mirror of
https://github.com/gonum/gonum.git
synced 2025-10-05 07:06:54 +08:00
greatly improve dlanhs impl, docs and tests
This commit is contained in:

committed by
Vladimír Chalupecký

parent
92392f3782
commit
b79b9f7740
@@ -15,15 +15,19 @@ import (
|
|||||||
// the infinity norm, or the element of largest absolute value of a
|
// the infinity norm, or the element of largest absolute value of a
|
||||||
// Hessenberg matrix A.
|
// Hessenberg matrix A.
|
||||||
//
|
//
|
||||||
// On using norm=lapack.MaxRowSum, the vector work must have length n.
|
// On using norm=lapack.MaxColumnSum, the vector work must have length n.
|
||||||
func (impl Implementation) Dlanhs(norm lapack.MatrixNorm, n int, a []float64, lda int, work []float64) float64 {
|
func (impl Implementation) Dlanhs(norm lapack.MatrixNorm, n int, a []float64, lda int, work []float64) float64 {
|
||||||
switch {
|
switch {
|
||||||
case n < 0:
|
case n < 0:
|
||||||
panic(nLT0)
|
panic(nLT0)
|
||||||
case lda < max(1, n):
|
case lda < max(1, n):
|
||||||
panic(badLdA)
|
panic(badLdA)
|
||||||
case norm == lapack.MaxRowSum && len(work) < n:
|
case len(a) < (n-1)*lda+n:
|
||||||
|
panic(shortA)
|
||||||
|
case norm == lapack.MaxColumnSum && len(work) < n:
|
||||||
panic(badLWork)
|
panic(badLWork)
|
||||||
|
case norm != lapack.MaxRowSum && norm != lapack.MaxAbs && norm != lapack.MaxColumnSum && norm != lapack.Frobenius:
|
||||||
|
panic(badNorm)
|
||||||
}
|
}
|
||||||
if n == 0 {
|
if n == 0 {
|
||||||
return 0 // Early return.
|
return 0 // Early return.
|
||||||
@@ -32,8 +36,6 @@ func (impl Implementation) Dlanhs(norm lapack.MatrixNorm, n int, a []float64, ld
|
|||||||
bi := blas64.Implementation()
|
bi := blas64.Implementation()
|
||||||
var value float64
|
var value float64
|
||||||
switch norm {
|
switch norm {
|
||||||
default:
|
|
||||||
panic(badNorm)
|
|
||||||
case lapack.MaxAbs:
|
case lapack.MaxAbs:
|
||||||
for i := 0; i < n; i++ {
|
for i := 0; i < n; i++ {
|
||||||
minj := max(0, i-1)
|
minj := max(0, i-1)
|
||||||
|
@@ -19,13 +19,17 @@ type Dlanhser interface {
|
|||||||
|
|
||||||
func DlanhsTest(t *testing.T, impl Dlanhser) {
|
func DlanhsTest(t *testing.T, impl Dlanhser) {
|
||||||
const tol = 1e-15
|
const tol = 1e-15
|
||||||
work := make([]float64, 9)
|
allwork := make([]float64, 9)
|
||||||
rnd := rand.New(rand.NewSource(1))
|
rnd := rand.New(rand.NewSource(1))
|
||||||
for _, n := range []int{1, 2, 4, 9} {
|
for _, n := range []int{1, 2, 4, 9} {
|
||||||
for _, lda := range []int{n, n + 5} {
|
for _, lda := range []int{n, n + 5} {
|
||||||
a := randomHessenberg(n, lda, rnd)
|
a := randomHessenberg(n, lda, rnd)
|
||||||
for _, norm := range []lapack.MatrixNorm{lapack.MaxAbs, lapack.MaxRowSum, lapack.MaxColumnSum, lapack.Frobenius} {
|
for _, norm := range []lapack.MatrixNorm{lapack.MaxAbs, lapack.MaxRowSum, lapack.MaxColumnSum, lapack.Frobenius} {
|
||||||
for i := range work[:n] {
|
var work []float64
|
||||||
|
if norm == lapack.MaxColumnSum {
|
||||||
|
work = allwork[:n]
|
||||||
|
}
|
||||||
|
for i := range work {
|
||||||
work[i] = math.NaN()
|
work[i] = math.NaN()
|
||||||
}
|
}
|
||||||
want := dlange(norm, a.Rows, a.Cols, a.Data, a.Stride)
|
want := dlange(norm, a.Rows, a.Cols, a.Data, a.Stride)
|
||||||
|
Reference in New Issue
Block a user