Files
FastDeploy/examples/vision/detection/paddledetection/cpp/README.md
huangjianhui eaa017fb09 Update PPYOLOE README.md (#133)
* Update README.md

* Update README.md

* Update README.md

* Create README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Add evaluation calculate time and fix some bugs

* Update classification __init__

* Move to ppseg

* Add segmentation doc

* Add PaddleClas infer.py

* Update PaddleClas infer.py

* Delete .infer.py.swp

* Add PaddleClas infer.cc

* Update README.md

* Update README.md

* Update README.md

* Update infer.py

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Add PaddleSeg doc and infer.cc demo

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Create segmentation_result.md

* Update README.md

* Update segmentation_result.md

* Update segmentation_result.md

* Update segmentation_result.md

* Update classification and detection evaluation function

* Fix python grammar bug

* Update README.md

* Update README.md

* Update README.md

* Update README.md

Co-authored-by: Jason <jiangjiajun@baidu.com>
2022-08-18 21:24:29 +08:00

77 lines
3.0 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# PaddleDetection C++部署示例
本目录下提供`infer_xxx.cc`快速完成PaddleDetection模型包括PPYOLOE/PicoDet/YOLOX/YOLOv3/PPYOLO/FasterRCNN在CPU/GPU以及GPU上通过TensorRT加速部署的示例。
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/the%20software%20and%20hardware%20requirements.md)
- 2. 根据开发环境下载预编译部署库和samples代码参考[FastDeploy预编译库](../../../../../docs/quick_start)
以Linux上推理为例在本目录执行如下命令即可完成编译测试
```
以ppyoloe为例进行推理部署
#下载SDK编译模型examples代码SDK中包含了examples代码
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.2.0.tgz
tar xvf fastdeploy-linux-x64-gpu-0.2.0.tgz
cd fastdeploy-linux-x64-gpu-0.2.0/examples/vision/detection/paddledetection/cpp
mkdir build && cd build
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/../../../../../../../fastdeploy-linux-x64-gpu-0.2.0
make -j
# 下载PPYOLOE模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
tar xvf ppyoloe_crn_l_300e_coco.tgz
# CPU推理
./infer_ppyoloe_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg 0
# GPU推理
./infer_ppyoloe_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg 1
# GPU上TensorRT推理
./infer_ppyoloe_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg 2
```
## PaddleDetection C++接口
### 模型类
PaddleDetection目前支持6种模型系列类名分别为`PPYOLOE`, `PicoDet`, `PaddleYOLOX`, `PPYOLO`, `FasterRCNN`所有类名的构造函数和预测函数在参数上完全一致本文档以PPYOLOE为例讲解API
```
fastdeploy::vision::detection::PPYOLOE(
const string& model_file,
const string& params_file,
const string& config_file
const RuntimeOption& runtime_option = RuntimeOption(),
const Frontend& model_format = Frontend::PADDLE)
```
PaddleDetection PPYOLOE模型加载和初始化其中model_file为导出的ONNX模型格式。
**参数**
> * **model_file**(str): 模型文件路径
> * **params_file**(str): 参数文件路径
> * **config_file**(str): 配置文件路径即PaddleDetection导出的部署yaml文件
> * **runtime_option**(RuntimeOption): 后端推理配置默认为None即采用默认配置
> * **model_format**(Frontend): 模型格式默认为PADDLE格式
#### Predict函数
> ```
> PPYOLOE::Predict(cv::Mat* im, DetectionResult* result)
> ```
>
> 模型预测接口,输入图像直接输出检测结果。
>
> **参数**
>
> > * **im**: 输入图像注意需为HWCBGR格式
> > * **result**: 检测结果,包括检测框,各个框的置信度, DetectionResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
- [模型介绍](../../)
- [Python部署](../python)
- [视觉模型预测结果](../../../../../docs/api/vision_results/)