/* Example code showing how to perform inferencing using a LPRnet model */ package main import ( "flag" "github.com/swdee/go-rknnlite" "github.com/swdee/go-rknnlite/postprocess" "gocv.io/x/gocv" "image" "log" "os" "strings" "time" ) func main() { // disable logging timestamps log.SetFlags(0) // read in cli flags modelFile := flag.String("m", "../data/models/rk3588/lprnet-rk3588.rknn", "RKNN compiled model file") imgFile := flag.String("i", "../data/lplate.jpg", "Image file to run inference on") rkPlatform := flag.String("p", "rk3588", "Rockchip CPU Model number [rk3562|rk3566|rk3568|rk3576|rk3582|rk3582|rk3588]") flag.Parse() err := rknnlite.SetCPUAffinityByPlatform(*rkPlatform, rknnlite.FastCores) if err != nil { log.Printf("Failed to set CPU Affinity: %v\n", err) } // check if user specified model file or if default is being used. if default // then pick the default platform model to use. if f := flag.Lookup("m"); f != nil && f.Value.String() == f.DefValue && *rkPlatform != "rk3588" { *modelFile = strings.ReplaceAll(*modelFile, "rk3588", *rkPlatform) } // create rknn runtime instance rt, err := rknnlite.NewRuntimeByPlatform(*rkPlatform, *modelFile) if err != nil { log.Fatal("Error initializing RKNN runtime: ", err) } // optional querying of model file tensors and SDK version for printing // to stdout. not necessary for production inference code err = rt.Query(os.Stdout) if err != nil { log.Fatal("Error querying runtime: ", err) } // create LPRNet post processor using parameters used during model training lprnetProcesser := postprocess.NewLPRNet(postprocess.LPRNetParams{ PlatePositions: 18, PlateChars: []string{ "京", "沪", "津", "渝", "冀", "晋", "蒙", "辽", "吉", "黑", "苏", "浙", "皖", "闽", "赣", "鲁", "豫", "鄂", "湘", "粤", "桂", "琼", "川", "贵", "云", "藏", "陕", "甘", "青", "宁", "新", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", "B", "C", "D", "E", "F", "G", "H", "J", "K", "L", "M", "N", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z", "I", "O", "-", }, }) // load image img := gocv.IMRead(*imgFile, gocv.IMReadColor) if img.Empty() { log.Fatal("Error reading image from: ", *imgFile) } // resize image to 94x24 cropImg := gocv.NewMat() scaleSize := image.Pt(int(rt.InputAttrs()[0].Dims[2]), int(rt.InputAttrs()[0].Dims[1])) gocv.Resize(img, &cropImg, scaleSize, 0, 0, gocv.InterpolationArea) defer img.Close() defer cropImg.Close() start := time.Now() // perform inference on image file outputs, err := rt.Inference([]gocv.Mat{cropImg}) if err != nil { log.Fatal("Runtime inferencing failed with error: ", err) } endInference := time.Now() // read number plates from outputs plates := lprnetProcesser.ReadPlates(outputs) endDetect := time.Now() log.Printf("Model first run speed: inference=%s, post processing=%s, total time=%s\n", endInference.Sub(start).String(), endDetect.Sub(endInference).String(), endDetect.Sub(start).String(), ) for _, plate := range plates { log.Printf("License plate recognition result: %s\n", plate) } // free outputs allocated in C memory after you have finished post processing err = outputs.Free() if err != nil { log.Fatal("Error freeing Outputs: ", err) } // optional code. run benchmark to get average time of 10 runs runBenchmark(rt, lprnetProcesser, []gocv.Mat{cropImg}) // close runtime and release resources err = rt.Close() if err != nil { log.Fatal("Error closing RKNN runtime: ", err) } log.Println("done") } func runBenchmark(rt *rknnlite.Runtime, lprnetProcesser *postprocess.LPRNet, mats []gocv.Mat) { count := 100 start := time.Now() for i := 0; i < count; i++ { // perform inference on image file outputs, err := rt.Inference(mats) if err != nil { log.Fatal("Runtime inferencing failed with error: ", err) } // post process _ = lprnetProcesser.ReadPlates(outputs) err = outputs.Free() if err != nil { log.Fatal("Error freeing Outputs: ", err) } } end := time.Now() total := end.Sub(start) avg := total / time.Duration(count) log.Printf("Benchmark time=%s, count=%d, average total time=%s\n", total.String(), count, avg.String(), ) }