mirror of
https://github.com/swdee/go-rknnlite.git
synced 2025-09-27 03:35:56 +08:00
163 lines
4.2 KiB
Go
163 lines
4.2 KiB
Go
/*
|
|
Example code showing how to perform inferencing using a LPRnet model
|
|
*/
|
|
package main
|
|
|
|
import (
|
|
"flag"
|
|
"github.com/swdee/go-rknnlite"
|
|
"github.com/swdee/go-rknnlite/postprocess"
|
|
"gocv.io/x/gocv"
|
|
"image"
|
|
"log"
|
|
"os"
|
|
"strings"
|
|
"time"
|
|
)
|
|
|
|
func main() {
|
|
// disable logging timestamps
|
|
log.SetFlags(0)
|
|
|
|
// read in cli flags
|
|
modelFile := flag.String("m", "../data/models/rk3588/lprnet-rk3588.rknn", "RKNN compiled model file")
|
|
imgFile := flag.String("i", "../data/lplate.jpg", "Image file to run inference on")
|
|
rkPlatform := flag.String("p", "rk3588", "Rockchip CPU Model number [rk3562|rk3566|rk3568|rk3576|rk3582|rk3582|rk3588]")
|
|
flag.Parse()
|
|
|
|
err := rknnlite.SetCPUAffinityByPlatform(*rkPlatform, rknnlite.FastCores)
|
|
|
|
if err != nil {
|
|
log.Printf("Failed to set CPU Affinity: %v\n", err)
|
|
}
|
|
|
|
// check if user specified model file or if default is being used. if default
|
|
// then pick the default platform model to use.
|
|
if f := flag.Lookup("m"); f != nil && f.Value.String() == f.DefValue && *rkPlatform != "rk3588" {
|
|
*modelFile = strings.ReplaceAll(*modelFile, "rk3588", *rkPlatform)
|
|
}
|
|
|
|
// create rknn runtime instance
|
|
rt, err := rknnlite.NewRuntimeByPlatform(*rkPlatform, *modelFile)
|
|
|
|
if err != nil {
|
|
log.Fatal("Error initializing RKNN runtime: ", err)
|
|
}
|
|
|
|
// optional querying of model file tensors and SDK version for printing
|
|
// to stdout. not necessary for production inference code
|
|
err = rt.Query(os.Stdout)
|
|
|
|
if err != nil {
|
|
log.Fatal("Error querying runtime: ", err)
|
|
}
|
|
|
|
// create LPRNet post processor using parameters used during model training
|
|
lprnetProcesser := postprocess.NewLPRNet(postprocess.LPRNetParams{
|
|
PlatePositions: 18,
|
|
PlateChars: []string{
|
|
"京", "沪", "津", "渝", "冀", "晋", "蒙", "辽", "吉", "黑",
|
|
"苏", "浙", "皖", "闽", "赣", "鲁", "豫", "鄂", "湘", "粤",
|
|
"桂", "琼", "川", "贵", "云", "藏", "陕", "甘", "青", "宁",
|
|
"新",
|
|
"0", "1", "2", "3", "4", "5", "6", "7", "8", "9",
|
|
"A", "B", "C", "D", "E", "F", "G", "H", "J", "K",
|
|
"L", "M", "N", "P", "Q", "R", "S", "T", "U", "V",
|
|
"W", "X", "Y", "Z", "I", "O", "-",
|
|
},
|
|
})
|
|
|
|
// load image
|
|
img := gocv.IMRead(*imgFile, gocv.IMReadColor)
|
|
|
|
if img.Empty() {
|
|
log.Fatal("Error reading image from: ", *imgFile)
|
|
}
|
|
|
|
// resize image to 94x24
|
|
cropImg := gocv.NewMat()
|
|
scaleSize := image.Pt(int(rt.InputAttrs()[0].Dims[2]), int(rt.InputAttrs()[0].Dims[1]))
|
|
gocv.Resize(img, &cropImg, scaleSize, 0, 0, gocv.InterpolationArea)
|
|
|
|
defer img.Close()
|
|
defer cropImg.Close()
|
|
|
|
start := time.Now()
|
|
|
|
// perform inference on image file
|
|
outputs, err := rt.Inference([]gocv.Mat{cropImg})
|
|
|
|
if err != nil {
|
|
log.Fatal("Runtime inferencing failed with error: ", err)
|
|
}
|
|
|
|
endInference := time.Now()
|
|
|
|
// read number plates from outputs
|
|
plates := lprnetProcesser.ReadPlates(outputs)
|
|
|
|
endDetect := time.Now()
|
|
|
|
log.Printf("Model first run speed: inference=%s, post processing=%s, total time=%s\n",
|
|
endInference.Sub(start).String(),
|
|
endDetect.Sub(endInference).String(),
|
|
endDetect.Sub(start).String(),
|
|
)
|
|
|
|
for _, plate := range plates {
|
|
log.Printf("License plate recognition result: %s\n", plate)
|
|
}
|
|
|
|
// free outputs allocated in C memory after you have finished post processing
|
|
err = outputs.Free()
|
|
|
|
if err != nil {
|
|
log.Fatal("Error freeing Outputs: ", err)
|
|
}
|
|
|
|
// optional code. run benchmark to get average time of 10 runs
|
|
runBenchmark(rt, lprnetProcesser, []gocv.Mat{cropImg})
|
|
|
|
// close runtime and release resources
|
|
err = rt.Close()
|
|
|
|
if err != nil {
|
|
log.Fatal("Error closing RKNN runtime: ", err)
|
|
}
|
|
|
|
log.Println("done")
|
|
}
|
|
|
|
func runBenchmark(rt *rknnlite.Runtime, lprnetProcesser *postprocess.LPRNet,
|
|
mats []gocv.Mat) {
|
|
|
|
count := 100
|
|
start := time.Now()
|
|
|
|
for i := 0; i < count; i++ {
|
|
// perform inference on image file
|
|
outputs, err := rt.Inference(mats)
|
|
|
|
if err != nil {
|
|
log.Fatal("Runtime inferencing failed with error: ", err)
|
|
}
|
|
|
|
// post process
|
|
_ = lprnetProcesser.ReadPlates(outputs)
|
|
|
|
err = outputs.Free()
|
|
|
|
if err != nil {
|
|
log.Fatal("Error freeing Outputs: ", err)
|
|
}
|
|
}
|
|
|
|
end := time.Now()
|
|
total := end.Sub(start)
|
|
avg := total / time.Duration(count)
|
|
|
|
log.Printf("Benchmark time=%s, count=%d, average total time=%s\n",
|
|
total.String(), count, avg.String(),
|
|
)
|
|
}
|