mirror of
https://github.com/swdee/go-rknnlite.git
synced 2025-12-24 10:30:56 +08:00
190 lines
4.9 KiB
Go
190 lines
4.9 KiB
Go
/*
|
|
Example code showing how to perform depth estimation using a MiDaS model.
|
|
*/
|
|
package main
|
|
|
|
import (
|
|
"flag"
|
|
"image"
|
|
"log"
|
|
"os"
|
|
"strings"
|
|
"time"
|
|
|
|
"github.com/swdee/go-rknnlite"
|
|
"github.com/swdee/go-rknnlite/postprocess"
|
|
"gocv.io/x/gocv"
|
|
)
|
|
|
|
func main() {
|
|
// disable logging timestamps
|
|
log.SetFlags(0)
|
|
|
|
// read in cli flags
|
|
modelFile := flag.String("m", "../data/models/rk3588/dpt_swin2_tiny_256-rk3588.rknn", "RKNN compiled depth model file")
|
|
imgFile := flag.String("i", "../data/bedroom.jpg", "Image file to run depth estimation on")
|
|
saveFile := flag.String("o", "../data/bedroom-out.jpg", "Output JPG file (depth visualization)")
|
|
rkPlatform := flag.String("p", "rk3588", "Rockchip platform [rk3562|rk3566|rk3568|rk3576|rk3582|rk3588]")
|
|
|
|
flag.Parse()
|
|
|
|
err := rknnlite.SetCPUAffinityByPlatform(*rkPlatform, rknnlite.FastCores)
|
|
|
|
if err != nil {
|
|
log.Printf("Failed to set CPU affinity: %v\n", err)
|
|
}
|
|
|
|
// check if user specified model file or if default is being used. if default
|
|
// then pick the default platform model to use.
|
|
if f := flag.Lookup("m"); f != nil && f.Value.String() == f.DefValue && *rkPlatform != "rk3588" {
|
|
*modelFile = strings.ReplaceAll(*modelFile, "rk3588", *rkPlatform)
|
|
}
|
|
|
|
// create rknn runtime instance
|
|
rt, err := rknnlite.NewRuntimeByPlatform(*rkPlatform, *modelFile)
|
|
|
|
if err != nil {
|
|
log.Fatal("Error initializing RKNN runtime: ", err)
|
|
}
|
|
|
|
// We want float32 outputs for easy depth visualization
|
|
rt.SetWantFloat(true)
|
|
|
|
// optional querying of model file tensors and SDK version for printing
|
|
// to stdout. not necessary for production inference code
|
|
err = rt.Query(os.Stdout)
|
|
|
|
if err != nil {
|
|
log.Fatal("Error querying runtime: ", err)
|
|
}
|
|
|
|
// create midas post processor
|
|
midasProcessor := postprocess.NewMiDaS(postprocess.MiDaSDefaultParams())
|
|
|
|
// load image
|
|
img := gocv.IMRead(*imgFile, gocv.IMReadColor)
|
|
|
|
if img.Empty() {
|
|
log.Fatal("Error reading image from: ", *imgFile)
|
|
}
|
|
|
|
// convert colorspace and resize image to input tensor size
|
|
rgbImg := gocv.NewMat()
|
|
gocv.CvtColor(img, &rgbImg, gocv.ColorBGRToRGB)
|
|
|
|
cropImg := rgbImg.Clone()
|
|
scaleSize := image.Pt(int(rt.InputAttrs()[0].Dims[2]), int(rt.InputAttrs()[0].Dims[1]))
|
|
gocv.Resize(rgbImg, &cropImg, scaleSize, 0, 0, gocv.InterpolationArea)
|
|
|
|
defer img.Close()
|
|
defer rgbImg.Close()
|
|
defer cropImg.Close()
|
|
|
|
start := time.Now()
|
|
|
|
// perform inference on image file
|
|
outputs, err := rt.Inference([]gocv.Mat{cropImg})
|
|
|
|
if err != nil {
|
|
log.Fatal("Runtime inferencing failed with error: ", err)
|
|
}
|
|
|
|
endInference := time.Now()
|
|
|
|
// post process and create depth map
|
|
depthMap := gocv.NewMat()
|
|
defer depthMap.Close()
|
|
err = midasProcessor.CreateDepthMap(outputs, depthMap)
|
|
|
|
if err != nil {
|
|
log.Fatal("Error creating depth map: ", err)
|
|
}
|
|
|
|
endCreateMap := time.Now()
|
|
|
|
// resize the color map back to the original input image size
|
|
resizedMap := gocv.NewMat()
|
|
defer resizedMap.Close()
|
|
gocv.Resize(depthMap, &resizedMap, image.Pt(img.Cols(), img.Rows()), 0, 0, gocv.InterpolationCubic)
|
|
|
|
endRendering := time.Now()
|
|
|
|
log.Printf("Model first run speed: inference=%s, post processing=%s, rendering=%s, total time=%s\n",
|
|
endInference.Sub(start).String(),
|
|
endCreateMap.Sub(endInference).String(),
|
|
endRendering.Sub(endCreateMap).String(),
|
|
endRendering.Sub(start).String(),
|
|
)
|
|
|
|
// Save the result
|
|
if ok := gocv.IMWrite(*saveFile, resizedMap); !ok {
|
|
log.Fatal("Failed to save the image")
|
|
}
|
|
|
|
log.Printf("Saved depth map result to %s\n", *saveFile)
|
|
|
|
// free outputs allocated in C memory after you have finished post processing
|
|
err = outputs.Free()
|
|
|
|
if err != nil {
|
|
log.Fatal("Error freeing Outputs: ", err)
|
|
}
|
|
|
|
// optional code. run benchmark to get average time
|
|
runBenchmark(rt, midasProcessor, []gocv.Mat{cropImg}, img)
|
|
|
|
// close runtime and release resources
|
|
err = rt.Close()
|
|
|
|
if err != nil {
|
|
log.Fatal("Error closing RKNN runtime: ", err)
|
|
}
|
|
|
|
log.Println("done")
|
|
}
|
|
|
|
func runBenchmark(rt *rknnlite.Runtime, midasProcessor *postprocess.MiDaS,
|
|
mats []gocv.Mat, srcImg gocv.Mat) {
|
|
|
|
count := 20
|
|
start := time.Now()
|
|
|
|
depthMap := gocv.NewMat()
|
|
defer depthMap.Close()
|
|
resizedMap := gocv.NewMat()
|
|
defer resizedMap.Close()
|
|
|
|
for i := 0; i < count; i++ {
|
|
// perform inference on image file
|
|
outputs, err := rt.Inference(mats)
|
|
|
|
if err != nil {
|
|
log.Fatal("Runtime inferencing failed with error: ", err)
|
|
}
|
|
|
|
// post process
|
|
err = midasProcessor.CreateDepthMap(outputs, depthMap)
|
|
|
|
if err != nil {
|
|
log.Fatal("Error creating depth map: ", err)
|
|
}
|
|
|
|
// resize the color map back to the original input image size
|
|
gocv.Resize(depthMap, &resizedMap, image.Pt(srcImg.Cols(), srcImg.Rows()), 0, 0, gocv.InterpolationCubic)
|
|
|
|
err = outputs.Free()
|
|
|
|
if err != nil {
|
|
log.Fatal("Error freeing Outputs: ", err)
|
|
}
|
|
}
|
|
|
|
end := time.Now()
|
|
total := end.Sub(start)
|
|
avg := total / time.Duration(count)
|
|
|
|
log.Printf("Benchmark time=%s, count=%d, average total time=%s\n",
|
|
total.String(), count, avg.String(),
|
|
)
|
|
}
|