/* * Copyright (c) 2024 The GoPlus Authors (goplus.org). All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package big // llgo:skipall import ( "math/rand" "github.com/goplus/llgo/c" "github.com/goplus/llgo/c/openssl" ) // A Word represents a single digit of a multi-precision unsigned integer. type Word openssl.BN_ULONG // ----------------------------------------------------------------------------- // TODO(xsw): share ctx func ctxGet() *openssl.BN_CTX { return openssl.BN_CTXNew() } func ctxPut(ctx *openssl.BN_CTX) { ctx.Free() } // ----------------------------------------------------------------------------- type Int openssl.BIGNUM // Sign returns: // // -1 if x < 0 // 0 if x == 0 // +1 if x > 0 func (x *Int) Sign() int { a := (*openssl.BIGNUM)(x) if a.IsNegative() != 0 { return -1 } else if a.IsZero() != 0 { return 0 } return 1 } // SetInt64 sets z to x and returns z. func (z *Int) SetInt64(x int64) *Int { a := (*openssl.BIGNUM)(z) if x < 0 { a.SetWord(openssl.BN_ULONG(-x)) a.SetNegative(1) } else { a.SetWord(openssl.BN_ULONG(x)) a.SetNegative(0) } return z } // SetUint64 sets z to x and returns z. func (z *Int) SetUint64(x uint64) *Int { a := (*openssl.BIGNUM)(z) a.SetWord(openssl.BN_ULONG(x)) a.SetNegative(0) return z } // NewInt allocates and returns a new Int set to x. func NewInt(x int64) *Int { z := (*Int)(openssl.BNNew()) return z.SetInt64(x) } // Set sets z to x and returns z. func (z *Int) Set(x *Int) *Int { if z != x { a := (*openssl.BIGNUM)(z) b := (*openssl.BIGNUM)(x) a.Copy(b) } return z } // Abs sets z to |x| (the absolute value of x) and returns z. func (z *Int) Abs(x *Int) *Int { z.Set(x) a := (*openssl.BIGNUM)(z) a.SetNegative(0) return z } // Neg sets z to -x and returns z. func (z *Int) Neg(x *Int) *Int { z.Set(x) a := (*openssl.BIGNUM)(z) if a.IsNegative() != 0 { a.SetNegative(0) } else { a.SetNegative(1) } return z } // Bits provides raw (unchecked but fast) access to x by returning its // absolute value as a little-endian Word slice. The result and x share // the same underlying array. // Bits is intended to support implementation of missing low-level Int // functionality outside this package; it should be avoided otherwise. func (x *Int) Bits() []Word { panic("todo big.Bits") } // SetBits provides raw (unchecked but fast) access to z by setting its // value to abs, interpreted as a little-endian Word slice, and returning // z. The result and abs share the same underlying array. // SetBits is intended to support implementation of missing low-level Int // functionality outside this package; it should be avoided otherwise. func (z *Int) SetBits(abs []Word) *Int { panic("todo big.SetBits") } // Add sets z to the sum x+y and returns z. func (z *Int) Add(x, y *Int) *Int { (*openssl.BIGNUM)(z).Add((*openssl.BIGNUM)(x), (*openssl.BIGNUM)(y)) return z } // Sub sets z to the difference x-y and returns z. func (z *Int) Sub(x, y *Int) *Int { (*openssl.BIGNUM)(z).Sub((*openssl.BIGNUM)(x), (*openssl.BIGNUM)(y)) return z } // Mul sets z to the product x*y and returns z. func (z *Int) Mul(x, y *Int) *Int { panic("todo big.Mul") } // MulRange sets z to the product of all integers // in the range [a, b] inclusively and returns z. // If a > b (empty range), the result is 1. func (z *Int) MulRange(a, b int64) *Int { panic("todo big.MulRange") } // Binomial sets z to the binomial coefficient C(n, k) and returns z. func (z *Int) Binomial(n, k int64) *Int { panic("todo big.Binomial") } // Quo sets z to the quotient x/y for y != 0 and returns z. // If y == 0, a division-by-zero run-time panic occurs. // Quo implements truncated division (like Go); see QuoRem for more details. func (z *Int) Quo(x, y *Int) *Int { panic("todo big.Quo") } // Rem sets z to the remainder x%y for y != 0 and returns z. // If y == 0, a division-by-zero run-time panic occurs. // Rem implements truncated modulus (like Go); see QuoRem for more details. func (z *Int) Rem(x, y *Int) *Int { panic("todo big.Rem") } // QuoRem sets z to the quotient x/y and r to the remainder x%y // and returns the pair (z, r) for y != 0. // If y == 0, a division-by-zero run-time panic occurs. // // QuoRem implements T-division and modulus (like Go): // // q = x/y with the result truncated to zero // r = x - y*q // // (See Daan Leijen, “Division and Modulus for Computer Scientists”.) // See DivMod for Euclidean division and modulus (unlike Go). func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) { panic("todo big.QuoRem") } // Div sets z to the quotient x/y for y != 0 and returns z. // If y == 0, a division-by-zero run-time panic occurs. // Div implements Euclidean division (unlike Go); see DivMod for more details. func (z *Int) Div(x, y *Int) *Int { panic("todo big.Div") } // Mod sets z to the modulus x%y for y != 0 and returns z. // If y == 0, a division-by-zero run-time panic occurs. // Mod implements Euclidean modulus (unlike Go); see DivMod for more details. func (z *Int) Mod(x, y *Int) *Int { panic("todo big.Mod") } // DivMod sets z to the quotient x div y and m to the modulus x mod y // and returns the pair (z, m) for y != 0. // If y == 0, a division-by-zero run-time panic occurs. // // DivMod implements Euclidean division and modulus (unlike Go): // // q = x div y such that // m = x - y*q with 0 <= m < |y| // // (See Raymond T. Boute, “The Euclidean definition of the functions // div and mod”. ACM Transactions on Programming Languages and // Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992. // ACM press.) // See QuoRem for T-division and modulus (like Go). func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) { panic("big.DivMod") } // Cmp compares x and y and returns: // // -1 if x < y // 0 if x == y // +1 if x > y func (x *Int) Cmp(y *Int) (r int) { return int((*openssl.BIGNUM)(x).Cmp((*openssl.BIGNUM)(y))) } // CmpAbs compares the absolute values of x and y and returns: // // -1 if |x| < |y| // 0 if |x| == |y| // +1 if |x| > |y| func (x *Int) CmpAbs(y *Int) int { return int((*openssl.BIGNUM)(x).Ucmp((*openssl.BIGNUM)(y))) } // Int64 returns the int64 representation of x. // If x cannot be represented in an int64, the result is undefined. func (x *Int) Int64() int64 { panic("todo big.Int64") } // Uint64 returns the uint64 representation of x. // If x cannot be represented in a uint64, the result is undefined. func (x *Int) Uint64() uint64 { panic("todo big.Uint64") } // IsInt64 reports whether x can be represented as an int64. func (x *Int) IsInt64() bool { panic("todo big.IsInt64") } // IsUint64 reports whether x can be represented as a uint64. func (x *Int) IsUint64() bool { panic("todo big.IsUint64") } // Float64 returns the float64 value nearest x, // and an indication of any rounding that occurred. // TODO(xsw): /* func (x *Int) Float64() (float64, Accuracy) { panic("todo big.Float64") }*/ // SetString sets z to the value of s, interpreted in the given base, // and returns z and a boolean indicating success. The entire string // (not just a prefix) must be valid for success. If SetString fails, // the value of z is undefined but the returned value is nil. // // The base argument must be 0 or a value between 2 and MaxBase. // For base 0, the number prefix determines the actual base: A prefix of // “0b” or “0B” selects base 2, “0”, “0o” or “0O” selects base 8, // and “0x” or “0X” selects base 16. Otherwise, the selected base is 10 // and no prefix is accepted. // // For bases <= 36, lower and upper case letters are considered the same: // The letters 'a' to 'z' and 'A' to 'Z' represent digit values 10 to 35. // For bases > 36, the upper case letters 'A' to 'Z' represent the digit // values 36 to 61. // // For base 0, an underscore character “_” may appear between a base // prefix and an adjacent digit, and between successive digits; such // underscores do not change the value of the number. // Incorrect placement of underscores is reported as an error if there // are no other errors. If base != 0, underscores are not recognized // and act like any other character that is not a valid digit. func (z *Int) SetString(s string, base int) (*Int, bool) { panic("todo big.SetString") } // SetBytes interprets buf as the bytes of a big-endian unsigned // integer, sets z to that value, and returns z. func (z *Int) SetBytes(buf []byte) *Int { panic("todo big.SetBytes") } // Bytes returns the absolute value of x as a big-endian byte slice. // // To use a fixed length slice, or a preallocated one, use FillBytes. func (x *Int) Bytes() []byte { panic("todo big.Bytes") } // FillBytes sets buf to the absolute value of x, storing it as a zero-extended // big-endian byte slice, and returns buf. // // If the absolute value of x doesn't fit in buf, FillBytes will panic. func (x *Int) FillBytes(buf []byte) []byte { panic("todo big.FillBytes") } // BitLen returns the length of the absolute value of x in bits. // The bit length of 0 is 0. func (x *Int) BitLen() int { panic("todo big.BitLen") } // TrailingZeroBits returns the number of consecutive least significant zero // bits of |x|. func (x *Int) TrailingZeroBits() uint { panic("todo big.TrailingZeroBits") } // Exp sets z = x**y mod |m| (i.e. the sign of m is ignored), and returns z. // If m == nil or m == 0, z = x**y unless y <= 0 then z = 1. If m != 0, y < 0, // and x and m are not relatively prime, z is unchanged and nil is returned. // // Modular exponentiation of inputs of a particular size is not a // cryptographically constant-time operation. func (z *Int) Exp(x, y, m *Int) *Int { ctx := ctxGet() mbn := (*openssl.BIGNUM)(m) if mbn == nil || mbn.IsZero() != 0 { (*openssl.BIGNUM)(z).Exp((*openssl.BIGNUM)(x), (*openssl.BIGNUM)(y), ctx) } else { (*openssl.BIGNUM)(z).ModExp((*openssl.BIGNUM)(x), (*openssl.BIGNUM)(y), mbn, ctx) } ctxPut(ctx) return z } // GCD sets z to the greatest common divisor of a and b and returns z. // If x or y are not nil, GCD sets their value such that z = a*x + b*y. // // a and b may be positive, zero or negative. (Before Go 1.14 both had // to be > 0.) Regardless of the signs of a and b, z is always >= 0. // // If a == b == 0, GCD sets z = x = y = 0. // // If a == 0 and b != 0, GCD sets z = |b|, x = 0, y = sign(b) * 1. // // If a != 0 and b == 0, GCD sets z = |a|, x = sign(a) * 1, y = 0. func (z *Int) GCD(x, y, a, b *Int) *Int { panic("todo big.GCD") } // Rand sets z to a pseudo-random number in [0, n) and returns z. // // As this uses the math/rand package, it must not be used for // security-sensitive work. Use crypto/rand.Int instead. func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int { panic("todo big.Rand") } // ModInverse sets z to the multiplicative inverse of g in the ring ℤ/nℤ // and returns z. If g and n are not relatively prime, g has no multiplicative // inverse in the ring ℤ/nℤ. In this case, z is unchanged and the return value // is nil. If n == 0, a division-by-zero run-time panic occurs. func (z *Int) ModInverse(g, n *Int) *Int { panic("todo big.ModInverse") } // Jacobi returns the Jacobi symbol (x/y), either +1, -1, or 0. // The y argument must be an odd integer. func Jacobi(x, y *Int) int { panic("todo big.Jacobi") } // ModSqrt sets z to a square root of x mod p if such a square root exists, and // returns z. The modulus p must be an odd prime. If x is not a square mod p, // ModSqrt leaves z unchanged and returns nil. This function panics if p is // not an odd integer, its behavior is undefined if p is odd but not prime. func (z *Int) ModSqrt(x, p *Int) *Int { panic("todo big.ModSqrt") } // Lsh sets z = x << n and returns z. func (z *Int) Lsh(x *Int, n uint) *Int { a := (*openssl.BIGNUM)(z) b := (*openssl.BIGNUM)(x) a.Lshift(b, c.Int(n)) return z } // Rsh sets z = x >> n and returns z. func (z *Int) Rsh(x *Int, n uint) *Int { a := (*openssl.BIGNUM)(z) b := (*openssl.BIGNUM)(x) a.Rshift(b, c.Int(n)) return z } // Bit returns the value of the i'th bit of x. That is, it // returns (x>>i)&1. The bit index i must be >= 0. func (x *Int) Bit(i int) uint { panic("todo big.Bit") } // SetBit sets z to x, with x's i'th bit set to b (0 or 1). // That is, if b is 1 SetBit sets z = x | (1 << i); // if b is 0 SetBit sets z = x &^ (1 << i). If b is not 0 or 1, // SetBit will panic. func (z *Int) SetBit(x *Int, i int, b uint) *Int { panic("todo big.SetBit") } // And sets z = x & y and returns z. func (z *Int) And(x, y *Int) *Int { panic("todo big.And") } // AndNot sets z = x &^ y and returns z. func (z *Int) AndNot(x, y *Int) *Int { panic("todo big.AndNot") } // Or sets z = x | y and returns z. func (z *Int) Or(x, y *Int) *Int { panic("todo big.Or") } // Xor sets z = x ^ y and returns z. func (z *Int) Xor(x, y *Int) *Int { panic("todo big.Xor") } // Not sets z = ^x and returns z. func (z *Int) Not(x *Int) *Int { panic("todo big.Not") } // Sqrt sets z to ⌊√x⌋, the largest integer such that z² ≤ x, and returns z. // It panics if x is negative. func (z *Int) Sqrt(x *Int) *Int { panic("todo big.Sqrt") } // -----------------------------------------------------------------------------