added midas depth estimation example

This commit is contained in:
swdee
2025-12-19 22:54:34 +13:00
parent b31b9b3075
commit 23d156bae2
3 changed files with 451 additions and 0 deletions

92
example/midas/README.md Normal file
View File

@@ -0,0 +1,92 @@
# MiDaS Depth Estimation Example
## Overview
This example uses the [MiDaS v3.1 depth estimation](https://github.com/isl-org/MiDaS/)
for computing depth in a single image.
## Usage
Make sure you have downloaded the data files first for the examples.
You only need to do this once for all examples.
```
cd example/
git clone --depth=1 https://github.com/swdee/go-rknnlite-data.git data
```
![bedroom.jpg](https://github.com/swdee/go-rknnlite-data/raw/master/bedroom.jpg)
Run the MiDaS example on the above living room scene on rk3588 or replace with your Platform model.
```
cd example/midas
go run midas.go -p rk3588
```
This will result in the output of:
```
Driver Version: 0.9.6, API Version: 2.3.0 (c949ad889d@2024-11-07T11:35:33)
Model Input Number: 1, Output Number: 1
Input tensors:
index=0, name=input, n_dims=4, dims=[1, 256, 256, 3], n_elems=196608, size=196608, fmt=NHWC, type=INT8, qnt_type=AFFINE, zp=0, scale=0.007843
Output tensors:
index=0, name=depth, n_dims=4, dims=[1, 1, 256, 256], n_elems=65536, size=65536, fmt=NCHW, type=INT8, qnt_type=AFFINE, zp=-128, scale=19.864582
Model first run speed: inference=577.442314ms, post processing=1.180646ms, rendering=3.137693ms, total time=581.760653ms
Saved depth map result to ../data/bedroom-out.jpg
Benchmark time=12.167970519s, count=20, average total time=608.398525ms
done
```
The saved JPG image with depth estimation map.
![midas-bedroom-out.jpg](https://github.com/swdee/go-rknnlite-data/raw/master/docimg/midas-bedroom-out.jpg)
See the help for command line parameters.
```
$ go run midas.go -h
Usage of /tmp/go-build2937772053/b001/exe/midas:
-i string
Image file to run depth estimation on (default "../data/bedroom.jpg")
-m string
RKNN compiled depth model file (default "../data/models/rk3588/dpt_swin2_tiny_256-rk3588.rknn")
-o string
Output JPG file (depth visualization) (default "../data/bedroom-out.jpg")
-p string
Rockchip platform [rk3562|rk3566|rk3568|rk3576|rk3582|rk3588] (default "rk3588")
```
### Docker
To run the MiDaS example using the prebuilt docker image, make sure the data files have been downloaded first,
then run.
```
# from project root directory
docker run --rm \
--device /dev/dri:/dev/dri \
-v "$(pwd):/go/src/app" \
-v "$(pwd)/example/data:/go/src/data" \
-v "/usr/include/rknn_api.h:/usr/include/rknn_api.h" \
-v "/usr/lib/librknnrt.so:/usr/lib/librknnrt.so" \
-w /go/src/app \
swdee/go-rknnlite:latest \
go run ./example/midas/midas.go -p rk3588
```
## Benchmarks
The following table shows a comparison of the benchmark results across the three distinct platforms.
| Platform | Execution Time | Average Inference Time Per Image |
|----------|----------------|----------------------------------|
| rk3588 | 12.16s | 608.39ms |
| rk3576 | 16.85s | 842.97ms |
| rk3566 | 37.49s | 1.87s

189
example/midas/midas.go Normal file
View File

@@ -0,0 +1,189 @@
/*
Example code showing how to perform depth estimation using a MiDaS model.
*/
package main
import (
"flag"
"image"
"log"
"os"
"strings"
"time"
"github.com/swdee/go-rknnlite"
"github.com/swdee/go-rknnlite/postprocess"
"gocv.io/x/gocv"
)
func main() {
// disable logging timestamps
log.SetFlags(0)
// read in cli flags
modelFile := flag.String("m", "../data/models/rk3588/dpt_swin2_tiny_256-rk3588.rknn", "RKNN compiled depth model file")
imgFile := flag.String("i", "../data/bedroom.jpg", "Image file to run depth estimation on")
saveFile := flag.String("o", "../data/bedroom-out.jpg", "Output JPG file (depth visualization)")
rkPlatform := flag.String("p", "rk3588", "Rockchip platform [rk3562|rk3566|rk3568|rk3576|rk3582|rk3588]")
flag.Parse()
err := rknnlite.SetCPUAffinityByPlatform(*rkPlatform, rknnlite.FastCores)
if err != nil {
log.Printf("Failed to set CPU affinity: %v\n", err)
}
// check if user specified model file or if default is being used. if default
// then pick the default platform model to use.
if f := flag.Lookup("m"); f != nil && f.Value.String() == f.DefValue && *rkPlatform != "rk3588" {
*modelFile = strings.ReplaceAll(*modelFile, "rk3588", *rkPlatform)
}
// create rknn runtime instance
rt, err := rknnlite.NewRuntimeByPlatform(*rkPlatform, *modelFile)
if err != nil {
log.Fatal("Error initializing RKNN runtime: ", err)
}
// We want float32 outputs for easy depth visualization
rt.SetWantFloat(true)
// optional querying of model file tensors and SDK version for printing
// to stdout. not necessary for production inference code
err = rt.Query(os.Stdout)
if err != nil {
log.Fatal("Error querying runtime: ", err)
}
// create midas post processor
midasProcessor := postprocess.NewMiDaS(postprocess.MiDaSDefaultParams())
// load image
img := gocv.IMRead(*imgFile, gocv.IMReadColor)
if img.Empty() {
log.Fatal("Error reading image from: ", *imgFile)
}
// convert colorspace and resize image to input tensor size
rgbImg := gocv.NewMat()
gocv.CvtColor(img, &rgbImg, gocv.ColorBGRToRGB)
cropImg := rgbImg.Clone()
scaleSize := image.Pt(int(rt.InputAttrs()[0].Dims[2]), int(rt.InputAttrs()[0].Dims[1]))
gocv.Resize(rgbImg, &cropImg, scaleSize, 0, 0, gocv.InterpolationArea)
defer img.Close()
defer rgbImg.Close()
defer cropImg.Close()
start := time.Now()
// perform inference on image file
outputs, err := rt.Inference([]gocv.Mat{cropImg})
if err != nil {
log.Fatal("Runtime inferencing failed with error: ", err)
}
endInference := time.Now()
// post process and create depth map
depthMap := gocv.NewMat()
defer depthMap.Close()
err = midasProcessor.CreateDepthMap(outputs, depthMap)
if err != nil {
log.Fatal("Error creating depth map: ", err)
}
endCreateMap := time.Now()
// resize the color map back to the original input image size
resizedMap := gocv.NewMat()
defer resizedMap.Close()
gocv.Resize(depthMap, &resizedMap, image.Pt(img.Cols(), img.Rows()), 0, 0, gocv.InterpolationCubic)
endRendering := time.Now()
log.Printf("Model first run speed: inference=%s, post processing=%s, rendering=%s, total time=%s\n",
endInference.Sub(start).String(),
endCreateMap.Sub(endInference).String(),
endRendering.Sub(endCreateMap).String(),
endRendering.Sub(start).String(),
)
// Save the result
if ok := gocv.IMWrite(*saveFile, resizedMap); !ok {
log.Fatal("Failed to save the image")
}
log.Printf("Saved depth map result to %s\n", *saveFile)
// free outputs allocated in C memory after you have finished post processing
err = outputs.Free()
if err != nil {
log.Fatal("Error freeing Outputs: ", err)
}
// optional code. run benchmark to get average time
runBenchmark(rt, midasProcessor, []gocv.Mat{cropImg}, img)
// close runtime and release resources
err = rt.Close()
if err != nil {
log.Fatal("Error closing RKNN runtime: ", err)
}
log.Println("done")
}
func runBenchmark(rt *rknnlite.Runtime, midasProcessor *postprocess.MiDaS,
mats []gocv.Mat, srcImg gocv.Mat) {
count := 20
start := time.Now()
depthMap := gocv.NewMat()
defer depthMap.Close()
resizedMap := gocv.NewMat()
defer resizedMap.Close()
for i := 0; i < count; i++ {
// perform inference on image file
outputs, err := rt.Inference(mats)
if err != nil {
log.Fatal("Runtime inferencing failed with error: ", err)
}
// post process
err = midasProcessor.CreateDepthMap(outputs, depthMap)
if err != nil {
log.Fatal("Error creating depth map: ", err)
}
// resize the color map back to the original input image size
gocv.Resize(depthMap, &resizedMap, image.Pt(srcImg.Cols(), srcImg.Rows()), 0, 0, gocv.InterpolationCubic)
err = outputs.Free()
if err != nil {
log.Fatal("Error freeing Outputs: ", err)
}
}
end := time.Now()
total := end.Sub(start)
avg := total / time.Duration(count)
log.Printf("Benchmark time=%s, count=%d, average total time=%s\n",
total.String(), count, avg.String(),
)
}

170
postprocess/midas.go Normal file
View File

@@ -0,0 +1,170 @@
package postprocess
import (
"fmt"
"math"
"github.com/swdee/go-rknnlite"
"gocv.io/x/gocv"
)
// MiDaS defines the struct for a MiDaS depth estimation inference post processing
type MiDaS struct {
// Params are the depth map configuration parameters
Params MiDaSParams
}
// GrayscaleMap is used to not apply coloring to output depthmap, but to leave as grayscale
const GrayscaleMap = gocv.ColormapTypes(9999)
type MiDaSParams struct {
// Invert the depth map
Invert bool
// Colormap to apply to depth map, if you want it left as grayscale then
// pass postprocess.GrayscaleMap
Colormap gocv.ColormapTypes
}
// MiDaSDefaultParams sets output depth map to non-inverting and use Hot color scheme
func MiDaSDefaultParams() MiDaSParams {
return MiDaSParams{
Invert: false,
Colormap: gocv.ColormapHot,
}
}
// NewMiDaS returns and instance of the MiDaS post processor
func NewMiDaS(p MiDaSParams) *MiDaS {
return &MiDaS{
Params: p,
}
}
// CreateDepthMap converts the tensor output data into a depth estimation map image
func (m *MiDaS) CreateDepthMap(outputs *rknnlite.Outputs, depthMat gocv.Mat) error {
// output tensor is in NCHW format
// get output tensor width/height
outH := int(outputs.OutputAttributes().DimHeights[0])
outW := int(outputs.OutputAttributes().DimWidths[0])
// Convert float depth to uint8 visualization
depthU8 := m.depthToU8(outputs.Output[0].BufFloat, outH, outW)
// Make a Mat from bytes
u8Mat, err := gocv.NewMatFromBytes(outH, outW, gocv.MatTypeCV8U, depthU8)
if err != nil {
return fmt.Errorf("Failed to create depth mat: %v", err)
}
defer u8Mat.Close()
if m.Params.Colormap == GrayscaleMap {
// no coloring
u8Mat.CopyTo(&depthMat)
} else {
// apply colormap
gocv.ApplyColorMap(u8Mat, &depthMat, m.Params.Colormap)
}
return nil
}
// depthToU8 converts a float32 depth map into an 8-bit visualization image.
//
// MiDaS outputs “relative depth” values that are not bounded to [0,1] and
// can vary per image. To visualize, we normalize the depth values to [0,255]
// using the min/max over the whole output map.
//
// Output layout is row-major grayscale: out[y*w + x]
func (m *MiDaS) depthToU8(depth []float32, h, w int) []byte {
total := h * w
out := make([]byte, total)
// First pass: find min/max depth ignoring NaN/Inf values
minV := float32(math.Inf(1))
maxV := float32(math.Inf(-1))
for y := 0; y < h; y++ {
for x := 0; x < w; x++ {
// Read the depth value at (y,x) from the model output buffer
v := m.getDepthAt(depth, y, x, h, w)
// Skip invalid floating-point values so they don't poison min/max
if !m.isFinite32(v) {
continue
}
if v < minV {
minV = v
}
if v > maxV {
maxV = v
}
}
}
// Guard against all-invalid outputs or a constant output (max==min)
den := maxV - minV
if !m.isFinite32(minV) || !m.isFinite32(maxV) || den <= 0 {
// Fallback: return all zeros (black image)
return out
}
// Second pass: normalize each pixel to [0,1], optionally invert, clamp, then scale to [0,255]
for y := 0; y < h; y++ {
for x := 0; x < w; x++ {
v := m.getDepthAt(depth, y, x, h, w)
// If this pixel is invalid, pin it to minV so it becomes black after normalization
if !m.isFinite32(v) {
v = minV
}
// Normalize to 0..1 based on the image's min/max range
n := (v - minV) / den
// Optional inversion for visualization (swap near/far appearance)
if m.Params.Invert {
n = 1.0 - n
}
// Clamp to [0,1] to avoid overflow/underflow due to outliers or rounding
if n < 0 {
n = 0
}
if n > 1 {
n = 1
}
// Convert to uint8 grayscale
out[y*w+x] = byte(n * 255.0)
}
}
return out
}
// getDepthAt returns the depth value at pixel coordinate (y,x) from the raw output buffer.
// This function assumes the output tensor is laid out as NCHW
func (m *MiDaS) getDepthAt(buf []float32, y, x, h, w int) float32 {
// index = ((n*C + ch)*H + y)*W + x ; n=0, ch=0
idx := (0*h+y)*w + x
if idx >= 0 && idx < len(buf) {
return buf[idx]
}
// Out-of-range access should never happen if h/w match the tensor dimensions
// Returning 0 is a safe fallback to avoid panics
return 0
}
// isFinite32 returns True if v is neither NaN nor +/-Inf
func (m *MiDaS) isFinite32(v float32) bool {
return !math.IsNaN(float64(v)) && !math.IsInf(float64(v), 0)
}