastestDetPreprocessor
+ """
+ return self._model.preprocessor
+
+ @property
+ def postprocessor(self):
+ """Get FastestDetPostprocessor object of the loaded model
+
+ :return FastestDetPostprocessor
+ """
+ return self._model.postprocessor
diff --git a/tests/models/test_fastestdet.py b/tests/models/test_fastestdet.py
new file mode 100644
index 000000000..0934b173a
--- /dev/null
+++ b/tests/models/test_fastestdet.py
@@ -0,0 +1,111 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from fastdeploy import ModelFormat
+import fastdeploy as fd
+import cv2
+import os
+import pickle
+import numpy as np
+import runtime_config as rc
+
+
+def test_detection_fastestdet():
+ model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/FastestDet.onnx"
+ input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg"
+ input_url2 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000570688.jpg"
+ result_url1 = "https://bj.bcebos.com/paddlehub/fastdeploy/fastestdet_result1.pkl"
+ fd.download(model_url, "resources")
+ fd.download(input_url1, "resources")
+ fd.download(input_url2, "resources")
+ fd.download(result_url1, "resources")
+
+ model_file = "resources/FastestDet.onnx"
+ model = fd.vision.detection.FastestDet(
+ model_file, runtime_option=rc.test_option)
+
+ with open("resources/fastestdet_result1.pkl", "rb") as f:
+ expect1 = pickle.load(f)
+
+ # compare diff
+ im1 = cv2.imread("./resources/000000014439.jpg")
+ print(expect1)
+ for i in range(3):
+ # test single predict
+ result1 = model.predict(im1)
+
+ diff_boxes_1 = np.fabs(
+ np.array(result1.boxes) - np.array(expect1["boxes"]))
+
+ diff_label_1 = np.fabs(
+ np.array(result1.label_ids) - np.array(expect1["label_ids"]))
+ diff_scores_1 = np.fabs(
+ np.array(result1.scores) - np.array(expect1["scores"]))
+
+ print(diff_boxes_1.max(), diff_boxes_1.mean())
+ assert diff_boxes_1.max(
+ ) < 1e-04, "There's difference in detection boxes 1."
+ assert diff_label_1.max(
+ ) < 1e-04, "There's difference in detection label 1."
+ assert diff_scores_1.max(
+ ) < 1e-05, "There's difference in detection score 1."
+
+def test_detection_fastestdet_runtime():
+ model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/FastestDet.onnx"
+ input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg"
+ result_url1 = "https://bj.bcebos.com/paddlehub/fastdeploy/fastestdet_result1.pkl"
+ fd.download(model_url, "resources")
+ fd.download(input_url1, "resources")
+ fd.download(result_url1, "resources")
+
+ model_file = "resources/FastestDet.onnx"
+
+ preprocessor = fd.vision.detection.FastestDetPreprocessor()
+ postprocessor = fd.vision.detection.FastestDetPostprocessor()
+
+ rc.test_option.set_model_path(model_file, model_format=ModelFormat.ONNX)
+ rc.test_option.use_openvino_backend()
+ runtime = fd.Runtime(rc.test_option)
+
+ with open("resources/fastestdet_result1.pkl", "rb") as f:
+ expect1 = pickle.load(f)
+
+ # compare diff
+ im1 = cv2.imread("./resources/000000014439.jpg")
+
+ for i in range(3):
+ # test runtime
+ input_tensors, ims_info = preprocessor.run([im1.copy()])
+ output_tensors = runtime.infer({"input.1": input_tensors[0]})
+ results = postprocessor.run(output_tensors, ims_info)
+ result1 = results[0]
+
+ diff_boxes_1 = np.fabs(
+ np.array(result1.boxes) - np.array(expect1["boxes"]))
+ diff_label_1 = np.fabs(
+ np.array(result1.label_ids) - np.array(expect1["label_ids"]))
+ diff_scores_1 = np.fabs(
+ np.array(result1.scores) - np.array(expect1["scores"]))
+
+ assert diff_boxes_1.max(
+ ) < 1e-04, "There's difference in detection boxes 1."
+ assert diff_label_1.max(
+ ) < 1e-04, "There's difference in detection label 1."
+ assert diff_scores_1.max(
+ ) < 1e-05, "There's difference in detection score 1."
+
+
+if __name__ == "__main__":
+ test_detection_fastestdet()
+ test_detection_fastestdet_runtime()
\ No newline at end of file