mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* model done, CLA fix * remove letter_box and ConvertAndPermute, use resize hwc2chw and convert in preprocess * remove useless values in preprocess * remove useless values in preprocess * fix reviewed problem * fix reviewed problem pybind * fix reviewed problem pybind * postprocess fix * add test_fastestdet.py, coco_val2017_500 fixed done, ready to review * fix reviewed problem * python/.../fastestdet.py * fix infer.cc, preprocess, python/fastestdet.py * fix examples/python/infer.py
150 lines
5.5 KiB
Python
150 lines
5.5 KiB
Python
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
import logging
|
|
from .... import FastDeployModel, ModelFormat
|
|
from .... import c_lib_wrap as C
|
|
|
|
|
|
class FastestDetPreprocessor:
|
|
def __init__(self):
|
|
"""Create a preprocessor for FastestDet
|
|
"""
|
|
self._preprocessor = C.vision.detection.FastestDetPreprocessor()
|
|
|
|
def run(self, input_ims):
|
|
"""Preprocess input images for FastestDet
|
|
|
|
:param: input_ims: (list of numpy.ndarray)The input image
|
|
:return: list of FDTensor
|
|
"""
|
|
return self._preprocessor.run(input_ims)
|
|
|
|
@property
|
|
def size(self):
|
|
"""
|
|
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default size = [352, 352]
|
|
"""
|
|
return self._preprocessor.size
|
|
|
|
@size.setter
|
|
def size(self, wh):
|
|
assert isinstance(wh, (list, tuple)),\
|
|
"The value to set `size` must be type of tuple or list."
|
|
assert len(wh) == 2,\
|
|
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
|
|
len(wh))
|
|
self._preprocessor.size = wh
|
|
|
|
|
|
class FastestDetPostprocessor:
|
|
def __init__(self):
|
|
"""Create a postprocessor for FastestDet
|
|
"""
|
|
self._postprocessor = C.vision.detection.FastestDetPostprocessor()
|
|
|
|
def run(self, runtime_results, ims_info):
|
|
"""Postprocess the runtime results for FastestDet
|
|
|
|
:param: runtime_results: (list of FDTensor)The output FDTensor results from runtime
|
|
:param: ims_info: (list of dict)Record input_shape and output_shape
|
|
:return: list of DetectionResult(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
|
|
"""
|
|
return self._postprocessor.run(runtime_results, ims_info)
|
|
|
|
@property
|
|
def conf_threshold(self):
|
|
"""
|
|
confidence threshold for postprocessing, default is 0.65
|
|
"""
|
|
return self._postprocessor.conf_threshold
|
|
|
|
@property
|
|
def nms_threshold(self):
|
|
"""
|
|
nms threshold for postprocessing, default is 0.45
|
|
"""
|
|
return self._postprocessor.nms_threshold
|
|
|
|
@conf_threshold.setter
|
|
def conf_threshold(self, conf_threshold):
|
|
assert isinstance(conf_threshold, float),\
|
|
"The value to set `conf_threshold` must be type of float."
|
|
self._postprocessor.conf_threshold = conf_threshold
|
|
|
|
@nms_threshold.setter
|
|
def nms_threshold(self, nms_threshold):
|
|
assert isinstance(nms_threshold, float),\
|
|
"The value to set `nms_threshold` must be type of float."
|
|
self._postprocessor.nms_threshold = nms_threshold
|
|
|
|
|
|
class FastestDet(FastDeployModel):
|
|
def __init__(self,
|
|
model_file,
|
|
params_file="",
|
|
runtime_option=None,
|
|
model_format=ModelFormat.ONNX):
|
|
"""Load a FastestDet model exported by FastestDet.
|
|
|
|
:param model_file: (str)Path of model file, e.g ./FastestDet.onnx
|
|
:param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
|
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
|
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
|
"""
|
|
|
|
super(FastestDet, self).__init__(runtime_option)
|
|
|
|
assert model_format == ModelFormat.ONNX, "FastestDet only support model format of ModelFormat.ONNX now."
|
|
self._model = C.vision.detection.FastestDet(
|
|
model_file, params_file, self._runtime_option, model_format)
|
|
|
|
assert self.initialized, "FastestDet initialize failed."
|
|
|
|
def predict(self, input_image):
|
|
"""Detect an input image
|
|
|
|
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
|
:return: DetectionResult
|
|
"""
|
|
assert input_image is not None, "Input image is None."
|
|
return self._model.predict(input_image)
|
|
|
|
def batch_predict(self, images):
|
|
assert len(images) == 1,"FastestDet is only support 1 image in batch_predict"
|
|
"""Classify a batch of input image
|
|
|
|
:param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
|
|
:return list of DetectionResult
|
|
"""
|
|
|
|
return self._model.batch_predict(images)
|
|
|
|
@property
|
|
def preprocessor(self):
|
|
"""Get FastestDetPreprocessor object of the loaded model
|
|
|
|
:return FastestDetPreprocessor
|
|
"""
|
|
return self._model.preprocessor
|
|
|
|
@property
|
|
def postprocessor(self):
|
|
"""Get FastestDetPostprocessor object of the loaded model
|
|
|
|
:return FastestDetPostprocessor
|
|
"""
|
|
return self._model.postprocessor
|