mirror of
https://github.com/gonum/gonum.git
synced 2025-10-04 23:02:42 +08:00
greatly improve dlanhs impl, docs and tests
This commit is contained in:

committed by
Vladimír Chalupecký

parent
92392f3782
commit
b79b9f7740
@@ -15,15 +15,19 @@ import (
|
||||
// the infinity norm, or the element of largest absolute value of a
|
||||
// Hessenberg matrix A.
|
||||
//
|
||||
// On using norm=lapack.MaxRowSum, the vector work must have length n.
|
||||
// On using norm=lapack.MaxColumnSum, the vector work must have length n.
|
||||
func (impl Implementation) Dlanhs(norm lapack.MatrixNorm, n int, a []float64, lda int, work []float64) float64 {
|
||||
switch {
|
||||
case n < 0:
|
||||
panic(nLT0)
|
||||
case lda < max(1, n):
|
||||
panic(badLdA)
|
||||
case norm == lapack.MaxRowSum && len(work) < n:
|
||||
case len(a) < (n-1)*lda+n:
|
||||
panic(shortA)
|
||||
case norm == lapack.MaxColumnSum && len(work) < n:
|
||||
panic(badLWork)
|
||||
case norm != lapack.MaxRowSum && norm != lapack.MaxAbs && norm != lapack.MaxColumnSum && norm != lapack.Frobenius:
|
||||
panic(badNorm)
|
||||
}
|
||||
if n == 0 {
|
||||
return 0 // Early return.
|
||||
@@ -32,8 +36,6 @@ func (impl Implementation) Dlanhs(norm lapack.MatrixNorm, n int, a []float64, ld
|
||||
bi := blas64.Implementation()
|
||||
var value float64
|
||||
switch norm {
|
||||
default:
|
||||
panic(badNorm)
|
||||
case lapack.MaxAbs:
|
||||
for i := 0; i < n; i++ {
|
||||
minj := max(0, i-1)
|
||||
|
@@ -19,13 +19,17 @@ type Dlanhser interface {
|
||||
|
||||
func DlanhsTest(t *testing.T, impl Dlanhser) {
|
||||
const tol = 1e-15
|
||||
work := make([]float64, 9)
|
||||
allwork := make([]float64, 9)
|
||||
rnd := rand.New(rand.NewSource(1))
|
||||
for _, n := range []int{1, 2, 4, 9} {
|
||||
for _, lda := range []int{n, n + 5} {
|
||||
a := randomHessenberg(n, lda, rnd)
|
||||
for _, norm := range []lapack.MatrixNorm{lapack.MaxAbs, lapack.MaxRowSum, lapack.MaxColumnSum, lapack.Frobenius} {
|
||||
for i := range work[:n] {
|
||||
var work []float64
|
||||
if norm == lapack.MaxColumnSum {
|
||||
work = allwork[:n]
|
||||
}
|
||||
for i := range work {
|
||||
work[i] = math.NaN()
|
||||
}
|
||||
want := dlange(norm, a.Rows, a.Cols, a.Data, a.Stride)
|
||||
|
Reference in New Issue
Block a user