English | [简体中文](README_CN.md) # RobustVideoMatting C++ Deployment Example Before deployment, two steps require confirmation - 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md) - 2. Download the precompiled deployment library and samples code according to your development environment. Refer to [FastDeploy Precompiled Library](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md) Taking the RobustVideoMatting inference on Linux as an example, the compilation test can be completed by executing the following command in this directory. FastDeploy version 0.7.0 or above (x.x.x>=0.7.0) is required to support this model. This directory provides examples that `infer.cc` fast finishes the deployment of RobustVideoMatting on CPU/GPU and GPU accelerated by TensorRT. The script is as follows ```bash mkdir build cd build # Download the FastDeploy precompiled library. Users can choose your appropriate version in the `FastDeploy Precompiled Library` mentioned above wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz tar xvf fastdeploy-linux-x64-x.x.x.tgz cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j # Download RobustVideoMatting model files, test images and videos ## Original ONNX model wget https://bj.bcebos.com/paddlehub/fastdeploy/rvm_mobilenetv3_fp32.onnx ## The ONNX model is specially processed for loading TRT wget https://bj.bcebos.com/paddlehub/fastdeploy/rvm_mobilenetv3_trt.onnx wget https://bj.bcebos.com/paddlehub/fastdeploy/matting_input.jpg wget https://bj.bcebos.com/paddlehub/fastdeploy/matting_bgr.jpg wget https://bj.bcebos.com/paddlehub/fastdeploy/video.mp4 # CPU inference ./infer_demo rvm_mobilenetv3_fp32.onnx matting_input.jpg matting_bgr.jpg 0 # GPU inference ./infer_demo rvm_mobilenetv3_fp32.onnx matting_input.jpg matting_bgr.jpg 1 # TRT inference ./infer_demo rvm_mobilenetv3_trt.onnx matting_input.jpg matting_bgr.jpg 2 ``` The visualized result after running is as follows
The above command works for Linux or MacOS. For SDK use-pattern in Windows, refer to: - [How to use FastDeploy C++ SDK in Windows](../../../../../docs/cn/faq/use_sdk_on_windows.md) ## RobustVideoMatting C++ Interface ```c++ fastdeploy::vision::matting::RobustVideoMatting( const string& model_file, const string& params_file = "", const RuntimeOption& runtime_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::ONNX) ``` RobustVideoMatting model loading and initialization, among which model_file is the exported ONNX model format. **Parameter** > * **model_file**(str): Model file path > * **params_file**(str): Parameter file path. No need to set when the model is in ONNX format > * **runtime_option**(RuntimeOption): Backend inference configuration. None by default, which is the default configuration > * **model_format**(ModelFormat): Model format. ONNX format by default #### Predict Function > ```c++ > RobustVideoMatting::Predict(cv::Mat* im, MattingResult* result) > ``` > > Model prediction interface. Input images and output matting results. > > **Parameter** > > > * **im**: Input images in HWC or BGR format > > * **result**: Matting result. Refer to [Vision Model Prediction Results](../../../../../docs/api/vision_results/) for the description of MattingResult ## Other Documents - [Model Description](../../) - [Python Deployment](../python) - [Vision Model Prediction Results](../../../../../docs/api/vision_results/) - [How to switch the model inference backend engine](../../../../../docs/en/faq/how_to_change_backend.md)