mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00

* Update README.md * Update README.md * Update README.md * Create README.md * Update README.md * Update README.md * Update README.md * Update README.md * Add evaluation calculate time and fix some bugs * Update classification __init__ * Move to ppseg * Add segmentation doc * Add PaddleClas infer.py * Update PaddleClas infer.py * Delete .infer.py.swp * Add PaddleClas infer.cc * Update README.md * Update README.md * Update README.md * Update infer.py * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Add PaddleSeg doc and infer.cc demo * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Create segmentation_result.md * Update README.md * Update segmentation_result.md * Update segmentation_result.md * Update segmentation_result.md * Update classification and detection evaluation function * Fix python grammar bug * Update README.md * Update README.md * Update README.md * Update README.md Co-authored-by: Jason <jiangjiajun@baidu.com>
77 lines
3.0 KiB
Markdown
77 lines
3.0 KiB
Markdown
# PaddleDetection C++部署示例
|
||
|
||
本目录下提供`infer_xxx.cc`快速完成PaddleDetection模型包括PPYOLOE/PicoDet/YOLOX/YOLOv3/PPYOLO/FasterRCNN在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。
|
||
|
||
在部署前,需确认以下两个步骤
|
||
|
||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/the%20software%20and%20hardware%20requirements.md)
|
||
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/quick_start)
|
||
|
||
以Linux上推理为例,在本目录执行如下命令即可完成编译测试
|
||
|
||
```
|
||
以ppyoloe为例进行推理部署
|
||
|
||
#下载SDK,编译模型examples代码(SDK中包含了examples代码)
|
||
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.2.0.tgz
|
||
tar xvf fastdeploy-linux-x64-gpu-0.2.0.tgz
|
||
cd fastdeploy-linux-x64-gpu-0.2.0/examples/vision/detection/paddledetection/cpp
|
||
mkdir build && cd build
|
||
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/../../../../../../../fastdeploy-linux-x64-gpu-0.2.0
|
||
make -j
|
||
|
||
# 下载PPYOLOE模型文件和测试图片
|
||
wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz
|
||
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
|
||
tar xvf ppyoloe_crn_l_300e_coco.tgz
|
||
|
||
|
||
# CPU推理
|
||
./infer_ppyoloe_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg 0
|
||
# GPU推理
|
||
./infer_ppyoloe_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg 1
|
||
# GPU上TensorRT推理
|
||
./infer_ppyoloe_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg 2
|
||
```
|
||
|
||
## PaddleDetection C++接口
|
||
|
||
### 模型类
|
||
|
||
PaddleDetection目前支持6种模型系列,类名分别为`PPYOLOE`, `PicoDet`, `PaddleYOLOX`, `PPYOLO`, `FasterRCNN`,所有类名的构造函数和预测函数在参数上完全一致,本文档以PPYOLOE为例讲解API
|
||
```
|
||
fastdeploy::vision::detection::PPYOLOE(
|
||
const string& model_file,
|
||
const string& params_file,
|
||
const string& config_file
|
||
const RuntimeOption& runtime_option = RuntimeOption(),
|
||
const Frontend& model_format = Frontend::PADDLE)
|
||
```
|
||
|
||
PaddleDetection PPYOLOE模型加载和初始化,其中model_file为导出的ONNX模型格式。
|
||
|
||
**参数**
|
||
|
||
> * **model_file**(str): 模型文件路径
|
||
> * **params_file**(str): 参数文件路径
|
||
> * **config_file**(str): 配置文件路径,即PaddleDetection导出的部署yaml文件
|
||
> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
|
||
> * **model_format**(Frontend): 模型格式,默认为PADDLE格式
|
||
|
||
#### Predict函数
|
||
|
||
> ```
|
||
> PPYOLOE::Predict(cv::Mat* im, DetectionResult* result)
|
||
> ```
|
||
>
|
||
> 模型预测接口,输入图像直接输出检测结果。
|
||
>
|
||
> **参数**
|
||
>
|
||
> > * **im**: 输入图像,注意需为HWC,BGR格式
|
||
> > * **result**: 检测结果,包括检测框,各个框的置信度, DetectionResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||
|
||
- [模型介绍](../../)
|
||
- [Python部署](../python)
|
||
- [视觉模型预测结果](../../../../../docs/api/vision_results/)
|