# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import logging from .... import FastDeployModel, ModelFormat from .... import c_lib_wrap as C class FastestDetPreprocessor: def __init__(self): """Create a preprocessor for FastestDet """ self._preprocessor = C.vision.detection.FastestDetPreprocessor() def run(self, input_ims): """Preprocess input images for FastestDet :param: input_ims: (list of numpy.ndarray)The input image :return: list of FDTensor """ return self._preprocessor.run(input_ims) @property def size(self): """ Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default size = [352, 352] """ return self._preprocessor.size @size.setter def size(self, wh): assert isinstance(wh, (list, tuple)),\ "The value to set `size` must be type of tuple or list." assert len(wh) == 2,\ "The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format( len(wh)) self._preprocessor.size = wh class FastestDetPostprocessor: def __init__(self): """Create a postprocessor for FastestDet """ self._postprocessor = C.vision.detection.FastestDetPostprocessor() def run(self, runtime_results, ims_info): """Postprocess the runtime results for FastestDet :param: runtime_results: (list of FDTensor)The output FDTensor results from runtime :param: ims_info: (list of dict)Record input_shape and output_shape :return: list of DetectionResult(If the runtime_results is predict by batched samples, the length of this list equals to the batch size) """ return self._postprocessor.run(runtime_results, ims_info) @property def conf_threshold(self): """ confidence threshold for postprocessing, default is 0.65 """ return self._postprocessor.conf_threshold @property def nms_threshold(self): """ nms threshold for postprocessing, default is 0.45 """ return self._postprocessor.nms_threshold @conf_threshold.setter def conf_threshold(self, conf_threshold): assert isinstance(conf_threshold, float),\ "The value to set `conf_threshold` must be type of float." self._postprocessor.conf_threshold = conf_threshold @nms_threshold.setter def nms_threshold(self, nms_threshold): assert isinstance(nms_threshold, float),\ "The value to set `nms_threshold` must be type of float." self._postprocessor.nms_threshold = nms_threshold class FastestDet(FastDeployModel): def __init__(self, model_file, params_file="", runtime_option=None, model_format=ModelFormat.ONNX): """Load a FastestDet model exported by FastestDet. :param model_file: (str)Path of model file, e.g ./FastestDet.onnx :param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model """ super(FastestDet, self).__init__(runtime_option) assert model_format == ModelFormat.ONNX, "FastestDet only support model format of ModelFormat.ONNX now." self._model = C.vision.detection.FastestDet( model_file, params_file, self._runtime_option, model_format) assert self.initialized, "FastestDet initialize failed." def predict(self, input_image): """Detect an input image :param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format :return: DetectionResult """ assert input_image is not None, "Input image is None." return self._model.predict(input_image) def batch_predict(self, images): assert len(images) == 1,"FastestDet is only support 1 image in batch_predict" """Classify a batch of input image :param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format :return list of DetectionResult """ return self._model.batch_predict(images) @property def preprocessor(self): """Get FastestDetPreprocessor object of the loaded model :return FastestDetPreprocessor """ return self._model.preprocessor @property def postprocessor(self): """Get FastestDetPostprocessor object of the loaded model :return FastestDetPostprocessor """ return self._model.postprocessor