Files
go-rknnlite/example/midas/midas.go
2025-12-19 22:54:34 +13:00

190 lines
4.9 KiB
Go

/*
Example code showing how to perform depth estimation using a MiDaS model.
*/
package main
import (
"flag"
"image"
"log"
"os"
"strings"
"time"
"github.com/swdee/go-rknnlite"
"github.com/swdee/go-rknnlite/postprocess"
"gocv.io/x/gocv"
)
func main() {
// disable logging timestamps
log.SetFlags(0)
// read in cli flags
modelFile := flag.String("m", "../data/models/rk3588/dpt_swin2_tiny_256-rk3588.rknn", "RKNN compiled depth model file")
imgFile := flag.String("i", "../data/bedroom.jpg", "Image file to run depth estimation on")
saveFile := flag.String("o", "../data/bedroom-out.jpg", "Output JPG file (depth visualization)")
rkPlatform := flag.String("p", "rk3588", "Rockchip platform [rk3562|rk3566|rk3568|rk3576|rk3582|rk3588]")
flag.Parse()
err := rknnlite.SetCPUAffinityByPlatform(*rkPlatform, rknnlite.FastCores)
if err != nil {
log.Printf("Failed to set CPU affinity: %v\n", err)
}
// check if user specified model file or if default is being used. if default
// then pick the default platform model to use.
if f := flag.Lookup("m"); f != nil && f.Value.String() == f.DefValue && *rkPlatform != "rk3588" {
*modelFile = strings.ReplaceAll(*modelFile, "rk3588", *rkPlatform)
}
// create rknn runtime instance
rt, err := rknnlite.NewRuntimeByPlatform(*rkPlatform, *modelFile)
if err != nil {
log.Fatal("Error initializing RKNN runtime: ", err)
}
// We want float32 outputs for easy depth visualization
rt.SetWantFloat(true)
// optional querying of model file tensors and SDK version for printing
// to stdout. not necessary for production inference code
err = rt.Query(os.Stdout)
if err != nil {
log.Fatal("Error querying runtime: ", err)
}
// create midas post processor
midasProcessor := postprocess.NewMiDaS(postprocess.MiDaSDefaultParams())
// load image
img := gocv.IMRead(*imgFile, gocv.IMReadColor)
if img.Empty() {
log.Fatal("Error reading image from: ", *imgFile)
}
// convert colorspace and resize image to input tensor size
rgbImg := gocv.NewMat()
gocv.CvtColor(img, &rgbImg, gocv.ColorBGRToRGB)
cropImg := rgbImg.Clone()
scaleSize := image.Pt(int(rt.InputAttrs()[0].Dims[2]), int(rt.InputAttrs()[0].Dims[1]))
gocv.Resize(rgbImg, &cropImg, scaleSize, 0, 0, gocv.InterpolationArea)
defer img.Close()
defer rgbImg.Close()
defer cropImg.Close()
start := time.Now()
// perform inference on image file
outputs, err := rt.Inference([]gocv.Mat{cropImg})
if err != nil {
log.Fatal("Runtime inferencing failed with error: ", err)
}
endInference := time.Now()
// post process and create depth map
depthMap := gocv.NewMat()
defer depthMap.Close()
err = midasProcessor.CreateDepthMap(outputs, depthMap)
if err != nil {
log.Fatal("Error creating depth map: ", err)
}
endCreateMap := time.Now()
// resize the color map back to the original input image size
resizedMap := gocv.NewMat()
defer resizedMap.Close()
gocv.Resize(depthMap, &resizedMap, image.Pt(img.Cols(), img.Rows()), 0, 0, gocv.InterpolationCubic)
endRendering := time.Now()
log.Printf("Model first run speed: inference=%s, post processing=%s, rendering=%s, total time=%s\n",
endInference.Sub(start).String(),
endCreateMap.Sub(endInference).String(),
endRendering.Sub(endCreateMap).String(),
endRendering.Sub(start).String(),
)
// Save the result
if ok := gocv.IMWrite(*saveFile, resizedMap); !ok {
log.Fatal("Failed to save the image")
}
log.Printf("Saved depth map result to %s\n", *saveFile)
// free outputs allocated in C memory after you have finished post processing
err = outputs.Free()
if err != nil {
log.Fatal("Error freeing Outputs: ", err)
}
// optional code. run benchmark to get average time
runBenchmark(rt, midasProcessor, []gocv.Mat{cropImg}, img)
// close runtime and release resources
err = rt.Close()
if err != nil {
log.Fatal("Error closing RKNN runtime: ", err)
}
log.Println("done")
}
func runBenchmark(rt *rknnlite.Runtime, midasProcessor *postprocess.MiDaS,
mats []gocv.Mat, srcImg gocv.Mat) {
count := 20
start := time.Now()
depthMap := gocv.NewMat()
defer depthMap.Close()
resizedMap := gocv.NewMat()
defer resizedMap.Close()
for i := 0; i < count; i++ {
// perform inference on image file
outputs, err := rt.Inference(mats)
if err != nil {
log.Fatal("Runtime inferencing failed with error: ", err)
}
// post process
err = midasProcessor.CreateDepthMap(outputs, depthMap)
if err != nil {
log.Fatal("Error creating depth map: ", err)
}
// resize the color map back to the original input image size
gocv.Resize(depthMap, &resizedMap, image.Pt(srcImg.Cols(), srcImg.Rows()), 0, 0, gocv.InterpolationCubic)
err = outputs.Free()
if err != nil {
log.Fatal("Error freeing Outputs: ", err)
}
}
end := time.Now()
total := end.Sub(start)
avg := total / time.Duration(count)
log.Printf("Benchmark time=%s, count=%d, average total time=%s\n",
total.String(), count, avg.String(),
)
}