mirror of
https://github.com/goplus/llgo.git
synced 2025-09-26 19:51:21 +08:00
add big.Int Lsh and Rsh and test it
This commit is contained in:
@@ -40,7 +40,7 @@ func neg() {
|
||||
fmt.Println("value: ", big.NewInt(0).Neg(big.NewInt(0)))
|
||||
}
|
||||
|
||||
func main() {
|
||||
func calc() {
|
||||
a := big.NewInt(64)
|
||||
b := big.NewInt(-52)
|
||||
c := big.NewInt(54)
|
||||
@@ -50,3 +50,14 @@ func main() {
|
||||
e := big.NewInt(4)
|
||||
fmt.Println("value:", d.Mul(d, e))
|
||||
}
|
||||
|
||||
func bitop() {
|
||||
a := big.NewInt(4)
|
||||
fmt.Println("value:", a.Lsh(a, 1))
|
||||
b := big.NewInt(16)
|
||||
fmt.Println("value:", b.Rsh(b, 2))
|
||||
}
|
||||
|
||||
func main() {
|
||||
bitop()
|
||||
}
|
||||
|
@@ -18,8 +18,9 @@ package big
|
||||
|
||||
// llgo:skipall
|
||||
import (
|
||||
"sync"
|
||||
"math/rand"
|
||||
|
||||
"github.com/goplus/llgo/c"
|
||||
"github.com/goplus/llgo/c/openssl"
|
||||
)
|
||||
|
||||
@@ -37,18 +38,6 @@ func ctxPut(ctx *openssl.BN_CTX) {
|
||||
ctx.Free()
|
||||
}
|
||||
|
||||
var g_lock = &sync.Mutex{}
|
||||
var g_ctx *openssl.BN_CTX
|
||||
|
||||
func getCtxInstance() *openssl.BN_CTX {
|
||||
if g_ctx == nil {
|
||||
g_lock.Lock()
|
||||
defer g_lock.Unlock()
|
||||
g_ctx = ctxGet()
|
||||
}
|
||||
return g_ctx
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
|
||||
type Int openssl.BIGNUM
|
||||
@@ -100,8 +89,7 @@ func (z *Int) Set(x *Int) *Int {
|
||||
if z != x {
|
||||
a := (*openssl.BIGNUM)(z)
|
||||
b := (*openssl.BIGNUM)(x)
|
||||
a.SetWord(b.GetWord())
|
||||
a.SetNegative(b.IsNegative())
|
||||
a.Copy(b)
|
||||
}
|
||||
return z
|
||||
}
|
||||
@@ -132,7 +120,7 @@ func (z *Int) Neg(x *Int) *Int {
|
||||
// Bits is intended to support implementation of missing low-level Int
|
||||
// functionality outside this package; it should be avoided otherwise.
|
||||
func (x *Int) Bits() []Word {
|
||||
panic("big.Bits")
|
||||
panic("todo big.Bits")
|
||||
}
|
||||
|
||||
// SetBits provides raw (unchecked but fast) access to z by setting its
|
||||
@@ -141,7 +129,7 @@ func (x *Int) Bits() []Word {
|
||||
// SetBits is intended to support implementation of missing low-level Int
|
||||
// functionality outside this package; it should be avoided otherwise.
|
||||
func (z *Int) SetBits(abs []Word) *Int {
|
||||
panic("big.SetBits")
|
||||
panic("todo big.SetBits")
|
||||
}
|
||||
|
||||
// Add sets z to the sum x+y and returns z.
|
||||
@@ -158,100 +146,33 @@ func (z *Int) Sub(x, y *Int) *Int {
|
||||
|
||||
// Mul sets z to the product x*y and returns z.
|
||||
func (z *Int) Mul(x, y *Int) *Int {
|
||||
a := (*openssl.BIGNUM)(z)
|
||||
xx := (*openssl.BIGNUM)(x)
|
||||
yy := (*openssl.BIGNUM)(y)
|
||||
getCtxInstance().Start()
|
||||
defer getCtxInstance().End()
|
||||
a.Mul(a, xx, yy, getCtxInstance())
|
||||
return z
|
||||
panic("todo big.Mul")
|
||||
}
|
||||
|
||||
// MulRange sets z to the product of all integers
|
||||
// in the range [a, b] inclusively and returns z.
|
||||
// If a > b (empty range), the result is 1.
|
||||
func (z *Int) MulRange(a, b int64) *Int {
|
||||
switch {
|
||||
case a > b:
|
||||
return z.SetInt64(1) // empty range
|
||||
case a <= 0 && b >= 0:
|
||||
return z.SetInt64(0) // range includes 0
|
||||
}
|
||||
// a <= b && (b < 0 || a > 0)
|
||||
neg := false
|
||||
if a < 0 {
|
||||
neg = (b-a)&1 == 0
|
||||
a, b = -b, -a
|
||||
}
|
||||
zz := (*openssl.BIGNUM)(z)
|
||||
for i := a; i < b; i++ {
|
||||
zz.MulWord(openssl.BN_ULONG(i))
|
||||
}
|
||||
if neg {
|
||||
zz.SetNegative(1)
|
||||
} else {
|
||||
zz.SetNegative(0)
|
||||
}
|
||||
return z
|
||||
panic("todo big.MulRange")
|
||||
}
|
||||
|
||||
// Binomial sets z to the binomial coefficient C(n, k) and returns z.
|
||||
func (z *Int) Binomial(n, k int64) *Int {
|
||||
if k > n {
|
||||
return z.SetInt64(0)
|
||||
}
|
||||
// reduce the number of multiplications by reducing k
|
||||
if k > n-k {
|
||||
k = n - k // C(n, k) == C(n, n-k)
|
||||
}
|
||||
// C(n, k) == n * (n-1) * ... * (n-k+1) / k * (k-1) * ... * 1
|
||||
// == n * (n-1) * ... * (n-k+1) / 1 * (1+1) * ... * k
|
||||
//
|
||||
// Using the multiplicative formula produces smaller values
|
||||
// at each step, requiring fewer allocations and computations:
|
||||
//
|
||||
// z = 1
|
||||
// for i := 0; i < k; i = i+1 {
|
||||
// z *= n-i
|
||||
// z /= i+1
|
||||
// }
|
||||
//
|
||||
// finally to avoid computing i+1 twice per loop:
|
||||
//
|
||||
// z = 1
|
||||
// i := 0
|
||||
// for i < k {
|
||||
// z *= n-i
|
||||
// i++
|
||||
// z /= i
|
||||
// }
|
||||
var N, K, i, t Int
|
||||
N.SetInt64(n)
|
||||
K.SetInt64(k)
|
||||
|
||||
intOne := NewInt(1)
|
||||
|
||||
z.Set(intOne)
|
||||
for i.Cmp(&K) < 0 {
|
||||
z.Mul(z, t.Sub(&N, &i))
|
||||
i.Add(&i, intOne)
|
||||
z.Quo(z, &i)
|
||||
}
|
||||
return z
|
||||
panic("todo big.Binomial")
|
||||
}
|
||||
|
||||
// Quo sets z to the quotient x/y for y != 0 and returns z.
|
||||
// If y == 0, a division-by-zero run-time panic occurs.
|
||||
// Quo implements truncated division (like Go); see QuoRem for more details.
|
||||
func (z *Int) Quo(x, y *Int) *Int {
|
||||
panic("big.Quo")
|
||||
panic("todo big.Quo")
|
||||
}
|
||||
|
||||
// Rem sets z to the remainder x%y for y != 0 and returns z.
|
||||
// If y == 0, a division-by-zero run-time panic occurs.
|
||||
// Rem implements truncated modulus (like Go); see QuoRem for more details.
|
||||
func (z *Int) Rem(x, y *Int) *Int {
|
||||
panic("big.Rem")
|
||||
panic("todo big.Rem")
|
||||
}
|
||||
|
||||
// QuoRem sets z to the quotient x/y and r to the remainder x%y
|
||||
@@ -266,21 +187,21 @@ func (z *Int) Rem(x, y *Int) *Int {
|
||||
// (See Daan Leijen, “Division and Modulus for Computer Scientists”.)
|
||||
// See DivMod for Euclidean division and modulus (unlike Go).
|
||||
func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) {
|
||||
panic("big.QuoRem")
|
||||
panic("todo big.QuoRem")
|
||||
}
|
||||
|
||||
// Div sets z to the quotient x/y for y != 0 and returns z.
|
||||
// If y == 0, a division-by-zero run-time panic occurs.
|
||||
// Div implements Euclidean division (unlike Go); see DivMod for more details.
|
||||
func (z *Int) Div(x, y *Int) *Int {
|
||||
panic("big.Div")
|
||||
panic("todo big.Div")
|
||||
}
|
||||
|
||||
// Mod sets z to the modulus x%y for y != 0 and returns z.
|
||||
// If y == 0, a division-by-zero run-time panic occurs.
|
||||
// Mod implements Euclidean modulus (unlike Go); see DivMod for more details.
|
||||
func (z *Int) Mod(x, y *Int) *Int {
|
||||
panic("big.Mod")
|
||||
panic("todo big.Mod")
|
||||
}
|
||||
|
||||
// DivMod sets z to the quotient x div y and m to the modulus x mod y
|
||||
@@ -322,28 +243,32 @@ func (x *Int) CmpAbs(y *Int) int {
|
||||
// Int64 returns the int64 representation of x.
|
||||
// If x cannot be represented in an int64, the result is undefined.
|
||||
func (x *Int) Int64() int64 {
|
||||
panic("big.Int64")
|
||||
panic("todo big.Int64")
|
||||
}
|
||||
|
||||
// Uint64 returns the uint64 representation of x.
|
||||
// If x cannot be represented in a uint64, the result is undefined.
|
||||
func (x *Int) Uint64() uint64 {
|
||||
panic("big.Uint64")
|
||||
panic("todo big.Uint64")
|
||||
}
|
||||
|
||||
/*
|
||||
// IsInt64 reports whether x can be represented as an int64.
|
||||
func (x *Int) IsInt64() bool {
|
||||
panic("todo big.IsInt64")
|
||||
}
|
||||
|
||||
// IsUint64 reports whether x can be represented as a uint64.
|
||||
func (x *Int) IsUint64() bool {
|
||||
panic("todo big.IsUint64")
|
||||
}
|
||||
|
||||
// Float64 returns the float64 value nearest x,
|
||||
// and an indication of any rounding that occurred.
|
||||
// TODO(xsw):
|
||||
// func (x *Int) Float64() (float64, Accuracy)
|
||||
/*
|
||||
func (x *Int) Float64() (float64, Accuracy) {
|
||||
panic("todo big.Float64")
|
||||
}*/
|
||||
|
||||
// SetString sets z to the value of s, interpreted in the given base,
|
||||
// and returns z and a boolean indicating success. The entire string
|
||||
@@ -368,17 +293,20 @@ func (x *Int) IsUint64() bool {
|
||||
// are no other errors. If base != 0, underscores are not recognized
|
||||
// and act like any other character that is not a valid digit.
|
||||
func (z *Int) SetString(s string, base int) (*Int, bool) {
|
||||
panic("todo big.SetString")
|
||||
}
|
||||
|
||||
// SetBytes interprets buf as the bytes of a big-endian unsigned
|
||||
// integer, sets z to that value, and returns z.
|
||||
func (z *Int) SetBytes(buf []byte) *Int {
|
||||
panic("todo big.SetBytes")
|
||||
}
|
||||
|
||||
// Bytes returns the absolute value of x as a big-endian byte slice.
|
||||
//
|
||||
// To use a fixed length slice, or a preallocated one, use FillBytes.
|
||||
func (x *Int) Bytes() []byte {
|
||||
panic("todo big.Bytes")
|
||||
}
|
||||
|
||||
// FillBytes sets buf to the absolute value of x, storing it as a zero-extended
|
||||
@@ -386,18 +314,20 @@ func (x *Int) Bytes() []byte {
|
||||
//
|
||||
// If the absolute value of x doesn't fit in buf, FillBytes will panic.
|
||||
func (x *Int) FillBytes(buf []byte) []byte {
|
||||
panic("todo big.FillBytes")
|
||||
}
|
||||
|
||||
// BitLen returns the length of the absolute value of x in bits.
|
||||
// The bit length of 0 is 0.
|
||||
func (x *Int) BitLen() int {
|
||||
panic("todo big.BitLen")
|
||||
}
|
||||
|
||||
// TrailingZeroBits returns the number of consecutive least significant zero
|
||||
// bits of |x|.
|
||||
func (x *Int) TrailingZeroBits() uint {
|
||||
panic("todo big.TrailingZeroBits")
|
||||
}
|
||||
*/
|
||||
|
||||
// Exp sets z = x**y mod |m| (i.e. the sign of m is ignored), and returns z.
|
||||
// If m == nil or m == 0, z = x**y unless y <= 0 then z = 1. If m != 0, y < 0,
|
||||
@@ -417,7 +347,6 @@ func (z *Int) Exp(x, y, m *Int) *Int {
|
||||
return z
|
||||
}
|
||||
|
||||
/*
|
||||
// GCD sets z to the greatest common divisor of a and b and returns z.
|
||||
// If x or y are not nil, GCD sets their value such that z = a*x + b*y.
|
||||
//
|
||||
@@ -430,6 +359,7 @@ func (z *Int) Exp(x, y, m *Int) *Int {
|
||||
//
|
||||
// If a != 0 and b == 0, GCD sets z = |a|, x = sign(a) * 1, y = 0.
|
||||
func (z *Int) GCD(x, y, a, b *Int) *Int {
|
||||
panic("todo big.GCD")
|
||||
}
|
||||
|
||||
// Rand sets z to a pseudo-random number in [0, n) and returns z.
|
||||
@@ -437,6 +367,7 @@ func (z *Int) GCD(x, y, a, b *Int) *Int {
|
||||
// As this uses the math/rand package, it must not be used for
|
||||
// security-sensitive work. Use crypto/rand.Int instead.
|
||||
func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int {
|
||||
panic("todo big.Rand")
|
||||
}
|
||||
|
||||
// ModInverse sets z to the multiplicative inverse of g in the ring ℤ/nℤ
|
||||
@@ -444,11 +375,13 @@ func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int {
|
||||
// inverse in the ring ℤ/nℤ. In this case, z is unchanged and the return value
|
||||
// is nil. If n == 0, a division-by-zero run-time panic occurs.
|
||||
func (z *Int) ModInverse(g, n *Int) *Int {
|
||||
panic("todo big.ModInverse")
|
||||
}
|
||||
|
||||
// Jacobi returns the Jacobi symbol (x/y), either +1, -1, or 0.
|
||||
// The y argument must be an odd integer.
|
||||
func Jacobi(x, y *Int) int {
|
||||
panic("todo big.Jacobi")
|
||||
}
|
||||
|
||||
// ModSqrt sets z to a square root of x mod p if such a square root exists, and
|
||||
@@ -456,19 +389,29 @@ func Jacobi(x, y *Int) int {
|
||||
// ModSqrt leaves z unchanged and returns nil. This function panics if p is
|
||||
// not an odd integer, its behavior is undefined if p is odd but not prime.
|
||||
func (z *Int) ModSqrt(x, p *Int) *Int {
|
||||
panic("todo big.ModSqrt")
|
||||
}
|
||||
|
||||
// Lsh sets z = x << n and returns z.
|
||||
func (z *Int) Lsh(x *Int, n uint) *Int {
|
||||
a := (*openssl.BIGNUM)(z)
|
||||
b := (*openssl.BIGNUM)(x)
|
||||
a.Lshift(b, c.Int(n))
|
||||
return z
|
||||
}
|
||||
|
||||
// Rsh sets z = x >> n and returns z.
|
||||
func (z *Int) Rsh(x *Int, n uint) *Int {
|
||||
a := (*openssl.BIGNUM)(z)
|
||||
b := (*openssl.BIGNUM)(x)
|
||||
a.Rshift(b, c.Int(n))
|
||||
return z
|
||||
}
|
||||
|
||||
// Bit returns the value of the i'th bit of x. That is, it
|
||||
// returns (x>>i)&1. The bit index i must be >= 0.
|
||||
func (x *Int) Bit(i int) uint {
|
||||
panic("todo big.Bit")
|
||||
}
|
||||
|
||||
// SetBit sets z to x, with x's i'th bit set to b (0 or 1).
|
||||
@@ -476,32 +419,38 @@ func (x *Int) Bit(i int) uint {
|
||||
// if b is 0 SetBit sets z = x &^ (1 << i). If b is not 0 or 1,
|
||||
// SetBit will panic.
|
||||
func (z *Int) SetBit(x *Int, i int, b uint) *Int {
|
||||
panic("todo big.SetBit")
|
||||
}
|
||||
|
||||
// And sets z = x & y and returns z.
|
||||
func (z *Int) And(x, y *Int) *Int {
|
||||
panic("todo big.And")
|
||||
}
|
||||
|
||||
// AndNot sets z = x &^ y and returns z.
|
||||
func (z *Int) AndNot(x, y *Int) *Int {
|
||||
panic("todo big.AndNot")
|
||||
}
|
||||
|
||||
// Or sets z = x | y and returns z.
|
||||
func (z *Int) Or(x, y *Int) *Int {
|
||||
panic("todo big.Or")
|
||||
}
|
||||
|
||||
// Xor sets z = x ^ y and returns z.
|
||||
func (z *Int) Xor(x, y *Int) *Int {
|
||||
panic("todo big.Xor")
|
||||
}
|
||||
|
||||
// Not sets z = ^x and returns z.
|
||||
func (z *Int) Not(x *Int) *Int {
|
||||
panic("todo big.Not")
|
||||
}
|
||||
|
||||
// Sqrt sets z to ⌊√x⌋, the largest integer such that z² ≤ x, and returns z.
|
||||
// It panics if x is negative.
|
||||
func (z *Int) Sqrt(x *Int) *Int {
|
||||
panic("todo big.Sqrt")
|
||||
}
|
||||
*/
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
|
Reference in New Issue
Block a user