mirror of
https://github.com/goplus/llgo.git
synced 2025-09-27 03:56:05 +08:00
457 lines
13 KiB
Go
457 lines
13 KiB
Go
/*
|
||
* Copyright (c) 2024 The GoPlus Authors (goplus.org). All rights reserved.
|
||
*
|
||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
* you may not use this file except in compliance with the License.
|
||
* You may obtain a copy of the License at
|
||
*
|
||
* http://www.apache.org/licenses/LICENSE-2.0
|
||
*
|
||
* Unless required by applicable law or agreed to in writing, software
|
||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
* See the License for the specific language governing permissions and
|
||
* limitations under the License.
|
||
*/
|
||
|
||
package big
|
||
|
||
// llgo:skipall
|
||
import (
|
||
"math/rand"
|
||
|
||
"github.com/goplus/llgo/c"
|
||
"github.com/goplus/llgo/c/openssl"
|
||
)
|
||
|
||
// A Word represents a single digit of a multi-precision unsigned integer.
|
||
type Word openssl.BN_ULONG
|
||
|
||
// -----------------------------------------------------------------------------
|
||
|
||
// TODO(xsw): share ctx
|
||
func ctxGet() *openssl.BN_CTX {
|
||
return openssl.BN_CTXNew()
|
||
}
|
||
|
||
func ctxPut(ctx *openssl.BN_CTX) {
|
||
ctx.Free()
|
||
}
|
||
|
||
// -----------------------------------------------------------------------------
|
||
|
||
type Int openssl.BIGNUM
|
||
|
||
// Sign returns:
|
||
//
|
||
// -1 if x < 0
|
||
// 0 if x == 0
|
||
// +1 if x > 0
|
||
func (x *Int) Sign() int {
|
||
a := (*openssl.BIGNUM)(x)
|
||
if a.IsNegative() != 0 {
|
||
return -1
|
||
} else if a.IsZero() != 0 {
|
||
return 0
|
||
}
|
||
return 1
|
||
}
|
||
|
||
// SetInt64 sets z to x and returns z.
|
||
func (z *Int) SetInt64(x int64) *Int {
|
||
a := (*openssl.BIGNUM)(z)
|
||
if x < 0 {
|
||
a.SetWord(openssl.BN_ULONG(-x))
|
||
a.SetNegative(1)
|
||
} else {
|
||
a.SetWord(openssl.BN_ULONG(x))
|
||
a.SetNegative(0)
|
||
}
|
||
return z
|
||
}
|
||
|
||
// SetUint64 sets z to x and returns z.
|
||
func (z *Int) SetUint64(x uint64) *Int {
|
||
a := (*openssl.BIGNUM)(z)
|
||
a.SetWord(openssl.BN_ULONG(x))
|
||
a.SetNegative(0)
|
||
return z
|
||
}
|
||
|
||
// NewInt allocates and returns a new Int set to x.
|
||
func NewInt(x int64) *Int {
|
||
z := (*Int)(openssl.BNNew())
|
||
return z.SetInt64(x)
|
||
}
|
||
|
||
// Set sets z to x and returns z.
|
||
func (z *Int) Set(x *Int) *Int {
|
||
if z != x {
|
||
a := (*openssl.BIGNUM)(z)
|
||
b := (*openssl.BIGNUM)(x)
|
||
a.Copy(b)
|
||
}
|
||
return z
|
||
}
|
||
|
||
// Abs sets z to |x| (the absolute value of x) and returns z.
|
||
func (z *Int) Abs(x *Int) *Int {
|
||
z.Set(x)
|
||
a := (*openssl.BIGNUM)(z)
|
||
a.SetNegative(0)
|
||
return z
|
||
}
|
||
|
||
// Neg sets z to -x and returns z.
|
||
func (z *Int) Neg(x *Int) *Int {
|
||
z.Set(x)
|
||
a := (*openssl.BIGNUM)(z)
|
||
if a.IsNegative() != 0 {
|
||
a.SetNegative(0)
|
||
} else {
|
||
a.SetNegative(1)
|
||
}
|
||
return z
|
||
}
|
||
|
||
// Bits provides raw (unchecked but fast) access to x by returning its
|
||
// absolute value as a little-endian Word slice. The result and x share
|
||
// the same underlying array.
|
||
// Bits is intended to support implementation of missing low-level Int
|
||
// functionality outside this package; it should be avoided otherwise.
|
||
func (x *Int) Bits() []Word {
|
||
panic("todo big.Bits")
|
||
}
|
||
|
||
// SetBits provides raw (unchecked but fast) access to z by setting its
|
||
// value to abs, interpreted as a little-endian Word slice, and returning
|
||
// z. The result and abs share the same underlying array.
|
||
// SetBits is intended to support implementation of missing low-level Int
|
||
// functionality outside this package; it should be avoided otherwise.
|
||
func (z *Int) SetBits(abs []Word) *Int {
|
||
panic("todo big.SetBits")
|
||
}
|
||
|
||
// Add sets z to the sum x+y and returns z.
|
||
func (z *Int) Add(x, y *Int) *Int {
|
||
(*openssl.BIGNUM)(z).Add((*openssl.BIGNUM)(x), (*openssl.BIGNUM)(y))
|
||
return z
|
||
}
|
||
|
||
// Sub sets z to the difference x-y and returns z.
|
||
func (z *Int) Sub(x, y *Int) *Int {
|
||
(*openssl.BIGNUM)(z).Sub((*openssl.BIGNUM)(x), (*openssl.BIGNUM)(y))
|
||
return z
|
||
}
|
||
|
||
// Mul sets z to the product x*y and returns z.
|
||
func (z *Int) Mul(x, y *Int) *Int {
|
||
panic("todo big.Mul")
|
||
}
|
||
|
||
// MulRange sets z to the product of all integers
|
||
// in the range [a, b] inclusively and returns z.
|
||
// If a > b (empty range), the result is 1.
|
||
func (z *Int) MulRange(a, b int64) *Int {
|
||
panic("todo big.MulRange")
|
||
}
|
||
|
||
// Binomial sets z to the binomial coefficient C(n, k) and returns z.
|
||
func (z *Int) Binomial(n, k int64) *Int {
|
||
panic("todo big.Binomial")
|
||
}
|
||
|
||
// Quo sets z to the quotient x/y for y != 0 and returns z.
|
||
// If y == 0, a division-by-zero run-time panic occurs.
|
||
// Quo implements truncated division (like Go); see QuoRem for more details.
|
||
func (z *Int) Quo(x, y *Int) *Int {
|
||
panic("todo big.Quo")
|
||
}
|
||
|
||
// Rem sets z to the remainder x%y for y != 0 and returns z.
|
||
// If y == 0, a division-by-zero run-time panic occurs.
|
||
// Rem implements truncated modulus (like Go); see QuoRem for more details.
|
||
func (z *Int) Rem(x, y *Int) *Int {
|
||
panic("todo big.Rem")
|
||
}
|
||
|
||
// QuoRem sets z to the quotient x/y and r to the remainder x%y
|
||
// and returns the pair (z, r) for y != 0.
|
||
// If y == 0, a division-by-zero run-time panic occurs.
|
||
//
|
||
// QuoRem implements T-division and modulus (like Go):
|
||
//
|
||
// q = x/y with the result truncated to zero
|
||
// r = x - y*q
|
||
//
|
||
// (See Daan Leijen, “Division and Modulus for Computer Scientists”.)
|
||
// See DivMod for Euclidean division and modulus (unlike Go).
|
||
func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) {
|
||
panic("todo big.QuoRem")
|
||
}
|
||
|
||
// Div sets z to the quotient x/y for y != 0 and returns z.
|
||
// If y == 0, a division-by-zero run-time panic occurs.
|
||
// Div implements Euclidean division (unlike Go); see DivMod for more details.
|
||
func (z *Int) Div(x, y *Int) *Int {
|
||
panic("todo big.Div")
|
||
}
|
||
|
||
// Mod sets z to the modulus x%y for y != 0 and returns z.
|
||
// If y == 0, a division-by-zero run-time panic occurs.
|
||
// Mod implements Euclidean modulus (unlike Go); see DivMod for more details.
|
||
func (z *Int) Mod(x, y *Int) *Int {
|
||
panic("todo big.Mod")
|
||
}
|
||
|
||
// DivMod sets z to the quotient x div y and m to the modulus x mod y
|
||
// and returns the pair (z, m) for y != 0.
|
||
// If y == 0, a division-by-zero run-time panic occurs.
|
||
//
|
||
// DivMod implements Euclidean division and modulus (unlike Go):
|
||
//
|
||
// q = x div y such that
|
||
// m = x - y*q with 0 <= m < |y|
|
||
//
|
||
// (See Raymond T. Boute, “The Euclidean definition of the functions
|
||
// div and mod”. ACM Transactions on Programming Languages and
|
||
// Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992.
|
||
// ACM press.)
|
||
// See QuoRem for T-division and modulus (like Go).
|
||
func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) {
|
||
panic("big.DivMod")
|
||
}
|
||
|
||
// Cmp compares x and y and returns:
|
||
//
|
||
// -1 if x < y
|
||
// 0 if x == y
|
||
// +1 if x > y
|
||
func (x *Int) Cmp(y *Int) (r int) {
|
||
return int((*openssl.BIGNUM)(x).Cmp((*openssl.BIGNUM)(y)))
|
||
}
|
||
|
||
// CmpAbs compares the absolute values of x and y and returns:
|
||
//
|
||
// -1 if |x| < |y|
|
||
// 0 if |x| == |y|
|
||
// +1 if |x| > |y|
|
||
func (x *Int) CmpAbs(y *Int) int {
|
||
return int((*openssl.BIGNUM)(x).Ucmp((*openssl.BIGNUM)(y)))
|
||
}
|
||
|
||
// Int64 returns the int64 representation of x.
|
||
// If x cannot be represented in an int64, the result is undefined.
|
||
func (x *Int) Int64() int64 {
|
||
panic("todo big.Int64")
|
||
}
|
||
|
||
// Uint64 returns the uint64 representation of x.
|
||
// If x cannot be represented in a uint64, the result is undefined.
|
||
func (x *Int) Uint64() uint64 {
|
||
panic("todo big.Uint64")
|
||
}
|
||
|
||
// IsInt64 reports whether x can be represented as an int64.
|
||
func (x *Int) IsInt64() bool {
|
||
panic("todo big.IsInt64")
|
||
}
|
||
|
||
// IsUint64 reports whether x can be represented as a uint64.
|
||
func (x *Int) IsUint64() bool {
|
||
panic("todo big.IsUint64")
|
||
}
|
||
|
||
// Float64 returns the float64 value nearest x,
|
||
// and an indication of any rounding that occurred.
|
||
// TODO(xsw):
|
||
/*
|
||
func (x *Int) Float64() (float64, Accuracy) {
|
||
panic("todo big.Float64")
|
||
}*/
|
||
|
||
// SetString sets z to the value of s, interpreted in the given base,
|
||
// and returns z and a boolean indicating success. The entire string
|
||
// (not just a prefix) must be valid for success. If SetString fails,
|
||
// the value of z is undefined but the returned value is nil.
|
||
//
|
||
// The base argument must be 0 or a value between 2 and MaxBase.
|
||
// For base 0, the number prefix determines the actual base: A prefix of
|
||
// “0b” or “0B” selects base 2, “0”, “0o” or “0O” selects base 8,
|
||
// and “0x” or “0X” selects base 16. Otherwise, the selected base is 10
|
||
// and no prefix is accepted.
|
||
//
|
||
// For bases <= 36, lower and upper case letters are considered the same:
|
||
// The letters 'a' to 'z' and 'A' to 'Z' represent digit values 10 to 35.
|
||
// For bases > 36, the upper case letters 'A' to 'Z' represent the digit
|
||
// values 36 to 61.
|
||
//
|
||
// For base 0, an underscore character “_” may appear between a base
|
||
// prefix and an adjacent digit, and between successive digits; such
|
||
// underscores do not change the value of the number.
|
||
// Incorrect placement of underscores is reported as an error if there
|
||
// are no other errors. If base != 0, underscores are not recognized
|
||
// and act like any other character that is not a valid digit.
|
||
func (z *Int) SetString(s string, base int) (*Int, bool) {
|
||
panic("todo big.SetString")
|
||
}
|
||
|
||
// SetBytes interprets buf as the bytes of a big-endian unsigned
|
||
// integer, sets z to that value, and returns z.
|
||
func (z *Int) SetBytes(buf []byte) *Int {
|
||
panic("todo big.SetBytes")
|
||
}
|
||
|
||
// Bytes returns the absolute value of x as a big-endian byte slice.
|
||
//
|
||
// To use a fixed length slice, or a preallocated one, use FillBytes.
|
||
func (x *Int) Bytes() []byte {
|
||
panic("todo big.Bytes")
|
||
}
|
||
|
||
// FillBytes sets buf to the absolute value of x, storing it as a zero-extended
|
||
// big-endian byte slice, and returns buf.
|
||
//
|
||
// If the absolute value of x doesn't fit in buf, FillBytes will panic.
|
||
func (x *Int) FillBytes(buf []byte) []byte {
|
||
panic("todo big.FillBytes")
|
||
}
|
||
|
||
// BitLen returns the length of the absolute value of x in bits.
|
||
// The bit length of 0 is 0.
|
||
func (x *Int) BitLen() int {
|
||
panic("todo big.BitLen")
|
||
}
|
||
|
||
// TrailingZeroBits returns the number of consecutive least significant zero
|
||
// bits of |x|.
|
||
func (x *Int) TrailingZeroBits() uint {
|
||
panic("todo big.TrailingZeroBits")
|
||
}
|
||
|
||
// Exp sets z = x**y mod |m| (i.e. the sign of m is ignored), and returns z.
|
||
// If m == nil or m == 0, z = x**y unless y <= 0 then z = 1. If m != 0, y < 0,
|
||
// and x and m are not relatively prime, z is unchanged and nil is returned.
|
||
//
|
||
// Modular exponentiation of inputs of a particular size is not a
|
||
// cryptographically constant-time operation.
|
||
func (z *Int) Exp(x, y, m *Int) *Int {
|
||
ctx := ctxGet()
|
||
mbn := (*openssl.BIGNUM)(m)
|
||
if mbn == nil || mbn.IsZero() != 0 {
|
||
(*openssl.BIGNUM)(z).Exp((*openssl.BIGNUM)(x), (*openssl.BIGNUM)(y), ctx)
|
||
} else {
|
||
(*openssl.BIGNUM)(z).ModExp((*openssl.BIGNUM)(x), (*openssl.BIGNUM)(y), mbn, ctx)
|
||
}
|
||
ctxPut(ctx)
|
||
return z
|
||
}
|
||
|
||
// GCD sets z to the greatest common divisor of a and b and returns z.
|
||
// If x or y are not nil, GCD sets their value such that z = a*x + b*y.
|
||
//
|
||
// a and b may be positive, zero or negative. (Before Go 1.14 both had
|
||
// to be > 0.) Regardless of the signs of a and b, z is always >= 0.
|
||
//
|
||
// If a == b == 0, GCD sets z = x = y = 0.
|
||
//
|
||
// If a == 0 and b != 0, GCD sets z = |b|, x = 0, y = sign(b) * 1.
|
||
//
|
||
// If a != 0 and b == 0, GCD sets z = |a|, x = sign(a) * 1, y = 0.
|
||
func (z *Int) GCD(x, y, a, b *Int) *Int {
|
||
panic("todo big.GCD")
|
||
}
|
||
|
||
// Rand sets z to a pseudo-random number in [0, n) and returns z.
|
||
//
|
||
// As this uses the math/rand package, it must not be used for
|
||
// security-sensitive work. Use crypto/rand.Int instead.
|
||
func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int {
|
||
panic("todo big.Rand")
|
||
}
|
||
|
||
// ModInverse sets z to the multiplicative inverse of g in the ring ℤ/nℤ
|
||
// and returns z. If g and n are not relatively prime, g has no multiplicative
|
||
// inverse in the ring ℤ/nℤ. In this case, z is unchanged and the return value
|
||
// is nil. If n == 0, a division-by-zero run-time panic occurs.
|
||
func (z *Int) ModInverse(g, n *Int) *Int {
|
||
panic("todo big.ModInverse")
|
||
}
|
||
|
||
// Jacobi returns the Jacobi symbol (x/y), either +1, -1, or 0.
|
||
// The y argument must be an odd integer.
|
||
func Jacobi(x, y *Int) int {
|
||
panic("todo big.Jacobi")
|
||
}
|
||
|
||
// ModSqrt sets z to a square root of x mod p if such a square root exists, and
|
||
// returns z. The modulus p must be an odd prime. If x is not a square mod p,
|
||
// ModSqrt leaves z unchanged and returns nil. This function panics if p is
|
||
// not an odd integer, its behavior is undefined if p is odd but not prime.
|
||
func (z *Int) ModSqrt(x, p *Int) *Int {
|
||
panic("todo big.ModSqrt")
|
||
}
|
||
|
||
// Lsh sets z = x << n and returns z.
|
||
func (z *Int) Lsh(x *Int, n uint) *Int {
|
||
a := (*openssl.BIGNUM)(z)
|
||
b := (*openssl.BIGNUM)(x)
|
||
a.Lshift(b, c.Int(n))
|
||
return z
|
||
}
|
||
|
||
// Rsh sets z = x >> n and returns z.
|
||
func (z *Int) Rsh(x *Int, n uint) *Int {
|
||
a := (*openssl.BIGNUM)(z)
|
||
b := (*openssl.BIGNUM)(x)
|
||
a.Rshift(b, c.Int(n))
|
||
return z
|
||
}
|
||
|
||
// Bit returns the value of the i'th bit of x. That is, it
|
||
// returns (x>>i)&1. The bit index i must be >= 0.
|
||
func (x *Int) Bit(i int) uint {
|
||
panic("todo big.Bit")
|
||
}
|
||
|
||
// SetBit sets z to x, with x's i'th bit set to b (0 or 1).
|
||
// That is, if b is 1 SetBit sets z = x | (1 << i);
|
||
// if b is 0 SetBit sets z = x &^ (1 << i). If b is not 0 or 1,
|
||
// SetBit will panic.
|
||
func (z *Int) SetBit(x *Int, i int, b uint) *Int {
|
||
panic("todo big.SetBit")
|
||
}
|
||
|
||
// And sets z = x & y and returns z.
|
||
func (z *Int) And(x, y *Int) *Int {
|
||
panic("todo big.And")
|
||
}
|
||
|
||
// AndNot sets z = x &^ y and returns z.
|
||
func (z *Int) AndNot(x, y *Int) *Int {
|
||
panic("todo big.AndNot")
|
||
}
|
||
|
||
// Or sets z = x | y and returns z.
|
||
func (z *Int) Or(x, y *Int) *Int {
|
||
panic("todo big.Or")
|
||
}
|
||
|
||
// Xor sets z = x ^ y and returns z.
|
||
func (z *Int) Xor(x, y *Int) *Int {
|
||
panic("todo big.Xor")
|
||
}
|
||
|
||
// Not sets z = ^x and returns z.
|
||
func (z *Int) Not(x *Int) *Int {
|
||
panic("todo big.Not")
|
||
}
|
||
|
||
// Sqrt sets z to ⌊√x⌋, the largest integer such that z² ≤ x, and returns z.
|
||
// It panics if x is negative.
|
||
func (z *Int) Sqrt(x *Int) *Int {
|
||
panic("todo big.Sqrt")
|
||
}
|
||
|
||
// -----------------------------------------------------------------------------
|