mirror of
https://github.com/gonum/gonum.git
synced 2025-10-05 07:06:54 +08:00
74 lines
1.8 KiB
Go
74 lines
1.8 KiB
Go
// Copyright ©2023 The Gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package gonum
|
|
|
|
import (
|
|
"math"
|
|
|
|
"gonum.org/v1/gonum/blas/blas64"
|
|
"gonum.org/v1/gonum/lapack"
|
|
)
|
|
|
|
// Dlanhs returns the value of the one norm, or the Frobenius norm, or
|
|
// the infinity norm, or the element of largest absolute value of a
|
|
// Hessenberg matrix A.
|
|
//
|
|
// On using norm=lapack.MaxColumnSum, the vector work must have length n.
|
|
func (impl Implementation) Dlanhs(norm lapack.MatrixNorm, n int, a []float64, lda int, work []float64) float64 {
|
|
switch {
|
|
case n < 0:
|
|
panic(nLT0)
|
|
case lda < max(1, n):
|
|
panic(badLdA)
|
|
case len(a) < (n-1)*lda+n:
|
|
panic(shortA)
|
|
case norm == lapack.MaxColumnSum && len(work) < n:
|
|
panic(badLWork)
|
|
case norm != lapack.MaxRowSum && norm != lapack.MaxAbs && norm != lapack.MaxColumnSum && norm != lapack.Frobenius:
|
|
panic(badNorm)
|
|
}
|
|
if n == 0 {
|
|
return 0 // Early return.
|
|
}
|
|
|
|
bi := blas64.Implementation()
|
|
var value float64
|
|
switch norm {
|
|
case lapack.MaxAbs:
|
|
for i := 0; i < n; i++ {
|
|
minj := max(0, i-1)
|
|
for _, v := range a[i*lda+minj : i*lda+n] {
|
|
value = math.Max(value, math.Abs(v))
|
|
}
|
|
}
|
|
case lapack.MaxColumnSum:
|
|
for i := 0; i < n; i++ {
|
|
work[i] = 0
|
|
}
|
|
for i := 0; i < n; i++ {
|
|
for j := max(0, i-1); j < n; j++ {
|
|
work[j] += math.Abs(a[i*lda+j])
|
|
}
|
|
}
|
|
for _, v := range work[:n] {
|
|
value = math.Max(value, v)
|
|
}
|
|
case lapack.MaxRowSum:
|
|
for i := 0; i < n; i++ {
|
|
minj := max(0, i-1)
|
|
sum := bi.Dasum(n-minj, a[i*lda+minj:], 1)
|
|
value = math.Max(value, sum)
|
|
}
|
|
case lapack.Frobenius:
|
|
scale := 0.0
|
|
sum := 1.0
|
|
for j := 0; j < n; j++ {
|
|
scale, sum = impl.Dlassq(min(n, j+2), a[j:], lda, scale, sum)
|
|
}
|
|
value = scale * math.Sqrt(sum)
|
|
}
|
|
return value
|
|
}
|