Files
FastDeploy/examples/vision/matting/rvm/cpp/README.md
charl-u cbf88a46fa [Doc]Update English version of some documents (#1083)
* 第一次提交

* 补充一处漏翻译

* deleted:    docs/en/quantize.md

* Update one translation

* Update en version

* Update one translation in code

* Standardize one writing

* Standardize one writing

* Update some en version

* Fix a grammer problem

* Update en version for api/vision result

* Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop

* Checkout the link in README in vision_results/ to the en documents

* Modify a title

* Add link to serving/docs/

* Finish translation of demo.md

* Update english version of serving/docs/

* Update title of readme

* Update some links

* Modify a title

* Update some links

* Update en version of java android README

* Modify some titles

* Modify some titles

* Modify some titles

* modify article to document

* update some english version of documents in examples

* Add english version of documents in examples/visions

* Sync to current branch

* Add english version of documents in examples

* Add english version of documents in examples

* Add english version of documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples
2023-01-09 10:08:19 +08:00

4.3 KiB
Executable File

English | 简体中文

RobustVideoMatting C++ Deployment Example

Before deployment, two steps require confirmation

Taking the RobustVideoMatting inference on Linux as an example, the compilation test can be completed by executing the following command in this directory. FastDeploy version 0.7.0 or above (x.x.x>=0.7.0) is required to support this model.

This directory provides examples that infer.cc fast finishes the deployment of RobustVideoMatting on CPU/GPU and GPU accelerated by TensorRT. The script is as follows

mkdir build
cd build
# Download the FastDeploy precompiled library. Users can choose your appropriate version in the `FastDeploy  Precompiled Library` mentioned above 
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j

# Download RobustVideoMatting model files, test images and videos
## Original ONNX model
wget https://bj.bcebos.com/paddlehub/fastdeploy/rvm_mobilenetv3_fp32.onnx
## The ONNX model is specially processed for loading TRT
wget https://bj.bcebos.com/paddlehub/fastdeploy/rvm_mobilenetv3_trt.onnx
wget https://bj.bcebos.com/paddlehub/fastdeploy/matting_input.jpg
wget https://bj.bcebos.com/paddlehub/fastdeploy/matting_bgr.jpg
wget https://bj.bcebos.com/paddlehub/fastdeploy/video.mp4

# CPU inference
./infer_demo rvm_mobilenetv3_fp32.onnx matting_input.jpg matting_bgr.jpg 0
# GPU inference
./infer_demo rvm_mobilenetv3_fp32.onnx matting_input.jpg matting_bgr.jpg 1
# TRT inference
./infer_demo rvm_mobilenetv3_trt.onnx matting_input.jpg matting_bgr.jpg 2

The visualized result after running is as follows

The above command works for Linux or MacOS. For SDK use-pattern in Windows, refer to:

RobustVideoMatting C++ Interface

fastdeploy::vision::matting::RobustVideoMatting(
        const string& model_file,
        const string& params_file = "",
        const RuntimeOption& runtime_option = RuntimeOption(),
        const ModelFormat& model_format = ModelFormat::ONNX)

RobustVideoMatting model loading and initialization, among which model_file is the exported ONNX model format.

Parameter

  • model_file(str): Model file path
  • params_file(str): Parameter file path. No need to set when the model is in ONNX format
  • runtime_option(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
  • model_format(ModelFormat): Model format. ONNX format by default

Predict Function

RobustVideoMatting::Predict(cv::Mat* im, MattingResult* result)

Model prediction interface. Input images and output matting results.

Parameter

Other Documents