Files
llgo/internal/lib/math/big/int.go
2024-08-08 13:33:14 +08:00

457 lines
13 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2024 The GoPlus Authors (goplus.org). All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package big
// llgo:skipall
import (
"math/rand"
"github.com/goplus/llgo/c"
"github.com/goplus/llgo/c/openssl"
)
// A Word represents a single digit of a multi-precision unsigned integer.
type Word openssl.BN_ULONG
// -----------------------------------------------------------------------------
// TODO(xsw): share ctx
func ctxGet() *openssl.BN_CTX {
return openssl.BN_CTXNew()
}
func ctxPut(ctx *openssl.BN_CTX) {
ctx.Free()
}
// -----------------------------------------------------------------------------
type Int openssl.BIGNUM
// Sign returns:
//
// -1 if x < 0
// 0 if x == 0
// +1 if x > 0
func (x *Int) Sign() int {
a := (*openssl.BIGNUM)(x)
if a.IsNegative() != 0 {
return -1
} else if a.IsZero() != 0 {
return 0
}
return 1
}
// SetInt64 sets z to x and returns z.
func (z *Int) SetInt64(x int64) *Int {
a := (*openssl.BIGNUM)(z)
if x < 0 {
a.SetWord(openssl.BN_ULONG(-x))
a.SetNegative(1)
} else {
a.SetWord(openssl.BN_ULONG(x))
a.SetNegative(0)
}
return z
}
// SetUint64 sets z to x and returns z.
func (z *Int) SetUint64(x uint64) *Int {
a := (*openssl.BIGNUM)(z)
a.SetWord(openssl.BN_ULONG(x))
a.SetNegative(0)
return z
}
// NewInt allocates and returns a new Int set to x.
func NewInt(x int64) *Int {
z := (*Int)(openssl.BNNew())
return z.SetInt64(x)
}
// Set sets z to x and returns z.
func (z *Int) Set(x *Int) *Int {
if z != x {
a := (*openssl.BIGNUM)(z)
b := (*openssl.BIGNUM)(x)
a.Copy(b)
}
return z
}
// Abs sets z to |x| (the absolute value of x) and returns z.
func (z *Int) Abs(x *Int) *Int {
z.Set(x)
a := (*openssl.BIGNUM)(z)
a.SetNegative(0)
return z
}
// Neg sets z to -x and returns z.
func (z *Int) Neg(x *Int) *Int {
z.Set(x)
a := (*openssl.BIGNUM)(z)
if a.IsNegative() != 0 {
a.SetNegative(0)
} else {
a.SetNegative(1)
}
return z
}
// Bits provides raw (unchecked but fast) access to x by returning its
// absolute value as a little-endian Word slice. The result and x share
// the same underlying array.
// Bits is intended to support implementation of missing low-level Int
// functionality outside this package; it should be avoided otherwise.
func (x *Int) Bits() []Word {
panic("todo big.Bits")
}
// SetBits provides raw (unchecked but fast) access to z by setting its
// value to abs, interpreted as a little-endian Word slice, and returning
// z. The result and abs share the same underlying array.
// SetBits is intended to support implementation of missing low-level Int
// functionality outside this package; it should be avoided otherwise.
func (z *Int) SetBits(abs []Word) *Int {
panic("todo big.SetBits")
}
// Add sets z to the sum x+y and returns z.
func (z *Int) Add(x, y *Int) *Int {
(*openssl.BIGNUM)(z).Add((*openssl.BIGNUM)(x), (*openssl.BIGNUM)(y))
return z
}
// Sub sets z to the difference x-y and returns z.
func (z *Int) Sub(x, y *Int) *Int {
(*openssl.BIGNUM)(z).Sub((*openssl.BIGNUM)(x), (*openssl.BIGNUM)(y))
return z
}
// Mul sets z to the product x*y and returns z.
func (z *Int) Mul(x, y *Int) *Int {
panic("todo big.Mul")
}
// MulRange sets z to the product of all integers
// in the range [a, b] inclusively and returns z.
// If a > b (empty range), the result is 1.
func (z *Int) MulRange(a, b int64) *Int {
panic("todo big.MulRange")
}
// Binomial sets z to the binomial coefficient C(n, k) and returns z.
func (z *Int) Binomial(n, k int64) *Int {
panic("todo big.Binomial")
}
// Quo sets z to the quotient x/y for y != 0 and returns z.
// If y == 0, a division-by-zero run-time panic occurs.
// Quo implements truncated division (like Go); see QuoRem for more details.
func (z *Int) Quo(x, y *Int) *Int {
panic("todo big.Quo")
}
// Rem sets z to the remainder x%y for y != 0 and returns z.
// If y == 0, a division-by-zero run-time panic occurs.
// Rem implements truncated modulus (like Go); see QuoRem for more details.
func (z *Int) Rem(x, y *Int) *Int {
panic("todo big.Rem")
}
// QuoRem sets z to the quotient x/y and r to the remainder x%y
// and returns the pair (z, r) for y != 0.
// If y == 0, a division-by-zero run-time panic occurs.
//
// QuoRem implements T-division and modulus (like Go):
//
// q = x/y with the result truncated to zero
// r = x - y*q
//
// (See Daan Leijen, “Division and Modulus for Computer Scientists”.)
// See DivMod for Euclidean division and modulus (unlike Go).
func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) {
panic("todo big.QuoRem")
}
// Div sets z to the quotient x/y for y != 0 and returns z.
// If y == 0, a division-by-zero run-time panic occurs.
// Div implements Euclidean division (unlike Go); see DivMod for more details.
func (z *Int) Div(x, y *Int) *Int {
panic("todo big.Div")
}
// Mod sets z to the modulus x%y for y != 0 and returns z.
// If y == 0, a division-by-zero run-time panic occurs.
// Mod implements Euclidean modulus (unlike Go); see DivMod for more details.
func (z *Int) Mod(x, y *Int) *Int {
panic("todo big.Mod")
}
// DivMod sets z to the quotient x div y and m to the modulus x mod y
// and returns the pair (z, m) for y != 0.
// If y == 0, a division-by-zero run-time panic occurs.
//
// DivMod implements Euclidean division and modulus (unlike Go):
//
// q = x div y such that
// m = x - y*q with 0 <= m < |y|
//
// (See Raymond T. Boute, “The Euclidean definition of the functions
// div and mod”. ACM Transactions on Programming Languages and
// Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992.
// ACM press.)
// See QuoRem for T-division and modulus (like Go).
func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) {
panic("big.DivMod")
}
// Cmp compares x and y and returns:
//
// -1 if x < y
// 0 if x == y
// +1 if x > y
func (x *Int) Cmp(y *Int) (r int) {
return int((*openssl.BIGNUM)(x).Cmp((*openssl.BIGNUM)(y)))
}
// CmpAbs compares the absolute values of x and y and returns:
//
// -1 if |x| < |y|
// 0 if |x| == |y|
// +1 if |x| > |y|
func (x *Int) CmpAbs(y *Int) int {
return int((*openssl.BIGNUM)(x).Ucmp((*openssl.BIGNUM)(y)))
}
// Int64 returns the int64 representation of x.
// If x cannot be represented in an int64, the result is undefined.
func (x *Int) Int64() int64 {
panic("todo big.Int64")
}
// Uint64 returns the uint64 representation of x.
// If x cannot be represented in a uint64, the result is undefined.
func (x *Int) Uint64() uint64 {
panic("todo big.Uint64")
}
// IsInt64 reports whether x can be represented as an int64.
func (x *Int) IsInt64() bool {
panic("todo big.IsInt64")
}
// IsUint64 reports whether x can be represented as a uint64.
func (x *Int) IsUint64() bool {
panic("todo big.IsUint64")
}
// Float64 returns the float64 value nearest x,
// and an indication of any rounding that occurred.
// TODO(xsw):
/*
func (x *Int) Float64() (float64, Accuracy) {
panic("todo big.Float64")
}*/
// SetString sets z to the value of s, interpreted in the given base,
// and returns z and a boolean indicating success. The entire string
// (not just a prefix) must be valid for success. If SetString fails,
// the value of z is undefined but the returned value is nil.
//
// The base argument must be 0 or a value between 2 and MaxBase.
// For base 0, the number prefix determines the actual base: A prefix of
// “0b” or “0B” selects base 2, “0”, “0o” or “0O” selects base 8,
// and “0x” or “0X” selects base 16. Otherwise, the selected base is 10
// and no prefix is accepted.
//
// For bases <= 36, lower and upper case letters are considered the same:
// The letters 'a' to 'z' and 'A' to 'Z' represent digit values 10 to 35.
// For bases > 36, the upper case letters 'A' to 'Z' represent the digit
// values 36 to 61.
//
// For base 0, an underscore character “_” may appear between a base
// prefix and an adjacent digit, and between successive digits; such
// underscores do not change the value of the number.
// Incorrect placement of underscores is reported as an error if there
// are no other errors. If base != 0, underscores are not recognized
// and act like any other character that is not a valid digit.
func (z *Int) SetString(s string, base int) (*Int, bool) {
panic("todo big.SetString")
}
// SetBytes interprets buf as the bytes of a big-endian unsigned
// integer, sets z to that value, and returns z.
func (z *Int) SetBytes(buf []byte) *Int {
panic("todo big.SetBytes")
}
// Bytes returns the absolute value of x as a big-endian byte slice.
//
// To use a fixed length slice, or a preallocated one, use FillBytes.
func (x *Int) Bytes() []byte {
panic("todo big.Bytes")
}
// FillBytes sets buf to the absolute value of x, storing it as a zero-extended
// big-endian byte slice, and returns buf.
//
// If the absolute value of x doesn't fit in buf, FillBytes will panic.
func (x *Int) FillBytes(buf []byte) []byte {
panic("todo big.FillBytes")
}
// BitLen returns the length of the absolute value of x in bits.
// The bit length of 0 is 0.
func (x *Int) BitLen() int {
panic("todo big.BitLen")
}
// TrailingZeroBits returns the number of consecutive least significant zero
// bits of |x|.
func (x *Int) TrailingZeroBits() uint {
panic("todo big.TrailingZeroBits")
}
// Exp sets z = x**y mod |m| (i.e. the sign of m is ignored), and returns z.
// If m == nil or m == 0, z = x**y unless y <= 0 then z = 1. If m != 0, y < 0,
// and x and m are not relatively prime, z is unchanged and nil is returned.
//
// Modular exponentiation of inputs of a particular size is not a
// cryptographically constant-time operation.
func (z *Int) Exp(x, y, m *Int) *Int {
ctx := ctxGet()
mbn := (*openssl.BIGNUM)(m)
if mbn == nil || mbn.IsZero() != 0 {
(*openssl.BIGNUM)(z).Exp((*openssl.BIGNUM)(x), (*openssl.BIGNUM)(y), ctx)
} else {
(*openssl.BIGNUM)(z).ModExp((*openssl.BIGNUM)(x), (*openssl.BIGNUM)(y), mbn, ctx)
}
ctxPut(ctx)
return z
}
// GCD sets z to the greatest common divisor of a and b and returns z.
// If x or y are not nil, GCD sets their value such that z = a*x + b*y.
//
// a and b may be positive, zero or negative. (Before Go 1.14 both had
// to be > 0.) Regardless of the signs of a and b, z is always >= 0.
//
// If a == b == 0, GCD sets z = x = y = 0.
//
// If a == 0 and b != 0, GCD sets z = |b|, x = 0, y = sign(b) * 1.
//
// If a != 0 and b == 0, GCD sets z = |a|, x = sign(a) * 1, y = 0.
func (z *Int) GCD(x, y, a, b *Int) *Int {
panic("todo big.GCD")
}
// Rand sets z to a pseudo-random number in [0, n) and returns z.
//
// As this uses the math/rand package, it must not be used for
// security-sensitive work. Use crypto/rand.Int instead.
func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int {
panic("todo big.Rand")
}
// ModInverse sets z to the multiplicative inverse of g in the ring /n
// and returns z. If g and n are not relatively prime, g has no multiplicative
// inverse in the ring /n. In this case, z is unchanged and the return value
// is nil. If n == 0, a division-by-zero run-time panic occurs.
func (z *Int) ModInverse(g, n *Int) *Int {
panic("todo big.ModInverse")
}
// Jacobi returns the Jacobi symbol (x/y), either +1, -1, or 0.
// The y argument must be an odd integer.
func Jacobi(x, y *Int) int {
panic("todo big.Jacobi")
}
// ModSqrt sets z to a square root of x mod p if such a square root exists, and
// returns z. The modulus p must be an odd prime. If x is not a square mod p,
// ModSqrt leaves z unchanged and returns nil. This function panics if p is
// not an odd integer, its behavior is undefined if p is odd but not prime.
func (z *Int) ModSqrt(x, p *Int) *Int {
panic("todo big.ModSqrt")
}
// Lsh sets z = x << n and returns z.
func (z *Int) Lsh(x *Int, n uint) *Int {
a := (*openssl.BIGNUM)(z)
b := (*openssl.BIGNUM)(x)
a.Lshift(b, c.Int(n))
return z
}
// Rsh sets z = x >> n and returns z.
func (z *Int) Rsh(x *Int, n uint) *Int {
a := (*openssl.BIGNUM)(z)
b := (*openssl.BIGNUM)(x)
a.Rshift(b, c.Int(n))
return z
}
// Bit returns the value of the i'th bit of x. That is, it
// returns (x>>i)&1. The bit index i must be >= 0.
func (x *Int) Bit(i int) uint {
panic("todo big.Bit")
}
// SetBit sets z to x, with x's i'th bit set to b (0 or 1).
// That is, if b is 1 SetBit sets z = x | (1 << i);
// if b is 0 SetBit sets z = x &^ (1 << i). If b is not 0 or 1,
// SetBit will panic.
func (z *Int) SetBit(x *Int, i int, b uint) *Int {
panic("todo big.SetBit")
}
// And sets z = x & y and returns z.
func (z *Int) And(x, y *Int) *Int {
panic("todo big.And")
}
// AndNot sets z = x &^ y and returns z.
func (z *Int) AndNot(x, y *Int) *Int {
panic("todo big.AndNot")
}
// Or sets z = x | y and returns z.
func (z *Int) Or(x, y *Int) *Int {
panic("todo big.Or")
}
// Xor sets z = x ^ y and returns z.
func (z *Int) Xor(x, y *Int) *Int {
panic("todo big.Xor")
}
// Not sets z = ^x and returns z.
func (z *Int) Not(x *Int) *Int {
panic("todo big.Not")
}
// Sqrt sets z to ⌊√x⌋, the largest integer such that z² ≤ x, and returns z.
// It panics if x is negative.
func (z *Int) Sqrt(x *Int) *Int {
panic("todo big.Sqrt")
}
// -----------------------------------------------------------------------------