adjusted LPRNet example to work across all rk35xx models

This commit is contained in:
swdee
2025-06-13 11:52:51 +12:00
parent ad9050aaa9
commit 9d5cd0a9a5
2 changed files with 52 additions and 12 deletions

View File

@@ -11,32 +11,47 @@ cd example/
git clone --depth=1 https://github.com/swdee/go-rknnlite-data.git data
```
Run the LPRNet example.
Run the LPRNet example on rk3588 or replace with your Platform model.
```
cd example/lprnet
go run lprnet.go
go run lprnet.go -p rk3588
```
This will result in the output of:
```
Driver Version: 0.8.2, API Version: 1.6.0 (9a7b5d24c@2023-12-13T17:31:11)
Driver Version: 0.9.6, API Version: 2.3.0 (c949ad889d@2024-11-07T11:35:33)
Model Input Number: 1, Ouput Number: 1
Input tensors:
index=0, name=input, n_dims=4, dims=[1, 24, 94, 3], n_elems=6768, size=6768, fmt=NHWC, type=INT8, qnt_type=AFFINE, zp=0, scale=0.007843
Output tensors:
index=0, name=output, n_dims=3, dims=[1, 68, 18, 0], n_elems=1224, size=1224, fmt=UNDEFINED, type=INT8, qnt_type=AFFINE, zp=47, scale=0.911201
Model first run speed: inference=7.787585ms, post processing=25.374µs, total time=7.812959ms
index=0, name=output, n_dims=3, dims=[1, 68, 18, 0], n_elems=1224, size=1224, fmt=UNDEFINED, type=INT8, qnt_type=AFFINE, zp=50, scale=0.643529
Model first run speed: inference=4.203128ms, post processing=30.916µs, total time=4.234044ms
License plate recognition result: 湘F6CL03
Benchmark time=61.070751ms, count=10, average total time=6.107075ms
Benchmark time=350.625899ms, count=100, average total time=3.506258ms
done
```
To use your own RKNN compiled model and images.
```
go run lprnet.go -m <RKNN model file> -i <image file>
go run lprnet.go -m <RKNN model file> -i <image file> -p <platform>
```
See the help for command line parameters.
```
$ go run lprnet.go --help
Usage of /tmp/go-build233788912/b001/exe/lprnet:
-i string
Image file to run inference on (default "../data/lplate.jpg")
-m string
RKNN compiled model file (default "../data/models/rk3588/lprnet-rk3588.rknn")
-p string
Rockchip CPU Model number [rk3562|rk3566|rk3568|rk3576|rk3582|rk3582|rk3588] (default "rk3588")
```
### Docker
To run the ALPR example using the prebuilt docker image, make sure the data files have been downloaded first,
@@ -52,7 +67,7 @@ docker run --rm \
-v "/usr/lib/librknnrt.so:/usr/lib/librknnrt.so" \
-w /go/src/app \
swdee/go-rknnlite:latest \
go run ./example/lprnet/lprnet.go
go run ./example/lprnet/lprnet.go -p rk3588
```
@@ -64,6 +79,23 @@ the `postprocess.NewLPRNet` with your specific `LPRNetParams` containing the
maximum length of your countries number plates and character set used.
## Benchmarks
The following table shows a comparison of the benchmark results across the three distinct platforms.
| Platform | Execution Time | Average Inference Time Per Image |
|----------|----------------|----------------------------------|
| rk3588 | 0.35s | 3.50ms |
| rk3576 | 0.49s | 4.96ms |
| rk3566 | 1.63s | 16.32ms |
Note that these examples are only using a single NPU core to run inference on. The results
would be different when running a Pool of models using all NPU cores available.
## Background
This LPRNet example is a Go conversion of the [C API Example](https://github.com/airockchip/rknn_model_zoo/blob/main/examples/LPRNet/cpp/main.cc)

View File

@@ -11,6 +11,7 @@ import (
"image"
"log"
"os"
"strings"
"time"
)
@@ -19,18 +20,25 @@ func main() {
log.SetFlags(0)
// read in cli flags
modelFile := flag.String("m", "../data/lprnet-rk3588.rknn", "RKNN compiled model file")
modelFile := flag.String("m", "../data/models/rk3588/lprnet-rk3588.rknn", "RKNN compiled model file")
imgFile := flag.String("i", "../data/lplate.jpg", "Image file to run inference on")
rkPlatform := flag.String("p", "rk3588", "Rockchip CPU Model number [rk3562|rk3566|rk3568|rk3576|rk3582|rk3582|rk3588]")
flag.Parse()
err := rknnlite.SetCPUAffinity(rknnlite.RK3588FastCores)
err := rknnlite.SetCPUAffinityByPlatform(*rkPlatform, rknnlite.FastCores)
if err != nil {
log.Printf("Failed to set CPU Affinity: %v\n", err)
}
// check if user specified model file or if default is being used. if default
// then pick the default platform model to use.
if f := flag.Lookup("m"); f != nil && f.Value.String() == f.DefValue && *rkPlatform != "rk3588" {
*modelFile = strings.ReplaceAll(*modelFile, "rk3588", *rkPlatform)
}
// create rknn runtime instance
rt, err := rknnlite.NewRuntime(*modelFile, rknnlite.NPUCoreAuto)
rt, err := rknnlite.NewRuntimeByPlatform(*rkPlatform, *modelFile)
if err != nil {
log.Fatal("Error initializing RKNN runtime: ", err)
@@ -123,7 +131,7 @@ func main() {
func runBenchmark(rt *rknnlite.Runtime, lprnetProcesser *postprocess.LPRNet,
mats []gocv.Mat) {
count := 10
count := 100
start := time.Now()
for i := 0; i < count; i++ {